Design and Implementation of an IoT-controlled
DC-DC Converter

Voravit Tanyingyong, Robert Olsson, Markus Hidell, Peter Sjodin, Bjérn Pehrson
School of Information and Communication Technology
KTH Royal Institute of Technology
Kista, Sweden
Email: {voravit, roolss, mahidell, psj, bpehrson}@kth.se

Abstract—In line with the shift towards renewable
energy, small-scale solar panels have become commonly
available. Solar panels are intermittent energy sources
producing direct current, and DC-DC converters are
needed to convert between different voltage levels, both
for different power loads and for storing energy. DC-DC
converters typically have a very limited functionality
and are statically configured for specific voltage levels.
In this paper, we propose a new generation of flexible
DC-DC converters with software and communication
support (through Contiki and CoAP) for remote power
monitoring and control. We present a prototype design
and implementation of a DC-DC converter including a
microprocessor, a lean operating system, and network-
ing support. With such a DC-DC converter, controlled
over the Internet, we can address various types of power
and energy related issues and advance the state-of-the-
art of green networked applications.

I. INTRODUCTION

Renewable energy and flexible utilization of energy
have gained much interest during the latest years. In
line with the shift towards renewable energy, numerous
small-scale solar panels emerge as affordable alternative
energy solutions, many of which can be easily found in
local hardware stores. Since solar energy is an intermittent
energy source available during daytime only, the generated
energy is usually stored in energy storage devices, such as
batteries.

Battery cells are traditionally based on chemical pro-
cesses. Recent development of supercapacitors provides
alternatives, which offer both strengths and weaknesses
when compared to the chemical cells. On the strength side,
they can stand an almost unlimited number of recharging
cycles and consequently have a longer lifetime. They have
very low internal resistances allowing them to have much
shorter charge/discharge cycles, which is also a challenge to
be considered when designing systems. They also contain
fewer substances harmful to the environment. On the
weakness side, they have lower energy density. Large-
capacity supercapacitor batteries become bulky and also
more expensive than traditional alternatives. They are,
however, already competitive in low-power systems.

In a scenario with different kinds of energy storage
devices and various types of loads, DC-DC converters
are needed to convert DC power to the correct voltage
levels for devices consuming the stored energy. In such a

978-3-901882-56-2 (©2013 IFIP

setting, it is also desirable to be able to monitor power
consumption and to control and direct the power supply.
However, traditional DC-DC converters are statically con-
figured and lack the ability to be remotely accessed for
monitoring and control. This calls for a new generation of
DC-DC converters that are flexible in terms of supporting
multiple types of energy sources and power loads, and
that have support for communication — networked DC-DC
converters.

In earlier work of ours, we have designed a flexible DC-
DC converter that is able to transform varying input DC
voltage into a programmable steady output DC voltage
as described in [1]. The design is based on a bang-bang
controller [2] for its simplicity and independence of load
variations. Although the design focus was for supercapac-
itors, it can also be used as a generic platform for DC
voltage conversion. We have implemented this in the form
of a prototype printed circuit board (PCB).

In this work, we propose a new generation of DC-DC
converters for power monitoring and control. We use the
prototype board mentioned above as our hardware plat-
form and introduce programmable control and monitoring
capabilities as well as support for communication. This is
realized by adding an operating system and networking
support to the DC-DC converter. For the operating sys-
tem, we use Contiki, “an open source operating system for
the Internet of Things (IoT)” [3], to provide an extensible
platform suitable for further development. For network-
ing support, we use the constrained application protocol
(CoAP) [4] as the main communication protocol since it is
specifically designed for devices with constrained resources.
We use IPv6 as the underlying network protocol since it is
well suited thanks to the stateless address autoconfigura-
tion and large address space needed for future expansion
according to the vision of IoT.

The prototype board with integrated software compo-
nents according to the above can be programmatically
controlled over the Internet. Various parameters on the
board can be monitored and configured remotely. This
opens up possibilities for various types of novel applica-
tions. For instance, this DC-DC converter can be used as
a component in a smart DC grid to monitor and control
power consumption in real-time. The collected information
can be used as an input to an optimization process for
efficient power distribution and energy storage.

Bang-Bang Control

State
ALL_OFF
State State State
DISCHARGE BOOST_OFF BUCK_OFF
State State
BOOST_OFF BUCK_OFF

State State State State
BOOST_SOFT| | BOOST_ON BUCK_ON BUCK_SOFT
Fig. 1. The Bang-Bang Control Algorithm

TABLE 1
CONVERTER STATES WITH THE CORRESPONDING N-CHANNEL
(NMOS) AND P-CHANNEL (PMOS) SWITCHES STATE

State NMOS1 | PMOS1 NMOS2 | PMOS2

BUCK_OFF On Off Off On
BUCK_SOFT Off Off Off On
BUCK_ON Off On Off On
BOOST_OFF Off On Off On
BOOST_SOFT Off On Off Off
BOOST_ON Off On On Off
DISCHARGE On Off On Off
ALL_OFF Off Off Off Off

II. THE BIDIRECTIONAL DC-DC Buck/BoOST
CONVERTER CORE DESIGN FOR SUPERCAPACITORS

To master the challenges that the output voltage of
supercapacitor cells is not constant and that the internal
resistance is very low, we designed a system that is able to
transform variable DC voltage into a steady DC voltage
and to control the currents involved.

A. Bang-Bang Control Algorithm

The control software on the prototype board runs as an
infinite loop to continuously monitor several parameters of
the converter and switches its state according to the bang-
bang control algorithm depicted in Fig. 1.

The values of input voltage (Vi,), output voltage
(Vout), and inductor current (I;) are obtained from the
reading sensors while the values of desired output voltage
(Vrer), maximum output voltage allowed (V,4z), and
maximum inductor current allowed (I,,4.) are configured
by the user. These values are used to decide the converter
states, which are a combination of on/off states of N-
channel and P-channel MOSFETSs as shown in Table 1.

B. Converter Core Hardware Design

The converter core is shown in Fig. 2. It is designed
as a symmetrical circuit consisting of a combination of
buck and boost converters, which can step down and step
up the output voltage respectively. Two pairs of NMOS
and PMOS are used to provide synchronous switching
and ability to work in bidirectional. The MOSFETs are
controlled by a microcontroller unit (MCU).

M301 M304 |RF4905
1301
w out

Q Q
=0 100uH Q 1)
I} D M302 M303 D
- — ‘+ €303 ‘+ €304
ﬁ‘ g NGatel ~ NGate2 g ‘ﬁ 1000uF 1000uF
- - } 50V F 50V

The Converter Core Design

IRF4905
In I+ I-

1)
- €301 - €302
+

T
1000uF 1000uF
50V n 50V

PGate2 g |7

PGate1

S 5

IRF3205 IRF3205

T

Fig. 2.

In order to apply appropriate actions through the
MOSFETS, various parameters on the converter are mon-
itored. For instance, our bang-bang controller requires
three parameters (Vin, Vout, and) to be monitored as
described in Section II-A. The reading sensors (current
sensors and voltage dividers) are connected to the analog-
to-digital converters (ADCs) on the MCU, in which the
control algorithm is being implemented. More details on
the design can be found in [1] (Chapter 3).

III. ARCHITECTURE FOR PROTOTYPE BOARD

Our prototype of the bidirectional DC-DC buck/boost
converter can transform a varying input DC voltage from
the supercapacitors to a steady output DC voltage in a
range of 0-25 V with a maximum input and output current
of 6 A. Although the design focus was for supercapacitors,
it can also be used as a generic platform for voltage and
energy conversion. We propose software extensions with an
operating system and an Ethernet-based communication
architecture to facilitate remote power monitoring and
control for next generation DC-DC converters.

A. Communication Architecture

1) Link Level — Ethernet: Ethernet is the most dom-
inant link layer technology. Many MCUs have a built-in
Ethernet controller making it relatively easy to adopt.

2) Network Level — IPv6: IP is a natural choice since it
is widely supported. We choose IPv6 since it offers a large
address space suitable for expansion. It also has stateless
address autoconfiguration, which simplifies address assign-
ment. More information about IPv6 and its usage in low-
power devices can be found in [5].

3) Application/Transport Level — CoAP/UDP: We use
the current TETF Internet-Draft constrained application
protocol (CoAP) with UDP transport. CoAP is a spe-
cialized protocol designed for use with constrained nodes
and constrained networks [4]. It targets small electronic
devices, which have a simple microcontroller and limited
memory resources. They are typically operated in a net-
work environment that has high packet error rates (often
referred to as lossy network). It has low overhead and is
optimized for machine-to-machine (M2M) applications.

B. Hardware Architecture

The prototype board of the DC-DC converter includes
an LPC1768 microcontroller. This microcontroller is an
ARM Cortex-M3 based microcontroller for embedded ap-
plications featuring a high level of integration with low
power consumption [6]. It has an Ethernet controller,

which could be used to connect the board to any IP
network. More details on the design, development, and
evaluation of the prototype board (before an operating
system and networking support are introduced) can be
found in [1].

IV. SOFTWARE DESIGN AND IMPLEMENTATION

The main focus of this work is to port an operating
system and bring network communication to the prototype
board. An operating system provides an extensible plat-
form that facilitates introduction of new capabilities and
applications, while networking support gives the DC-DC
converter an ability to communicate, which makes remote
control and management possible.

To provide a high degree of flexibility, Contiki is used
as an operating system on the prototype board. Contiki
is an open source operating system for the IoT that
allows tiny, low-power systems to communicate with the
Internet [3]. It supports ulP, a small TCP/IP stack, that
can be used on 8- and 16-bit microcontrollers. Contiki’s
development platform provides an abstraction from the
low-level microcontroller-specific functions making it easier
to work with.

We implement most parts of the software components
required in our communication architecture on the proto-
type board. Nevertheless, there are some remaining chal-
lenges to be addressed. We highlight the key achievements
as well as challenges in our software development process
as follows.

1) Porting the LPC1768 microcontroller library to Con-
tiki: Contiki supports various MCUs and hardware plat-
forms. However, the LPC1768 microcontroller on the pro-
totype board is not supported by Contiki, so we have
developed support for this microcontroller in Contiki.

The ARM Cortex Microcontroller Software Interface
Standard (CMSIS) driver library for the LPC1768 micro-
controller is available on the MCU manufacturer (NXP)
website [7]. We use this library as a basis for creating a set
of files to interface between the library and Contiki. As a
result, we successfully port the LPC1768 microcontroller to
Contiki. Unfortunately, there is a copyright license conflict
between ARM and Contiki, which prevents the code to
be included in the Contiki main distribution. We are in
contact with Contiki’s maintainer and NXP to try to
resolve this issue. Our fork of the Contiki distribution can
be found in [8].

2) Implementing the DC-DC Converter Control Func-
tion on Contiki: Once Contiki can be run on the prototype
board, it is straight-forward to implement the control
function since both the existing control software source
code (available in Appendix E of [1]) and Contiki are
written in C.

3) Defining Parameters and Messages in CoAP Con-
text: A CoAP message consists of a small header, resource
identifiers, and an optional payload (which typically con-
tains values of the requested resources). We use CoAP to
control and collect data about the current status of the
DC-DC converter. Thus, we need to define resources (in

TABLE II
CONTROL PARAMETERS AND THE STATE VECTOR

Control Parmeters (Identifier: de-dc/controlParameters)
Parameter Description
userAllowed Switch on/off for output voltage
Viesr Desired output voltage
Vimaz Maximum output voltage allowed
Imax Maximum inductor current allowed
State Vector (Identifier: de-dc/stateVector)
Parameter Description
Vin Measured input voltage
Vout Measured output voltage
I; Measured input current
Tout Measured output current
state Current state of the bang-bang controller
[— Electrical wiri
Laptop
-------- Ethernet cable,
2000::1
Multimeter
2000::121f:e0ff:fe12:1d0c
DC-DC Power
converter oo Source

Fig. 3. Experiment Setup

terms of parameters) and messages in CoAP according to
our usage.

Our CoAP implementation is based on the implemen-
tation from Erbium for Contiki [9]. We classify parame-
ters used on our prototype board into two types; control
parameters, which are writeable parameters that can be
configured by the user, and state vector, which is a list
of read-only parameters. Each parameter type has its own
resource identifier. All parameters in our current imple-
mentation are listed in Table II. GET and POST methods
are used to read and write these parameters respectively.
For the message exchange, confirmable message is used
in the request (for both GET and POST methods). This
means that the requesting part always gets an acknowl-
edgement message back. The prototype board also sends
periodic status reports to the monitoring server (through
a hard-coded IP address). We plan to replace this with the
Observe Option extension [10] in the future.

V. EVALUATION OF THE IMPLEMENTATION

To verify our software implementation, we set up a sim-
ple experiment as shown in Fig. 3. The input and output
of the prototype board (illustrated as DC-DC converter in
Fig. 3) are connected to a power source and a load (12V
lamp) respectively. An Ethernet port on the prototype
board is connected to a laptop via an Ethernet cable. The
output voltage is measured using a digital multimeter (UT-
71B [11]).

We develop a CoAP client to communicate with the
prototype board. It can also run as a background process
to monitor all CoAP messages. We run this CoAP client
on a laptop, which is used for monitoring and control. The
source code of our CoAP client can be found in [12]. The

.

12 + q
= .
3
= 10 N 1
S +
S
5 8r .]
> +
=]
g 6 + i
=3
e} .
T a4 : f
2 .

2t . 7
.
0 ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14
Desired Output Voltage (V)
Fig. 4. Actual Output Voltage (with 10V Input)

current implementation supports sending a request with
GET and POST methods through a simple command line
interface. Alternatively, other CoAP implementations such
as libcoap [13] and Copper (Cu) [14] can also be used for
this purpose.

We use 10V input voltage on the power source. We en-
able the prototype board’s output by setting userAllowed
to “yes”. We also set 4, and Vi,q. to fixed values of 2A
and 20V respectively. For the experiment, we simply set
the value of V,.r and measure the actual output voltage
with the digital multimeter. We also vary V,.y from 1V
to 13V (The prototype board supports up to 25V output
voltage). For each value of V.., we take 100 samples of
the output voltage as our measurements.

We plot all samples in a graph as depicted in Fig. 4.
For each output voltage measured, the variation in the
samples is relatively low and hardly visible in Fig. 4. Thus,
we conclude that the prototype board can correctly step
up and step down the output voltage. However, in our
experiments we have observed occasional significant devia-
tions from the expected output voltage if we continuously
generate CoAP requests while carrying out the experiment
(we tested with 20 requests per second). This is likely to
be a result of Contiki operating in a single thread context.
When many CoAP messages must be processed, the bang-
bang controller does not run frequently enough to maintain
the steady output. This calls for a mechanism to give a
higher priority to the bang-bang controller than to the rest
of the processes to ensure stability of the converter. Further
investigations and experiments are needed to address this
issue.

VI. DISCUSSION

We successfully port Contiki to our prototype board
and get the communication in place. Nevertheless, inte-
grating our codes to Contiki main distribution is still a
challenge remains to be solved. Contiki brings in flexibility
and programmability to our prototype board. However,
security is still a challenge for constrained systems in a
constrained environment.

From the communication aspect, the fundamental mes-
sages needed for control and data collection purposes are
developed as a proof-of-concept. Although CoAP supports

built-in resource discovery, we need to extend our applica-
tion further to increase usability. For example, we plan
to provide a list of available DC-DC converters in the
networks and their resources, give statistical information of
the collected data, etc. In addition, further improvement
on machine-to-machine communication between the DC-
DC converters and the monitoring server would be very
beneficial.

The network-enabled DC-DC converter has good po-
tentials for various applications. One application is to use
it as a component of a power grid. DC transmission is
efficient and suitable for small-scale DC power grids. To
control and direct the power, networked DC-DC converters
are required. Nevertheless, our current DC-DC converter
hardware design is still quite complex and has some limi-
tations as described in [1]. Further improvement to resolve
these issues would increase the usability and ease the
adoption of the DC-DC converter.

VII. CONCLUSION

Given advancements in today’s technologies, it is pos-
sible to build a smart DC-DC converter that can be
monitored and controlled via an IP network. To the best
of our knowledge, this is the first DC-DC converter with
CoAP support being implemented. We believe that such
kind of devices will play a vital role in emerging DC
power transmission networks. Communications will be the
key to facilitate innovations and improvements in power
distribution networks.

REFERENCES

[1] J. Querol Borros, “MCU Controlled DC-DC Buck/Boost Con-
verter for Supercapacitors,” Master’s thesis, KTH Royal In-
stitute of Technology, 2012, http://kth.diva-portal.org/smash/
get/diva2:546759/FULLTEXTO1.pdf.

[2] D. N. Burghes and A. Graham, Introduction to control theory,
including optimal control. Ellis Horwood Ltd, Dec. 1980.

[3] The Contiki project, “Contiki: The Operating System for the
Internet of Things,” http://www.contiki-os.org/index.html.

[4] Z. Shelby, K. Hartke, and C. Bormann, “Constrained Applica-
tion Protocol (CoAP),” IETF, Internet-Draft, Jun. 2013.

[5] Z. Shelby and C. Bormann, 6Lo WPAN: The Wireless Embedded
Internet. Wiley, Dec. 2009.

[6] NXP Semiconductors, “LPC1769/68/67/66/65/64 - Product
data sheet,” Aug. 2012.

[7] ——, “LPC175x_6x CMSIS Firmware Driver Library,” Apr.
2012, http://www.lpcware.com/system /files /Ipc175x 6x_
cmsis_driver_library_0.zip.

[8] CSD Fall 2012, Microgrid team, “Contiki fork for DC-DC con-
verter,” Dec. 2012, https://github.com/noiseoverip/contiki.git.

[9] Matthias Kovatsch, “Erbium (Er) REST Engine and CoAP Im-
plementation for Contiki,” http://people.inf.ethz.ch/mkovatsc/
erbium.php.

[10] Z. Shelby, K. Hartke, and C. Bormann, “Observing Resources
in CoAP,” IETF, Internet-Draft, Jul. 2013.

[11] Uni-Trend Group Limited, “UT71B — Intelligent Digital Multi-
meters,” http://www.uni-trend.com/UT71b.html.

[12] Robert Olsson, “IoT-grid,” May 2013, https://github.com/
herjulf/IoT-grid/tree/master/iotgrid.

[13] Olaf Bergmann, “libcoap: C-Implementation of CoAP,” http:
/ /sourceforge.net /projects/libcoap/.

[14] Matthias Kovatsch, “Copper (Cu):: Add-ons for Firefox,” https:
//addons.mozilla.org/en-US/firefox/addon/copper-270430/.

