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Abstract—The ability to classify appliances, given the current
and voltage consumption of a household is useful for a variety
of applications, including demand response verification, and eco-
feedback technologies. To support research efforts in this problem
domain, this paper presents an extended version of the Plug-
Level Appliance Identification Dataset (PLAID), which is called
PLAID 2 and contains 30 kHz voltage and current measurements
of different residential appliances as they are switched on. As an
extension to PLAID, this dataset adds appliance instances as
well as measurements for multiple operating modes (e.g., low or
high fan settings for air conditioners). As with other datasets
in this problem domain, the appliance classes are not equally
represented in PLAID 2. Different techniques for handling this
imbalance and avoiding biasing the classifiers during training are
investigated. The results indicate that performance improvement
depends on the classifier type, when binary VI images are used
as input.

I. INTRODUCTION

The ability to automatically identify electrical appliances
from measurements of voltage and/or current could unlock
and facilitate a growing number of smart grid applications
including measurement verification for demand response pro-
grams, direct load control ensuring quality-of-service and load
forecasting methods. Also the non-intrusive load monitoring
(NILM) techniques, which extract the power consumption
of electrical appliances out of aggregated power data, use
methods to automatically identify electrical appliances. Public
datasets, like PLAID [1], WHITED [2], and COOLL [3] that
contain measurements of voltage and current for a variety of
domestic appliances, are made available for the purpose of
furthering research into algorithmic techniques for appliance
classification. However, it is known that some imbalance is
present in these datasets: some appliance types are represented
by more measurements than others, as can be seen in Table I.
This can influence the performance achieved by a particular
classifier trained using this data.

The Plug-Level Appliance Identification Dataset (PLAID)
was presented in [1] as a public and crowd-sourced dataset
consisting of short voltage and current measurements of the ac-
tivation for different household appliances. The goal of PLAID
was to provide a public library for high-resolution appliance
activation measurements that can be integrated into existing
or novel appliance classification algorithms. The activation
measurements contain a few seconds before and after the acti-
vation of the different household appliances. PLAID currently
contains activation measurements for more than 200 different

TABLE I
THE NUMBER OF INSTANCES FOR SOME SELECTED APPLIANCES IN THE

PLAID, WHITED, AND COOLL DATASET.

appliance type PLAID [1] WHITED [8] COOLL [9]
AC 66 10
CFL 175 20
Fan 115 60 40

Hairdryer 156 60 80
ILB 114 60 80

Vacuum 38 40 140
Washing Machine 26 10

Router 20

appliance instances, representing 11 appliance classes, and has
more than a thousand records. This paper presents an extension
of this dataset, PLAID 2, where the number of appliance
instances is increased and the activation measurements include
different modes of operation. For example, a fan spinning at
high, medium or low speed is measured.

It is known that imbalances in the PLAID dataset [1] can
influence the performance achieved by a particular classifier.
The imbalance present in this dataset is caused by the large
difference in the total number of measurements per appliance
type. The types with the most and least samples are respec-
tively called the majority and minority type. Similar imbalance
is present in WHITED [2], and COOLL [3]. Table I lists the
number of instances for some selected appliances for the three
previously mentioned datasets, showing the present imbalance.

In the literature, no work is found concerning handling this
appliance type imbalance in NILM. However, research exists
that deals with the imbalance that is caused by the difference
in the active and idle time of appliances. This is present
in NILM datasets that contain consumption patterns over
time. In [4], which determines how much energy a specific
appliance consumes at any given moment using regression, the
imbalance caused by the difference in activation and idle time
of appliances is present. To handle it, they propose the usage
of the target-weighted root mean squared error as an alterna-
tive error metric for optimizing the regression. In [5] where
temporal sequence classification algorithms are researched, the
same imbalance is counteracted with under-sampling: reducing
the amount of majority samples (the idle samples) so that it
equals the amount of minority samples (the active samples).
It is qualitatively mentioned that this approach is preferred



to over-sampling (increasing the amount of samples of the
minority till it equals the amount of the majority) or leaving the
data as-is, however no quantitative comparison of the results is
shown. Increasing the dataset can be done by reusing the same
measurements or by synthesizing new measurements. For the
latter, one could use a smart home simulator like SmartSim [6]
or AMBAL [7]. It must be mentioned that these are two
frameworks for low frequency data concerning consumption
patterns over time and not for high frequency data concerning
the activation of appliances. Therefore, these simulators can
not be used to generate PLAID-like data.

Rather than removing the imbalance from PLAID, methods
for dealing with the imbalance can be used. Although no
literature can be found where these methods are applied on
NILM data, these methods are well investigated for classical
machine learning methods. These methods can change the
distribution in the dataset by resampling the classes. Some
methods oversample the dataset, like in [8] where they want to
predict the age and gender from images. Simple oversampling
(increasing the amount of samples in the minority classes by
duplicating samples) is effective, but one should be aware of
overfitting [9]. To avoid overfitting, more advanced oversam-
pling can be used, like SMOTE [9]. Another possibility to
change the distribution in the dataset is to undersample the
dataset like in [10] where samples of the majority class are
randomly deleted. In the case of [11] where a decision tree
learner is used, undersampling is preferred over oversampling.
But in [12] where convolutional neural networks are used for
classifying imbalanced classes, it is found that oversampling
performs better than undersampling. In [13], the undersam-
pling is done multiple times and an ensemble of classifiers
is trained upon them. Another way to handle imbalance is to
change the classifier so that different misclassification errors
incur different penalties [14]. In this paper methods including
over- and under-sampling, synthesizing samples, balanced
bagging and altering the weight function will be used.

Section II introduces the novel dataset and looks at the dif-
ferent operating modes of an appliance. Section III examines
two types of methods to deal with an imbalanced dataset:
resampling the dataset and reweighing the error function.
Section IV concludes the paper.

II. PLAID 2

The PLAID 2 dataset contains current and voltage measure-
ments, sampled at 30 kHz from 9 households in Pittsburgh,
Pennsylvania, USA. It includes 82 different appliances rep-
resenting 11 appliance types, with a total of 719 instances.
The appliance types are the same as in the original PLAID.
The main difference with PLAID 1 is that different operating
modes for many appliance types are included. PLAID 2 is also
made available on http://plaidplug.com.

In Table II, the monitored appliance types are listed together
with the corresponding number of appliances, number of
instances and different operating modes. For example, there
are 7 air conditioners (AC), each AC can operate in 4 possible
different modes (high cool, high fan, low cool or low fan), and

TABLE II
SUMMARY OF THE DIFFERENT APPLIANCES IN THE PLAID 2 DATASET.

AC = AIRCONDITIONER, CFL = COMPACT FLUORESCENT
LIGHT, ILB = INCANDESCENT LIGHT BULB

appliance type # appliances # instances modes
AC 7 142 [highcool, highfan,

lowcool, lowfan]
CFL 9 45 [off-on]
Fan 7 95 [high, medium, low]

Fridge 9 52 [off-on]
Hairdryer 5 92 [highwarm, lowwarm,

highhot, lowhot]
Heater 6 50 [high, low]

ILB 7 34 [off-on]
Laptop 7 35 [off-on]

Microwave 9 90 [high, medium]
Vacuum 7 35 [off-on]

Washing Machine 9 49 [off-on]
Total 719

Fig. 1. The three different operating modes (high, low, medium) for two fans.

the total number of instances with the label AC is 142. Note
that different instances of the same appliance can be located
in the same house, e.g., one house can have multiple fans.

In Figure 1, the appliance signatures for two fans operating
in three different modes are shown. The appliance signature
is the voltage-current (VI) trajectory of an instance in steady
state [15], [16]. For each fan separately, the appliance signature
as well as the magnitude of the current are similar in the
different modes. In fact, the operating modes of one fan
are more alike than the same mode from different fans.
It has been verified that this is the case for all appliance
types having modes in this dataset. Similar observations
can be made for other appliance types, see the notebooks
on http://plaidplug.com. This observation only holds for the
steady-state behavior of the appliances, as other effects (like
e.g. the operating time) may have different characteristics.
Further investigation is necessary to indicate what the real
influence of the appliance modes is and how other (not yet
measured) appliance types behave when operating in different
modes.

As the operating modes do not seem to have significant
influence on the appliance signature, the data in PLAID 1 and



TABLE III
SUMMARY OF THE DIFFERENT APPLIANCES IN THE PLAID 1 + 2

DATASET. AC = AIRCONDITIONER, CFL = COMPACT
FLUORESCENT LIGHT, ILB = INCANDESCENT LIGHT BULB

appliance type # appliances # instances
AC 26 208
CFL 44 220
Fan 30 210

Fridge 27 90
Hairdryer 36 248

Heater 15 85
ILB 32 148

Laptop 45 207
Microwave 32 229

Vacuum 14 73
Washing Machine 16 75

Total 1793

2 datasets are combined, and used together for the remainder
of this paper. A summary of this unified dataset is given in
Table III, which confirms that the dataset is highly imbalanced.
E.g., there are 248 instances for the hair dryer, but only 73 for
vacuum and 75 for the washing machine. A similar imbalance
is present in PLAID 1 and 2 separately. Section III offers
methods handling the imbalance, so that the used classifier
considers the minority types equally important as the majority
types.

III. IMBALANCED DATASET

When the dataset is imbalanced, there are the majority and
minority appliance types where the majority is represented by
more samples than the minority. Due to the class imbalance,
it is possible that the classifier focuses too strongly on the
majority types during training, thereby ignoring the minority
types. In this section of the paper, different methods to deal
with the imbalance are evaluated so that the classifier considers
the minority types equally important to the majority types. As
presented in the introduction, there are two sorts of methods:
modifying the dataset itself (see Subsection III-A) or adapting
the classifier by adjusting the error function (see Subsection
III-B). The results on PLAID 1 + 2 are presented in Subsection
III-C when using the binary VI-image as input to multiple
classifiers. It is important to note that these methods influence
the train phase of the machine learning methods and not the
test phase, i.e., the approaches respectively modify the train
set and the error function used for training the classifier’s
parameters.

A. Modifying the dataset

Changing the dataset so that it becomes balanced can be
done in several ways:

• Over-sampling: adjust the distribution of the dataset by
replicating samples of the minority types till the amount
of the majority types is reached [17]. For PLAID 1 +
2, this results in a train set of 2673 samples on average.
This is a significant increase when compared to the size
of the normal train set of 1769 samples.

• Under-sampling: adjust the distribution of the dataset by
reducing the number of samples in the majority types to
the amount of the minority types [17]. For PLAID 1 +
2, this results in a train set of 803 samples on average.
This is a significant decrease when compared to the size
of the normal train set of 1769 samples.

• Synthesizing samples: instead of replicating samples
from the minority types, artificial samples are created. In
this paper, the synthetic minority oversampling technique
(SMOTE) [9] is used, where the artificial samples are
formed by interpolating two neighbouring samples of a
minority type. For example, having samples A and B
with n features, then the new interpolated sample C is
constructed by:

C[i] = A[i] + gap× diff,∀i ∈ [1, n]

diff = B[i]−A[i]

gap = random number between 0 and 1

The formula can be easily extended for multi-dimensional
features by applying the formula in each dimension. For
PLAID 1 + 2, this procedure results in a train set of
2673 samples on average, just like when over-sampling
is performed.

• Balanced bootstrapping (BB): This method is proposed
in [13], based on a probabilistic approach allowing to
identify dataset characteristics (such as dimensionality,
sparsity, etc.) that exacerbate the problem. It goes as
follows:

1) randomly select instances from the train set with
replacement (bootstrap the dataset). Do this multiple
times, each resulting dataset is called a bootstrap.

2) under-sample each bootstrap, like explained above.
3) train a classifier on each bootstrap.
4) when classifying the test instances, the majority vote

of the classification of all separate classifiers is taken
as outcome.

For this dataset, 10 bootstraps are created, each with size
equal to the original train set, but now with the difference
that some samples can be present more than once.

B. Adaptation of the classifier

The error function of the classifier can be changed such
that misclassification of the minority types is penalized more
strongly by the classifier than misclassification of the majority
types. One way to achieve this, is by assigning a weight to each
instance. In this paper, weights w are defined per appliance
type t corresponding to the imbalance (minority types will get
a higher weight) using the following equation:

wt =
# instances

# types×# instances of type t

This definition is standard in the Python’s sklearn library and
is based on [18]. It must be noted that this approach is only
valid for the classifiers whose error function is dependent on
hyperparameters that can be tuned in order to minimize the



error. For example, if the k-nearest-neighbors classifier is used
with k = 5, giving weights to the instances does not impact
the outcome as the error function is not dependent on any
hyperparameter.

C. Results

For the discussion concerning methods handling imbalanced
datasets, the binary VI-image is used as a feature because
this was the most promising feature extracted from the study
performed on PLAID 1 [15]. This feature is created by
overlaying the VI-trajectory (plotting the voltage against the
current) of an instance with a n×n grid and assigning a binary
value (0 or 1) denoting whether it contains a sample of the
trajectory or not. In this paper, n = 16. Multiple classifiers
are used: k-nearest-neighbors (kNN), Gaussian naive Bayes
(GNB), logistic regression classifier (LGC), support vector
machines (SVM), linear discriminant analysis (LDA), deci-
sion tree (dTree), random forest (rForest), adaptive boosting
(adaBoost). These classifiers were also applied to PLAID 1 in
the previous study on PLAID [15].

As PLAID 1 + 2 is imbalanced, it is important to choose
the correct evaluation metric. In [19], it is suggested to use the
F1-measure when the classification performance is wanted.
Additionally, it is noted that the accuracy should be used with
caution when some appliances are rarely used. In this paper,
the performance of the methods is expressed using the macro-
F1 measure, which is calculated as follows:

F1macro =
1

A

∑
a

F1a (1)

F1a =
TPa

2 TPa + FPa + FNa
(2)

(3)

where F1a, TPa, FPa, and FNa are the F1-measure, true
positives, false positives and false negatives for the results of
the classifier classifying appliance type a. The F1a-measure
for a perfect classifier is 1, whereas a random classifier yields
an F1a-measure of 0.25. This measure provides informa-
tion about the confusion between instances. The magnitude
is mainly determined by the number of instances that are
correctly labeled as appliance type a, and says nothing about
the instances that are correctly labelled as not being appliance
type a (the true negatives).

Table IV shows the relative gain/loss for the different meth-
ods when comparing them to the result when the imbalance
is not counteracted (the standard approach). Three things
can be noted from the results. First, it can be noted that
applying over-, and under-sampling, smote or adapting the
error function, does not lead to an improved F1macro-measure
when applied on PLAID 1 + 2 if the binary VI-image is used
as input for the previous mentioned classifiers. Second, the
improvement is significant for balanced bootstrapping when
used for kNN, LDA, dTree and adaBoost. However, in these
cases, the standard performance is well below the F1macro
result of a SVM (F1macro = 94.55%). Even when handling
data imbalance, none of these classifiers outperform the SVM

TABLE IV
THE GAIN/LOSS IN THE F1MACRO -MEASURE (IN %) WHEN HANDLING

DATA IMBALANCE COMPARED TO THE STANDARD CLASSIFIER.

method standard over under smote BB weighted
kNN 80.60 +0.04 −2.07 +0.15 +10.35 +0.00
GNB 78.47 +0.09 −0.79 +0.06 +4.45 +0.00
LGC 89.47 −0.07 −0.46 −0.66 +1.47 −0.06
LDA 56.36 −3.1 +2.12 +5.77 +34.00 +0.00
dTree 78.86 +0.22 −1.25 +0.35 +11.60 +0.47

rForest 91.72 +0.14 −1.18 +0.00 +1.02 +0.09
SVM 94.55 −0.62 −0.31 −0.41 −1.03 −0.01

adaBoost 73.39 +0.56 −1.13 +0.12 +15.63 +0.00

Fig. 2. The confusion matrix constructed when SVM is applied on PLAID 1
+ 2. The numbers in the matrix are the absolute values, the colors represent
the value relative to the total number of appliance instances per appliance
type.

method when the binary VI-image is used as input. Third,
when considering the best classifiers rForest and SVM, none
of these methods lead to a significant improvement when the
binary VI-image is used as input. This shows that rForest and
SVM are quite robust in learning the appliances types, even
when the data is imbalanced. The confusion matrix constructed
from the results when SVM is applied on the binary VI-images
of PLAID 1 + 2 is shown in Figure 2. The values in the matrix
represent the absolute number of appliance instances detected.
The color represents per appliance type the relative amount
with respect to the total number of that appliance type. The
air conditioner (AC), fan and fridge get confused with each
other, as well as the heater and the hairdryer. The cause is that
the confused appliances contain similar electrical components:
the AC and fridge are mostly compressors, and both the heater
and hairdryer consist of a heating element.

From the results in Table IV, one can also conclude that
the dataset contains redundancy and more measurements were



TABLE V
THE GAIN/LOSS IN THE F1MACRO -MEASURE (IN %) WHEN HANDLING

DATA IMBALANCE COMPARED TO THE STANDARD CLASSIFIER USING LESS
TRAINING DATA.

method standard over under smote BB weighted
kNN 81.47 +1.29 −4.36 +1.60 +10.85 +0.00
GNB 84.31 +0.03 −6.94 +0.03 +4.85 +0.00
LGC 88.40 +0.02 −2.33 −0.16 +4.17 +0.09
LDA 54.24 −0.69 +0.48 −0.65 +38.81 +0.00
dTree 80.36 +0.94 −5.35 +2.03 +11.48 +0.06

rForest 93.99 +0.04 −3.66 −0.29 −0.68 −0.15
SVM 95.57 −0.75 −2.69 −1.09 −1.74 −0.18

adaBoost 78.85 +0.88 −4.09 −1.09 +13.87 +0.00

performed than necessary as synthesizing and over-sampling
do not offer a performance increase when the VI-binary image
is used as input. To reinforce this statement, the experiments
are repeated in the same manner but each training set is
reduced such that in each house, each appliance is only
measured once. It is important to note that the test set remained
the same (so some data remained unused). Based on the
results in Table V, similar conclusions can be made as above,
and the standard F1macro-measure for each classifier is about
the same as when trained with more data. This confirms the
statement that for appliance identification, more measurements
than necessary are present in the PLAID 1 + 2 dataset when
the VI-binary image is used as input.

IV. CONCLUSION

In this paper, an extension of the PLAID dataset was
presented (PLAID 2), where the number of appliance instances
is increased with 719 to a new total of 1793. Where possible,
the appliances were measured while operating in different
modes. An exploration of the data reveals that the different
operating modes of an appliance do not change the appliance
signature in steady-state significantly. This will be a topic of
further investigation.

Furthermore, it was shown that applying methods handling
imbalance on PLAID 1 + 2 like over-, and under-sampling,
synthesizing samples, balanced bootstrapping and adjusting
the error function do not lead to any improvements in terms
of the F1macro-measure if the right classifier is used and when
the binary VI-image is used as input. If a sub-optimal choice
of classifier is made, balanced bootstrapping can increase
the performance. The results also indicate that for appliance
identification purposes, more measurements than necessary are
present in the PLAID 1 + 2 dataset. This was confirmed by
the fact that the results when training with less data (only one
measurement per appliance in a house), are comparable when
the binary VI-image is used as input.
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