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Abstract—In this paper we present a novel experi-
mental platform for network management able to dy-
namically optimize the energy consumption of back-
bone IP networks operating with OSPF. The idea
is to efficiently adjust link weights to put to sleep
idle devices. The framework relies on multiple pre-
computed sets of link weights that are applied to
the considered network domain according to real time
measurements on the link utilization. The management
module exploits the Simple Network Management Pro-
tocol (SNMP) to collect the load measurements and
modify the link weights. The pre-computed link weights
are calculated by running a state-of-the-art algorithm
for off-line energy-aware traffic engineering based on
predicted traffic matrices. The modules of the platforms
have been implemented for Linux based environments
and tested using emulated networks of virtual machines.
Experimental results showed a significant reduction in
terms of network resources required to route traffic
demands, demonstrating how, in average, 20% of nodes
and 40% of links, can be put to sleep without compro-
mising network performance and stability.

I. Introduction

In 2007, it was estimated that the comprehensive power
consumption of the ICT sector was close to 156GW , with
the solely network equipments, excluding servers in data
centers, responsible for 22GW [1]. As for the the single
Internet Service Providers (ISP), data reported in [2] shows
that in 2009 the power requirements of the largest ISPs
overcame, in some cases, 10TWh per year. Furthermore,
in case of medium size ISPs such as Telecom Italia and
GRNET, the yearly energy consumption of access and core
networks is estimated to exceed 400GWh in 2015.

Thus, the study of new methods and strategies to opti-
mize IP network energy consumptions have been receiving
an increasing attention by the scientific community, device
manufacturers and ISPs [3], [4].

A natural strategy to reduce the network energy con-
sumption consists of adjusting network routing so that,
depending on the traffic level, redundant routers and
links can be put to sleep [5]. In fact, network devices in
sleeping state consume around 90% less than idle active
ones [6]. Now, since network utilization is very often below
50% [7] due to ISP’s over-provisioning, a large subset of
network devices may be potentially put in stand-by even

during peak traffic periods. The advantages of the sleeping
approach with respect to those based exclusively on load
balancing are discussed in [8].

Sleep-based energy-aware network management can be
centralized, with a network management platform that
adjusts the network configuration according to global net-
work measurements (see for instance [9], [10]), or dis-
tributed, with multiple agents that take independent deci-
sions based on local or global data (see for instance [11],
[12]).

We focus on IP networks operated with the Open
Shortest Path First (OSPF) protocol with Equal Cost
Multi-Path (ECMP). According to OSPF, traffic demands
are routed through the shortest paths defined by the link
weights. The network routing can thus be optimized (traf-
fic engineering) by adjusting the link weights themselves
[9]. The shortest path scheme prevents energy management
strategies to optimize routing on a per-flow basis (like with
MPLS), operation that can be practically very complex
when an large number of traffic demands is considered.

In this paper we propose a novel approach to energy
efficient operation of IP networks based on a new Network
Management platform able to adjust dynamically OSPF
weights according to traffic measurements collected in real-
time from controlled routers. Depending on traffic patterns
and link weights, a subset of routers or their interface cards
can be completely unloaded so as to be put to sleep by a
distributed mechanism that can also reactivate them when
traffic and weights change. The platform selects the OSPF
weights among a set of precomputed scenarios that are
optimized off-line using the approach presented by some
of the authors in [9]. The selection of the scenarios is
performed dynamically according to the traffic statistics
collected by the management platform, by using some
thresholds on load levels on different sets of links. The
SNMP-based on-line management engine of the platform
is used to both gather traffic statistics and apply weights.

The proposed platform together with the optimiza-
tion modules, traffic analyser, and weighs handler have
been implemented into an experimental framework for
Linux-based devices. The proposed approach for energy
efficient IP network has been tested on a set of network
topologies which have been implemented into an emulated



environment using virtual machines. Since the practical
implementation of the sleep mode into router devices is out
of the scope of this paper, we assume that network devices
and their line cards can automatically go to sleep through
centralized or autonomous mechanisms able to detect the
absence of traffic (see e.g. [13]).

The reminder of the paper is organized as follows. In
Section II the literature is briefly reviewed. The idea of
the on-line OSPF energy-aware optimization is thoroughly
presented in Section III. The detailed architecture of the
network management platform is described in Section IV,
whereas computational results are discussed in Section V.
Conclusions follow in Section VI.

II. Related work

Due to the growing attention towards green networking,
and more specifically, energy efficient IP networks, several
work on energy-aware network management have appeared
in recent years [4].

The approaches can be categorized according to the
routing scheme considered, the number of agents involved
in the optimization (i.e. centralized or distributed) and
the frequency and moment in which the optimization is
performed (i.e. one time off-line, several times on-line).

Methods for on-line network management are presented
in [10]–[12], [14]–[17]. The distributed algorithms proposed
in [11], [12] to put to sleep network links can work with
IP networks operated with OSPF. The OSPF link state
packets are then exploited to provide all routers with the
data concerning the load on each link. According to a
given policy, the complete set of routers [11], or each single
router independently [12], periodically selects a potential
link to be put to sleep; if the switching-off leads toward the
violation of the max-utilization allowed, the link itself is
immediately reactivated. Differently from our approach, no
traffic matrices are considered and network configuration
is changed very frequently, which may lead to network
instability; moreover, network nodes cannot be put to
sleep, network routing is not optimized (link weights are
kept unchanged), and no congestion guarantees are given
when a link is put to sleep.
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Figure 1. Flow chart of the network management platform.

Another method that exploits link state packets to
disseminate link state information is proposed in [15].
A centralized network management platform is used to
efficiently configure the OSPF link weights and the equal
cost path splitting ratios. Differently from our work, the
method has not been implemented in a real network
environment but has been only tested by running ns2
simulations. Furthermore, the procedure requires to change
the OSPF splitting ratio, that is typically kept fixed by
ISPs, and no stability guarantees are provided. Some
distributed algorithms for energy-aware traffic engineering
in networks operated with flow-based routing protocols
are proposed in [14], [17]. In [14] each edge router of the
considered domain periodically optimizes the amount of
traffic transmitted along each pre-configured path, while
in [17], in addition to the routing optimization, energy-
aware admission control is performed. W.r.t. [14], [17], we
consider IP networks operated with OSPF, keep all the
network protocols unchanged, and exploit only network
technologies already implemented in a typical IP network.

The centralized approach proposed in [10] considers
networks operated with a hybrid OSPF+MPLS routing
protocol and exploits a restricted path MILP formulation
to put to sleep network links. Neither in this case network
nodes can be put to sleep and no mechanisms are used
to prevent frequent changes. Finally, in [16], the authors
propose a MILP-based on-line heuristic to put to sleep
line cards and chassis while respecting a limitation on the
number of switching-on allowed to each line card along an
entire day. The method considers networks operated with
MPLS and requires the knowledge of the instant traffic
matrices.

As for the off-line approaches found in the literature,
[9], [18] present a mixed integer linear programming algo-
rithm for energy-aware weight optimization (MILP-EWO).
This approach is incorporated as an input in our on-
line method. Other off-line approaches include a MILP
formulation and some simple greedy heuristics to put to
sleep network devices [19], exact and heuristic algorithms
to minimize the daily energy consumption in MPLS net-
works [20], an upgraded version of OSPF that minimizes
the number of active links by using a restricted set of
shortest path trees [21], methods for energy-aware traffic
engineering in Carrier Grade Ethernet networks [22] and
heuristics based on local search and Lagrangian relaxation
to maximize energy savings in OSPF networks [23].

To the best of our knowledge no previous work com-
bines off-line and on-line techniques to optimize OSPF
weights for an energy-aware environment.

III. Dynamic energy-aware OSPF optimization

The energy-aware optimization of the link weights rep-
resents a promising strategy to jointly minimize both en-
ergy consumption and network congestion in IP networks
operated with OSPF (see [9], [18]). A building block of
our management platform is the MILP-EWO algorithm
based on the idea presented in the aforementioned papers.
That idea consists on selecting very high OSPF weights
for the links that the planner would like to exclude from
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Figure 2. The Network Management platform dynamically adapts the network topology to the current traffic conditions, to switch off
under-utilized elements by exploiting OSPF link weights. SNMP is used to monitor traffic levels and to apply link weights.

operation and, eventually, put to sleep, while optimizing
the remaining weights to achieve optimal load balancing.

The network management platform we propose, how-
ever, uses this building block in a completely new way and
in a context much more dynamic. In the platform, MILP-
EWO (see Figure I) is integrated into a real-time green-
framework, where both off-line and on-line optimization
methods are efficiently combined to guarantee both stabil-
ity and responsiveness to traffic and network changes.

We select a set of traffic patterns that represent typical
working conditions of the network and then compute for
each of them an OSPF link weights configuration (for
convenience OSPF configuration or simply OC) using off-
line the optimization algorithm. The number of traffic
patterns to be taken into account greatly depends on the
specific characteristics of the network considered. In [24],
it is shown that a few network configurations are sufficient
to obtain quasi-optimal energy savings, but the approach
we propose here is general and can also be applied when
the number of traffic scenarios is large.

The platform allows to apply the OCs to the network
dynamically according to real-time measurements on link
loads. In order to do that the platform has been developed
using some modules that allow to collect traffic measure-
ments, select the most appropriate OC and apply it using
SNMP instruments.

In Figure I, the interconnections of the three main
modules of our platform are indicated: (i) the Mixed Inte-
ger Linear Programming based algorithm for Energy-aware
Weights Optimization (MILP-EWO), (ii) the Energy-
Aware Network Intelligence (EANI), and the Java-based
Network Management platform (JNetMan) [25].

MILP-EWO is used in an off-line phase to compute
the restricted set of OSPF configurations that, afterwards,
will be efficiently applied on-line by EANI and JNetMan.
Note that each OSPF configuration is typically obtained
by considering an estimated traffic matrix corresponding to
a particular traffic level. The choice of the traffic matrices
given as input to MILP-EWO is crucial for the effectiveness
of the entire approach and should be made according to
the traffic profile and the network domain considered. It is
worth pointing out that traffic matrices can be estimated
with good accuracy by network providers [26] by exploiting
both direct [27] and indirect measurements [28].

Figure 3. Example of daily profile of the totale traffic entering an
ISP network. Each bold black line represents an instant chosen to
sample a traffic matrix.

As shown in Figure 3, due to the daily regular behavior
of Internet traffic, which is typically characterized by very
slow dynamics [2], [26], traffic matrices can be chosen by
ideally splitting a single day into different macro intervals,
and subsequently sampling a set of matrices that allow to
approximate with reasonable accuracy the traffic load of
each period.

In the on-line phase, the OSPF configurations are
efficiently managed in real-time by EANI, which is respon-
sible for adapting the network configuration to the traffic
conditions. Real time traffic measurements are provided
to EANI by the SNMP-based management platform JNet-
Man, which is exploited to practically modify the OSPF
weights too. Figure 2 illustrates the general idea.

The detailed architecture of the EANI is shown in
Figure 4. Four main operational blocks can be identified:
a network monitor, an OC monitor, an OCs database,
and an OC enabler. The network monitor periodically re-
quests JNetMan to retrieve the current utilization level of
each link. A bandwidth utilization report is then produced
and sent by the network monitor to the OC monitor.
The latter, by consulting these reports, is responsible for
selecting the proper OSPF configuration from the OCs
database according to the configured “switching” policy;
the term“switching” here refers to moving from one OSPF
configuration to another. The switching policy determines
(i) under which conditions to update the current OSPF
configuration, and, in case of configuration switching, ii)
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which alternative configuration to select. The main idea is
to switch configurations when the network is observed to
be either underutilized or too congested.

In our implementation we defined a switching policy
based on four specific thresholds ψ+

av, ψ
−
av, ψ

+
max, ψ

−
max,

representing, respectively, the network maximum average
utilization for consumption increase or decrease, and the
maximum average utilization for consumption increase or
decrease. The thresholds should be properly selected to
prevent that a network that is in normal conditions con-
tinuously oscillates between different OSPF configurations.
See Section III-A for further details on the definition of the
switching policy. In the OCs database, each OSPF configu-
ration is defined as an ASCII file, uniquely described by (i)
the set of OSPF link weights assigned to the links, (ii) the
bandwidth utilization thresholds (ψ+

av, ψ
−
av, ψ

+
max, ψ

−
max)

to be respected, and (iii) the pointers to other OCs to be
considered when utilization thresholds are exceeded (i.e.
the switching policy).

Once a configuration switch is requested by the OC
monitor, a switch notification containing the pointer to the
new configuration to be applied is sent to the OC enabler.
This latter retrieves the configuration details from the
database and starts an OSPF link weight update procedure
by using the JNetMan API . The notion of pointer will be
further discussed in Section III-A.

In big networks with hundreds or more subnets this
operation requires considerable computational resources,
and convergence to a new routing topology may take
tens of seconds. To reduce convergence time, the OC
enabler ignores the links whose weight remains unchanged
in the new configuration. Weight changes might also create
temporary routing loops that could lead to packet loss.
To prevent this phenomenon, the OC enabler updates link
weights one by one at fixed intervals necessary to allow all
the routing tables to be updated before the adjustment of
a further weight.

Full
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... ... ... ...

... ...... ...
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more resources
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Figure 5. Example of an OCs graph: OCs are sorted according
to the amount of network elements active. “Full” represent the
complete topology, with all elements active. Movements to different
upper/lower OCs are made according to traffic variations.

Figure 6. Example of OCs chain, a particular case of an OCs graph.
In this case the most powerful high.oc represents the full topology,
while low.oc embodies the most energy-saving topology.

A. OSPF switching policy

The definition of a proper switching policy is crucial for
guaranteeing the correct application of the OSPF configu-
rations. A reasonable assumption, considered here, is that
traffic matrices with higher loads lead towards network
topologies with a higher power consumption.

The general proposed framework of the OSPF switch-
ing policy is presented in Figure 5 where the configura-
tions are portrayed in a hierarchical fashion with the top
configuration being the one with all the elements on and
the ones in the lower part of the graph having the lowest
consumption. The arcs between configurations represent
the pointers that link one configuration with another.
Essentially, the pointers define how to “switch” from one
to another configuration.

Let µmax and µav be, respectively, the maximum and
average network utilization. Since in typical IP backbone
networks traffic matrices tend to vary while preserving
a constant ratio between different traffic demands (they
are related to the number of clients connected to a given
node), we have defined a basic switching policy where
the upper and lower OSPF configuration pointers are
applied, respectively, when µmax ≥ ψ+

max ∨ µav ≥ ψ+
av and

µmax ≤ ψ−
max ∧ µav ≤ ψ−

av.

However, to efficiently manage more general scenarios
where traffic loads on different links can vary indepen-
dently, a second type of switching policy has also been
developed, according to which the so-called link-specific
pointers are thus consulted when the thresholds are ex-
ceeded only for a specific subset of links.

This kind of relationships expressed in pointers OC
field allows EANI to offer maximum flexibility and adapt-
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ability to traffic variations scenarios. In the simplest case
where only the general upper/lower pointers are defined
for each OC, the general graph of Figure 5 is reduced to a
simple OCs chain such as the one portrayed in Figure 6.

IV. Java Framework for SNMP-based Network
Management Applications

Our solution uses the management features offered
by the SNMP protocol. In out platform we developed
JNetMan, a java framework to aid researchers in the de-
velopment of complex network management applications.
We recently made JNetMan an open-source project freely
distributed under the Apache License 2.0 model, source
code and documentation is available for download at [25].

The aim of JNetMan is to offer a clear separation
between the specific management algorithm and the low-
level SNMP protocol operations needed to execute the
algorithm in the network. Most of the green networking
work published to date usually refers to a set of high-
level management operations needed to practically enable
a specific solution in a given network. Developing a specific
management solution with SNMP requires to handle a
set of more low-level operations such as authentication,
retrieving OIDs from MIB files, casting from application
specific variable types to SMI defined datatypes, packets
generations, requests timeout, etc. With JNetMan we in-
troduce a software framework able to offer a set of powerful
primitives to directly interact with network devices trough
a high-level abstraction of the network and its related
management operations. The result is a reusable software
platform that can be used by researchers to easily develop
specific solutions for the management of telecommunica-
tions networks, thus allowing fast experimental validation
of new algorithms.

Fig. 7 illustrates the architecture of the JNetMan
framework, which is composed of two main operational
layers, namely Network Abstraction Layer (NAL), and
SNMP Communication Layer (SCL). In this figure the
management algorithm is intended as a place holder for
the implementation of a specific management solution that
makes use of JNetMan’s API, as it could be EANI.

The NAL represents the high-level interface used to
manage the network, providing a first logical abstraction

on 2 levels: network entity, and management agent. Inside
JNetMan a network is intended as a set of network entities,
namely node, interface, and link. A node is a network node,
it can be intended as an interconnection device or as an
end device. Every node has one or more network interfaces,
and every link is intended as a connection between two
interfaces. In the classic SNMP architecture every oper-
ation is referred to the agent executed in the network
device. We instead provide a more natural entity-based
division of the management operations. JNetMan defines
a management agent for every network entity, in this way
we’ll have a node agent, an interface agent and a link agent.
Each of these agents define a set of specific management
operations that concern the corresponding network entity.
For example, obtaining the current average bit rate (bit/s)
of an Ethernet link is a JNetMan management operation
defined for the link entity, and it’s operated by calling the
corresponding primitive defined inside the link agent. By
using a line of Java code of the JNetMan’s API this will
be:

/*
* This method returns the average bitrate (bit/s) of the
* link named L1, evaluated over an interval of 5 seconds.
*/
network.getLink("L1").getAgent().getCurrentBitrate(5);

While the NAL provides a set of high-level network
management API to the management algorithm, the SCL
represents the implementation of the low-level SNMP
operations. This layer helps the NAL to complete the
management tasks by providing: a set of helper methods
to process values gathered from specific MIB-modules, and
primitives to safely convert datatypes from SMI to Java
and vice versa. Beside this, the basic task of the SCL
is to establish a reliable SNMP communication channel
between the management host and network devices. For
the implementation of all these SNMP low-level operations
we used an existing open-source solution called SNMP4J
[29], an enterprise class free open source and state-of-the-
art SNMP implementation for Java.

To correctly operate, JNetMan needs to know informa-
tions such as: the name and the IP address of nodes to
manage; the interfaces installed for each of these nodes;
links names and the corresponding connected interfaces,
plus a number of other configuration parameters. All this
informations as taken as input by JNetMan in the form of
plain ASCII files, namely properties files, (usually no more
than a few hundreds of kilobytes, highly compressible, that
can be easily published over the Web or transferred by
email). JNetMan reads properties files to internally build
a reference model of the network topology and to set all the
configuration parameters, thus making it very simple and
straightforward to manage an existing network consisting
of several nodes, interfaces and links.

V. Computational results

A. Test-bed

The proposed network management platform has been
tested in an emulated network environment developed by
using Netkit [30] [31], a freely available network emulation



Table I. Network topologies from SNDLib [35] used for
experimentations.

Network Nodes Links Edgenodes Corenodes

abilene 11 14 6 5

polska 12 18 6 6

Traffic level

Peak

t

Figure 8. “Fade-in fade-out” profile used to generate traffic during
tests.

environment based on User-Mode Linux, and a set of other
networking tools, i.e. the OSPF routing daemon Quagga
[32], the SNMP agent Net-Snmp [33], and the Distributed
Internet Traffic Generator (D-ITG) [34].

1) Network topologies and traffic matrices: We consid-
ered two real network topologies provided by the widely
known SNDLib [35], namely polska and abilene networks
(see Table I). Furthermore, in each topology, network
nodes were randomly split between core nodes and edge
nodes. Since the first ones, by definition, cannot represent
neither traffic sources or traffic destinations, they are the
only nodes that can be put to sleep. Note that we could
not use larger topology due to Netkit resource constraints.

Traffic was generated by computing, for each network,
a peak traffic matrix. We derived it by scaling the matrix
provided by the SNDLib with a fixed parameter ϖpeak.
This latter was chosen as the largest one whose resulting
matrix were routed, with fully splittable routing, without
exceeding a 70% maximum utilization limit. To better
evaluate the effectiveness of the proposed platform, we
configured the traffic generators to simulate, for each
demand, the simple, but also quite realistic “fade-in fade-
out” profile shown in Figure 8, where the peak level is
represented by the peak matrix values. Packets were gener-
ated according to a normal distribution for both IDT (Inter
Departure Time) and PS (Packet Size). The IDT and PS
average values of each single demand were derived from
the corresponding traffic matrix to reproduce the desired
average transmission rate. As for the variance values, we
experimented with both 10%, 20% and 30% variance for
both IDT and PS processes.

2) Parameter setting: A summary of the OSPF con-
figurations obtained by executing MILP-EWO for both
polska and abilene networks is shown in Table II, while
Figure 9 illustrates the resulting OCs chains. More pre-
cisely, to compute the OSPF configuration c0x (e.g c01, or
c03), we scaled the peak matrix with a second fixed param-
eter θ0x so as to respect a x0% maximum utilization limit
(c03 → 30%). We then ran MILP-EWO with the resulting
traffic matrix while imposing a maximum utilization limit
of 70%. Note that the full configuration was obtained by

Table II. Description of the OSPF configurations computed
by MILP-EWO.

Network ψmax OC Linksactive Nodesactive

10% c01 7 (39%) 8 (67%)

30% c03 9 (50%) 9 (75%)

polska 50% c05 13 (72%) 11 (92%)

70% c07 14 (78%) 12 (100%)

100% full 18 (100%) 12 (100%)

50% c05 9 (82%) 10 (71%)

abilene 70% c07 10 (91%) 12 (86%)

100% full 11 (100%) 14 (100%)

upper

lowerc01

upper

lowerc03

upper

lowerc05 full

upper

lowerc07

(a) polska

upper

lowerc05 full

upper

lowerc07

(b) abilene

Figure 9. OCs chains used in tests.

using θ07 and forcing MILP-EWO to keep activated all the
network elements. With abilene we didn’t consider OCs
c01 and c03 because equivalent to c05.

During the tests we adjusted the utilization thresholds
ψ in order to experiment with both a restrictive and
a permissive switching policy. The considered ψ values
are reported in Table III. Note that in the permissive
policy ψ−

max was increased up to 60% (polska) and 65%
(abilene).

Finally, note that the duration of each simulation was
of 30 minutes with polska and 20 minutes with abilene.
Furthermore, JNetMan was configured to collect load mea-
surements every 20 (polska) or 15 (abilene) seconds.

B. Experimentation

We ran several tests for each network, varying both
switching policy and variance parameters of the packet
generation processes. In Figure 10 we report the time
distribution for each single OC observed with both re-
strictive and permissive switching policies. The values were
computed by averaging over three instances characterized
by different variance values (i.e. 10%, 20% and 30%). The
permissive policy allowed to reduce by one third the use
of the full configuration and to redistribute it between the
remaining less consuming OCs.

In Figure 11 we show the average and maximum utiliza-
tion levels observed by varying switching policy and fixing
IDT and PS variance to 20%. Note that, for comparison
purposes, we also report the values obtained by applying
the full configuration along the entire simulations. The

Table III. Switching policies.

Network Switching policy ψ+
av ψ−

av ψ+
max ψ−

max

polska restrictive 60% 40% 80% 50%

permissive 60% 40% 80% 60%

abilene restrictive 60% 40% 80% 50%

permissive 60% 40% 80% 65%
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(d) abilene: permissive policy, var = 20%

Average link utilization 
with full topology

Maximum link utilization 
with energy-aware routing
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Figure 11. Link utilization charts obtained during 4 test instances: varying the switching policy has led to a general optimization of the OCs
chain, switches to lower OCs are permitted more rapidly using a permissive policy.

first result to point out is that the configuration sequence
dynamically applied by EANI correctly reflects the “fade-
in fade-out” traffic profile: the defined OC chain is in
fact progressively applied, from the lowest configuration
to the full topology and vice versa. Furthermore, note
that, despite the traffic variability induced by the IDT and
PS variance, the threshold-based switching policies suc-
cessfully prevent undesired oscillations between upper and
lower configurations. The same behaviour was observed
with variance incremented up to the 30% value.

As expected, since energy-aware OSPF optimization
caused traffic to be routed through a subset of network
elements, both higher maximum and average link utiliza-
tion levels w.r.t. to the full topology case were observed.
With abilene the utilization increase, in terms of absolute

utilization, was up around 10%, while in polska, was up
to 30% during low traffic periods.

It is very interesting to notice how the adjustment
of the utilization thresholds may positively influence the
performance of the approach. Note, for instance, that the
adjustments made to obtain the permissive policy allowed,
in both networks, to avoid the undesired very quick switch
from the full configuration towards c03 (polska) or c05
(abilene), where certain configurations were maintained
for only a few seconds.

Finally, in Figure 12 we analyse the network re-
sources/energy consumption. Since we experimented with
an emulated environment with no real routers or links,
instead of using power consumption values referred to
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Figure 12. Relative network resources usage against an “always full topology” situation.

polska

(a) restrictive policy (b) permissive policy

abilene

(c) restrictive policy (d) permissive policy

Figure 10. Distribution of OCs as percentage of time w.r.t the total
duration of the simulations.

some possible real devices, we report results in terms of
percentage of active routers and links. The percentages
are weighted w.r.t. to the time used by each configuration.
Results show that in polska we were able, in average, to
put to sleep 20% of network nodes and 40% of network
links. The use of the permissive policy allowed to gain
only a further 3% for what concerns network links, and
1% as for network nodes. That means that, in case of
greater attention for network performance w.r.t. network
consumptions, it would be possible to adopt more restric-
tive policies while preserving the platform capability to
significantly reduce the consumptions. As for abilene, due
to the simpler topology structure, we observed a smaller
consumption reduction, with, in average, 15% of nodes and
20% of links put to sleep during the simulations.

VI. Conclusion

We have proposed a novel experimental platform for
network management able to dynamically optimize the
energy consumption of backbone IP networks operating
with OSPF. The new framework combines both off-line
and on-line optimization to guarantee both network sta-
bility and responsiveness to real-time traffic conditions.
We have shown how to dynamically apply a restricted
subset of OSPF configurations (sets of link weights) in IP
networks to minimize energy consumption while preserving
the network capability to provide the requested QoS. We
have also pointed out how an optimized policy based on
several utilization thresholds allows to prevent the network
to frequently oscillate between different configurations. In
terms of network resources requirements, the new green
platform demonstrates how, using real network topologies
and quite realistic traffic scenarios, in average, 20% of
nodes and 40% of links can be put to sleep. Since the
tests were conducted in a linux-based emulated network
environment, we leave as future work the execution of
experiments in real networks.
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