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Abstract—With the proliferation of distributed generation, an
electrical load can be satisfied either by a centralized generator
or by local/nearby distributed generators. Given a set of resource
demands in a collection of geographically co-located microgrids
connected to the central grid, each such demand characterized by
a power level and a duration. We study algorithms that allocate
generation resources to demands by configuring switched paths
from sources to loads. We consider the case when each demand
can be met by two generators, one of them representing the
central grid and thus shared among all demands.

I. INTRODUCTION AND MOTIVATION

Rapid penetration of distributed generation resources, es-
pecially diesel gensets and solar generation, have made it
possible for groups of homes or businesses to meet much
or all of their elastic demand through local generation. This
usage pattern is especially common in developing countries
such as India, which suffers with electricity deficit and as
a result, millions of consumers are affected by inadequate
power supply [1], [2]. There, customers use local generation
to complement the central grid which is unreliable and limited
in capacity. We anticipate that in the future geographically
close microgrids will opportunistically form connections with
each other to increase reliability, a natural recapitulation of the
self-organizing process by which electricity grids were formed
in the first place, before centralized generation essentially
eliminated micro-generation a century ago.

The focus of our work is on efficient demand satisfac-
tion in the context of multi-connected microgrids, where a
demand can be met by different generation resources: local,
nearby, or on a regional grid that defines a load balancing
vector for each demand that determines which generators are
connected/available to satisfy this demand. In the simplest
case, the load balancing vector of each demand consists of
a single generator, so each input generator can be scheduled
independently. In this setting the problem reduces to the
well-known two-dimensional strip packing problem that has
been extensively studied in literature [3]. In our model, each
demand may have a load balancing vector with several inputs,
which makes the problem more complex. Demands can be
elastic and non-elastic [4]; a demand is non-elastic if its
scheduling should start immediately upon arrival. A demand
is non-preemptive if it cannot be preempted until completion
once it has begun servicing, and preemptive otherwise. When
generation capacities are insufficient to satisfy all demands
some non-preemptive demands should be delayed, which leads

us to the need for switching of electricity. We concentrate
on scheduling elastic non-preemptive demands since (1) they
encompass an important class, (2) with higher resolution of
scheduling non-elastic demands may become elastic, and (3)
preemptive demands can be used to complement a schedule to
reuse resources not utilized by non-preemptive demands.

The concept of “packetized” electricity is not new [5],
[6]. A natural representation of a demand by power level and
duration is isomorphic to a data packet represented by length
(duration) and CPU processing requirement (power level).
Under some simplifying assumptions, the abstract problem of
meeting time-limited loads (that require a certain power for a
certain time) from a set of generation resources with distributed
switches is similar to assigning packets of a certain length
arriving to a set of output ports through a rearrangeable optical
switch [7], [8]. Each packet corresponds to a demand, each
input port to a generation resource, and each output port to a
load; in fact, the world’s first electricity switch with packets
of electricity has already been designed [7].

When a central grid has limited capacity, optimal reuse
of the underlying infrastructure becomes more important than
cost savings for individual consumers. Pricing methods that
try to move generation peak are only a tool to achieve better
utilization of the underlying central grid infrastructure [9],
[10]. For scheduling with “cost constraints”, input ports with
higher costs can be excluded from the load balancing vec-
tor, and scheduling with cost constraints for this microgrid
architecture can be reduced to optimizing the makespan or
some other objective on a given set of demands with modified
load balancing vectors. Moreover, cost minimization implies
waiting for the cheapest source, which may be unacceptable
even for non-preemptive elastic demands. Therefore, we are
especially concerned with minimizing the delay in satisfying
a set of resource demands. We assume that there is a non-
negligible penalty, called configuration overhead, of V time
slots to change the configuration in a switching system [11];
note that V may impact a scheduling decision. We also con-
sider an additional objective: minimizing the total number of
configurations. Among other things, this reduces the wear and
tear of switching equipment that directly depends on the num-
ber of necessary switching operations. We extend past work
in demand assignments in rearrangable optical switches [8] to
compute lower and upper bounds on the minimum number of
rearrangements needed to meet a set of demands and show a
relation between objective functions.



Fig. 1: The physical infrastructure in (a) is represented logically in
(b). Note that “Grid” represents all centralized generators available
through the transmission network. The “distributed switch” refers
to the set of switches in microgrids that determines how loads are
matched to generators.

Our main contributions include: (1) a formal setting for
the problem of meeting demands in multi-connected micro-
grids; this problem turns out to be similar to scheduling in
rearrangeable optical switches; (2) a comprehensive study of
various properties that should be implemented by a “perfect”
scheduling policy; (3) computing upper and lower bounds
on worst-case performance of scheduling policies for various
objective functions; (4) a simulation study that shows the
behavior of scheduling algorithms for typical workloads. A
preliminary version of this work has appeared as a poster at
the ACM e-Energy 2013 conference.

II. PREVIOUS WORK

Keshav and Rosenberg introduced the classification of
demands [4]. Saitoh and Toyoda introduced the concept of
packetized electric power tagged by power switches [5]; later
this work was extended by [6]. The first prototype of a
switch of electricity packets was announced by the Digital
Grid Consortium [7]. Kesselman and Kogan introduced the
Non-Preemptive Bipartite Scheduling (NPBS) problem in [8].
NPBS is directly relevant to scheduling in optical switches.
In their model, packets are assigned to inputs a priori but
several packets may compete for the same input and output;
in [8], the results of [12], [13] were extended to show that the
NPBS problem is NP-hard for any value of the configuration
overhead, and approximating NPBS within a ratio smaller
than 7

6 is also NP-hard. Furthermore, they demonstrated that
the greedy algorithm achieves an approximation factor of
exactly 2 for the offline version of the NPBS problem. Time
slot assignment (TSA) scheduling arises in the context of
Satellite Switched Time Division Multiple Access systems.
Here research efforts have concentrated on extreme values of
the configuration delay, such as V = 0 or V = ∞. Gopal
and Wong [12] proposed heuristic algorithms for decomposing
a demand matrix with minimal number of configurations for
V = ∞. Towles and Dally [14] studied the batch scheduling
problem and presented algorithms for V = 0 and V = ∞.
Li and Hamdi [15] proposed a self-adjusting algorithm with
different configuration delay values. Unlike [15], the greedy
algorithm of [8] computes a similar non-preemptive schedule
for any reconfiguration delay.

III. PROBLEM STATEMENT AND NOTATION

We make two simplifying assumptions in our work: that
distribution losses are negligible (reasonable given that most
distributed generators are geographically close to demands;
otherwise, we can just forbid to use a generator for some
demands) and that a demand can be satisfied by any one source
available for it; this is generally the case for small loads and
avoids issues with synchronization. The case when demands
can use several generators simultaneously remains an open
problem for future study.

We model a set of multi-connected microgrids with a
switching system (I,D) that consists of a set of inputs I
(generators) with port capacities ci (their nominal power) and
a set of demands D that are to be scheduled; a demand d
is characterized by its length l(d) (how long it lasts), width
w(d) (power level), and a load balancing vector v(d) that
contains the set of input ports available to process d (set of
generators that can meet this demand). We assume that (I,D)
is a directed acyclic bipartite graph. Scheduling proceeds in
batches. While the previous batch is served, we complete a
preparation phase for the next batch. We assume that demands
can be delayed at least until the end of the preparation phase.
A preparation phase is divided into demand prediction, when
sub-demands are predicted for the next batch, auction, when
each demand receives a load balancing vector, and scheduling,
when the desired objective function is optimized. When a batch
has finished scheduling, the resulting schedule is served. Time
is discrete; L and l are respectively the longest and shortest
length in time slots among all demands. If a demand d is
assigned to input i at time t, d uses w(d) bandwidth of port
i during the time interval [t, t + l(d) − 1]. A schedule P is
a sequence of configurations, partial mappings of demands to
inputs that have to satisfy constraints imposed by port capaci-
ties and load balancing vectors. The length of a configuration
C is defined by the longest demand scheduled during C;
a configuration can be represented by a vector where each
element is a set of demands assigned to the corresponding
input port. We use ∈ liberally, e.g., a demand can be said to
belong to a configuration (which is formally a set of demand-
input pairs). We denote by Dti the set of demands that have the
first (universally available) and the ith ports enabled in the load
balancing vector at time t; by nti, the number of demands in
Dti at time t. We also denote by k(Dti) =

(∑nt
i
j=1 w2(j)

)
/ci

the total “normalized load” for each port, that is, sum of
all widths wi(j) of demands from Dti divided by the ith

port capacity ci. We omit the superscript t when time is
clear from context. W.l.o.g. we assume that in the beginning
k(D2) ≥ k(D3) ≥ . . . ≥ k(DI). To compare the performance
of different policies, we use worst-case competitive analysis.
An algorithm A has approximation ratio α (is α-approximate)
with respect to some (minimized) objective function if for
every input (D, I), A produces a schedule with objective
function value at most α times greater than the optimal one.

We concentrate on the practically interesting case when
each demand can be met by two generators, and one of the
generators, corresponding to the central grid, is shared among
all demands. This situation arises naturally if local distribution
networks, each covering its own region, are supplemented by
a central grid. In this case, the problem reduces to reusing the
central grid (of limited capacity) in the most efficient manner.



Algorithm 1 GREEDYSCHEDULINGPOLICY(D, I )
1: D := D, C := ∅.
2: while D 6= ∅ do
3: start new configuration C := ∅, I ′ := I;
4: while there are available ports and demands do
5: (i, d) := CHOOSEPORTDEMAND(D, I ′);
6: C := C ∪ {(i, d)}, c′i := c′i − w(d), D := D \ {d};
7: C := C ∪ {C}, D := D \ {d | d ∈ C}.
8: Return C.

Algorithm 2 SG

1: function CHOOSEPORTDEMAND({Di}i, I)
2: for i := 2 to I do
3: if ci > w(d) for some d ∈ Di then
4: return (i, CHOOSEDEMAND(Di, ci));
5: Return (1, CHOOSEFIRST({Di}i, I)).

IV. ELECTRICITY SWITCHING ALGORITHMS

A. Proposed Algorithms

We consider simple policies amenable to efficient imple-
mentation; such policies can also scale well. A general scheme
for such policies is presented in Algorithm 1. Given a set of
demands D and a set of input ports I with capacities ci, i ∈ I ,
a greedy scheduling policy populates each configuration by
greedily choosing the next demand to process. Once there are
no more ports (generators) available for existing demands, the
current configuration is finalized and a new one begins.

The CHOOSEPORTDEMAND procedure is the heart of
Algorithm 1; it takes the current state (remaining demands
and leftover capacities) as input and outputs the input-demand
pair (i, d) for the next assignment. Various algorithms con-
sidered in this work differ in their CHOOSEPORTDEMAND
procedures. The obvious general algorithm for this case is
SG, which stands for “Shared Greedy” (Algorithm 2): fill
the capacities of every port except the first, then choose
demands for the first port. Different algorithms may differ
in choosing a demand for a single port (CHOOSEDEMAND
procedure) and in choosing which demand to send to the
first port for extra processing (CHOOSEFIRST procedure). The
basic tradeoff here is the balance between minimizing the
number of configurations and minimizing their total length (du-
ration). In this regard, we define two algorithms from the SG
family: SLD (“Shared Longest Demand”, Algorithm 3) and
SLP (“Shared Longest Port”, Algorithm 4). SLD chooses the
longest available demand for the current configuration; it does
not matter which one for the CHOOSEDEMAND procedure,
and the CHOOSEFIRST procedure SLD splits ties with the
largest port heuristic (maximal k(Di)). SLP, on the other hand,
chooses for the CHOOSEFIRST procedure a demand from the
port with maximal normalized load k(Di); for splitting ties and
CHOOSEDEMAND, it uses the longest demand. Note that in all
cases, maximization and minimization is done over demands
that can fit into available inputs, i.e., the constraint w(d) < ci
is always present but omitted for clarity.

Four important parameters define the behaviour of a
scheduling policy: (i) input port capacities, (ii) demand lengths,
(iii) demand widths, and (iv) “normalized load”; all of them
also affect the schedule length objective. Demand length has

Algorithm 3 SLD

1: function CHOOSEDEMAND(Di, ci)
2: Return arg max {l(d) | d ∈ Di}.
3: function CHOOSEFIRST(D = {Di}i, I)
4: Return arg maxd∈D l(d).

Algorithm 4 SLP

1: function CHOOSEDEMAND(Di, ci)
2: Return arg max {l(d) | d ∈ Di}.
3: function CHOOSEFIRST(D = {Di}i, I)
4: Return d ∈ arg maxDj k(Dj).

no impact on the number of configurations but can significantly
influence the total length as L/l grows. The impact of input
capacity is interesting even for unit-sized demand widths; the
number of configurations is related to utilization of input
capacities. The underlying problem is NP-hard: even optimal
scheduling with a single port encompasses the knapsack prob-
lem. In our study, we explore the impact of each parameter
on the performance of scheduling policies. We begin with a
trivial relation between the two objective functions.

Theorem 1: For an input with maximal demand length L
and minimal demand length l: (1) an SG algorithm with ap-
proximation ratio ≤ α w.r.t. configurations has approximation
ratio ≤ αLh

L+(l−1)h w.r.t. length, where h is the optimal number
of configurations; (2) an SG algorithm with approximation ra-
tio ≤ α w.r.t. length has approximation ratio ≤ L

t

(
1 + αt−L

l

)
w.r.t. configurations, where t is the optimal length.

We begin with minimizing the number of configurations
and then proceed to extend these results to minimize the
total length of the resulting schedule. Thus, our approximation
factors remain valid for any configuration overhead.

B. Unit Generation and Demand

We begin with the case of unit capacities: all input ports
have ci = 1 and all demands have w(d) = 1; in this case
k(Di) = |Di| = ni. Now the ith input port is fully utilized if
Di is not empty at the end of a configuration, and algorithms
differ in how they reuse the shared port. Intuitively, assigning
demands from Di with currently longest ni should optimize
the number of configurations, and indeed, we will show that
SLP has the optimal number of configurations even in a more
general setting. Furthermore, it turns out that we can show
an upper bound on the approximation factor of any algorithm
following the SG general scheme.

Theorem 2: For a single shared port system with unit
capacities, any scheduling policy ALG from the SG family
has approximation ratio at most 3

2 w.r.t. configurations.

Proof: Recall that ni are sorted, n2 ≥ n3 ≥ . . . In n3
configurations, even under the worst possible choices for the
shared port the algorithm will meet all demands except n2−n3
demands in D2 and will have no choice but concentrate on port
2. Hence, the worst possible number of configurations for any
SG strategy is n3 + n2−n3

2 = n2+n3

2 . On the other hand, it is
impossible for OPT to process n2 + n3 demands in D2 and
D3 faster than in n2+n3

3 steps because it can process at most
3 demands per configuration with ports 1, 2, and 3.



We will see that for some algorithms, this bound is tight.
Theorems 2 and 1 also imply a general upper bound of

3Lh
2(L+(l−1)h) ≤

3L
2l on the approximation ratio w.r.t. length.

Since OPT also falls into the SG family, we cannot show
nontrivial general lower bounds; thus, we turn to lower bounds
for specific algorithms. The tradeoff is between the number of
configurations (optimal for SLP, worse for SLD) and their
total length (good for SLD, worse for SLP).

Theorem 3: For a system with unit capacities and I ports,
SLD has approximation ratio at least

(
3
2 − 2−(I−1)

)
w.r.t.

configurations and length.

Proof: Let n2 = 2k for some k ≥ dlog2 Ie, and let
ni = n2

2 for 3 ≤ i ≤ I . Suppose all demands in D2 have
minimal length l while but all other demands have maximal
length L. OPT can schedule the demands of D2 on the first
two inputs over n2

2 configurations and process all demands
in every other Di over the same time. On the other hand,
SLD always chooses one of the Di ports for i ≥ 3 for
port 1 (it does not matter which one). Thus, SLD processes
all Di for i ≥ 3 over m = n2

2

(
1
2 + 1

4 + . . .+ 1
2I−2

)
=

n2

2

(
1− 2−(I−2)

)
configurations, together with m demands

from D2 on the second input. To schedule the rest of D2,
SLD needs some (n2−m)

2 configurations more, for the total of
m+ n2−m

2 = 3−2−(I−2)

4 n2. Since the algorithm with minimal
total length has at least as many configurations as one with
minimal number of configurations, SLD has approximation
ratio

(
3
2 − 2−(I−1)

)
w.r.t. length too.

Note that this approximation ratio tends to 3
2 as I → ∞,

so the bound from Theorem 2 is tight for SLD.

C. Unit Widths, Heterogeneous Capacities

Next we turn to the case of heterogeneous input port
capacities (but still unit demand widths). The first interesting
question is whether it is possible to break the upper bound
of SG stated in Theorem 2 in case of heterogeneous input
capacities. For this purpose, we introduce additional notation.
Suppose that OPT schedules all demands over h configura-
tions. We classify all input ports except the shared one into
two groups: I1 and I2. I1 contains all input ports such that
k(Di) > h, 2 ≤ i ≤ I; I2, all other ports (excluding the first).
We prove that SG performance depends on the relationship
between capacity of the shared port and the capacities of I1
and I2. As a special case of SG we consider SLD. Moreover,
at least for the case when c1 > c(I1) and c1 ≤ c(I2) and
non-unit-sized capacity constraints, the upper bound of 3

2 for
unit-capacity constraints can be broken. Intuitively, SG can
mistakenly reuse the first port for the demands of D(I2), so
that it cannot reuse the first port for the demands of D(I1)
enough times.

Theorem 4: For a system with capacities c1 = 2c(I1) and
c(I2) = 2c1, the number of configurations in SLD’s schedule
is at least 5

3 times more than optimal.

Proof: Consider the following inputs: D(I1) consists of
9c(I1) demands of minimal length l and D(I2) consists of
12c(I1) demands of maximal length L, h > 0. OPT schedules
all demands of D(I1) on the first and I1 input ports and in
parallel all demands of D(I2) on I2 during 3 configurations.
On the other hand, SLD schedules D(I2) first on the first

and I2 input ports during 12
2+4 = 2 configurations; and later

during d 9−22+1e = 3 configurations the remaining demands of
D(I1). So the number of configurations in SLD’s schedule is
at least 5. Thus, SLD’s schedule has at least 5

3 times more
configurations than the optimal schedule.

The result stated in Theorem 4 demonstrates that generaliz-
ing the results for unit capacity constraints from Section IV-B
is non-trivial even for unit-sized demand width. The following
theorem specifies an upper bound on a number of configura-
tions of SG in the case of non-unit-capacity constraints. Recall
that we still consider unit-sized width of demands.

Theorem 5: The number of configurations in the schedule
of SG is at most twice more than in the optimal schedule if
one of the following conditions holds: (1) c1 ≤ c(I1); (2) c1 >
c(I1) and c1 > c(I2).

Proof: Suppose that OPT schedules all demands over h
configurations. Consider the following two cases.

Case 1: c1 ≤ c(I1). Since c1 ≤ c(I1), OPT requires at
least h/2 configurations to schedule all demands of D(I1).
Since I1 is utilized over h configurations, c1 ≤ c(I1), and
the first port is used only after all other ports are utilized,
SG schedules at least k(Di)/2. Thus, at most h additional
configurations are required for SG to process the rest.

Case 2: c1 > c(I1) and c1 > c(I2). W.l.o.g. SG schedules
all demands of D(I2) during the first x ≤ h configurations. By
definition of SG, the first port can be reused only during the
same x ≤ h configurations for scheduling of D(I2). If during
the first h configurations SG reuses at most c1h2 total capacity
of the first port to schedule the demands of D(I2), SG reuses
at least c1h

2 capacity of the first port. Since c1 > c(I1), and
each assigned port of I1 with unassigned demands is fully
utilized, over the next h/2 ≥ x/2 configurations (after D(I2)
is fully scheduled) SG schedules at least the 1

2 of total width
of D(I1). So over at most h additional configurations SG
schedules all remaining demands of D(I1). If during the first
h configurations SG reuses more than c1h

2 overall capacity
of the first port to schedule the demands of D(I2), then,
since c1 > c(I2), SG schedules D(I2) over less than h/2
configurations. Similar to the previous case, over less than h
additional configurations SG schedules all remaining demands
of D(I1). Thus, the number of configurations in SG’s schedule
is at most twice more than in the optimal schedule.

Clearly, for the case of heterogeneous input port capacities
and unit-sized width, the optimal algorithm OPT w.r.t. number
of configurations belongs to the family of policies represented
by SG. Moreover, in this case it is possible to identify OPT
explicitly. We show that Algorithm 4 (SLP) that prioritizes the
k(Di) characteristic is optimal.

Theorem 6: SLP has optimal number of configurations
for the case of heterogeneous input capacities and unit-sized
demands width.

Proof: Suppose that after t configurations Di has a
maximal value of k(Dti) in SLP’s schedule for the first time.
By definition of SLP and since Dis compete only for the
first port, the following claim holds: for any t′ ≥ t, s ≤ i,
k(Dt′i ) − k(Dt

′

s ) ≤ 1 and i ≤ b ≤ I , k(Dt′b ) ≤ k(Dt′i ) ≤ 1.



So there is a configuration t′′ ≥ t after which for any two
non-fully-scheduled Di and Dj ,

∣∣∣k(Dt′′i )− k(Dt′′j )
∣∣∣ ≤ 1.

Case 1. Configuration t′′ is last in SLP’s schedule. Since
SLP reuses the first port only for Di with currently largest
k(Dt′′i ), the first port is never used for the demands of Dj
with the total original width of (t′′− 1)k(Dj), and during the
first (t′′− 1) configurations in SLP’s schedule the first port is
fully utilized. Thus, OPT cannot schedule all input demands
in less than t′′ configurations.

Case 2. Configuration t′′ is not last in SLP’s schedule.
Since SLP reuses the first port only for Di with currently
largest k(Dj), the first port is never used for the demands of
Dj with total original width t′′k(Dj). Also, during the first t′′
configurations in SLP’s schedule the first port is fully utilized
and OPT cannot schedule more demands with total width
t′′
∑I
m=2 cm during that time. Let SLP and OPT schedules

contain respectively h0 and h1 configurations, h0 ≥ h1 > t′′.
Since during (t′′, h0) configurations for any two Di and Dj
in SLP’s schedule, |k(Dt′′i ) − k(Dt′′j )| ≤ 1, all ports are
fully utilized, and OPT cannot schedule demands with total
width of (h0−1)

∑I
m=2 cm in less than h0−1 configurations.

Since there are additional demands that SLP schedules in one
additional configuration its schedule has the optimal number
of configurations.

SLD is a special case of SG, so Theorems 5 and 4 imply
the following corollaries.

Corollary 7: For a system with heterogeneous input ca-
pacities, SLD’s schedule is at most twice longer than the
optimal schedule if one of the following conditions holds:
(1) c1 ≤ c(I1); (2) c1 > c(I1) and c1 > c(I2).

The following corollary obviously follows since SLP is
optimal; a better bound remains an interesting open problem.

Corollary 8: Under heterogeneous input capacities, SLP
schedule is at most L

l longer than OPT schedule.

D. Heterogeneous Demand Widths

Since all considered algorithms utilize the ith port if some
unassigned demands have port i in their load balancing vectors,
the ith port’s capacity is at least half utilized at the end of a
configuration. Let wimax be the maximal demand width that
has the ith port available in the load balancing vector.

Claim 9: For a system with non-unit-sized width of de-
mands: (1) SG has an approximation ratio at most 4 w.r.t.
the number of configurations; (2) SG with capacity of ith
port extended by wimax has an approximation ratio at most
2 w.r.t. configurations as compared to the optimal algorithm
with original capacity constraints.

Once we begin to consider heterogeneous demand width,
by Claim 9 we simply introduce an additional factor of two in
all upper bounds stated above. Moreover, if we allow for an
upgraded system, as in item (2) of Claim 9, all upper bounds
remain the same.

V. CONCLUSION

In this work, we have considered the scheduling of de-
mands in a geographically close set of microgrids. A short

ALG Unit capacities Unit widths General
Lower Upper Lower Upper Upper

SG 1 3/2 5/3 2 4
SLD 3

2
− 1

2I−1 3/2 5/3 2 4
SLP 1 1 1 1 2

TABLE I: Theoretical results summary.

summary of our theoretical results is shown in Table I (lower
bounds obviously propagate from more special cases to more
general, but we only list a single bound once). Our work
contains the first steps towards establishing a theoretical foun-
dation for demand scheduling in multi-connected microgrids.

In this work we have only considered the case when a
demand is allowed to have only two available ports, with one
of them fixed to be the “central grid” shared by all demands.
A generalization to the case of arbitrary load balancing vectors
remains an interesting open problem, as well as a more
practical simulation study, either on real data (if such data for
microgrids becomes available) or with synthetically generated
inputs.
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