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Abstract.   Overlay networks are becoming widely used for delivering content, 
since they provide effective and reliable services that are not otherwise available. 
However, overlay management systems face the challenges of increased com-
plexity and heterogeneity due to the numerous entities that are involved in realiz-
ing overlay services. We believe that autonomic management is a key solution for 
dealing with the complexity of overlay management. In this paper, a management 
architecture for service specific overlay networks is proposed. Overlays are 
viewed as a dynamic organization for self-management in which self-interested 
nodes can join or leave according to their goals. The objective of this architecture 
is to create autonomic overlays that are driven by different levels of policies.  Pol-
icies are generated at different levels of the autonomic management hierarchy and 
enforced on the fly. The proposed autonomic management dynamically adapts the 
behavior of the overlay network to the preferences of the user, network, and ser-
vice providers. A description of our novel architecture that addresses these chal-
lenges is presented. 

Keywords— Autonomic Computing, Adaptive SSONs, Network Management, 
Overlay Networks, Policies. 

1 INTRODUCTION 

Overlay networks are a virtual topology on top of a physical topology, and they 
are becoming more popular due to their flexibility and their ability to offer new 
services. Recent research in this area has focused on designing specific overlay 
networks to deliver media in heterogeneous environment. For example, SMART 
[1] was developed in the context of the Ambient Network project [2] in order to 
optimize media delivery services by moving control and resource allocation to the 
network itself, since it has more knowledge about topology and network proper-



ties. SMART creates a Service Specific Overlay Network (SSON) for each media 
delivery service or group of services. SSON construction uses network side func-
tions, called MediaPorts (MPs). MPs, thereby, provide the flexibility to modify the 
content and the services, such as caching, adaptation and synchronization [3].  

A service delivered to a customer by a SP is usually formed from a composi-
tion of different services. Some services are basic in the sense that they cannot be 
broken down further into component services, and usually act on the underlying 
resources. Other services are composed of several basic services. Every service 
consists of an allocation of resource amounts to perform a function. However, 
with the increasing demands for QoS, service delivery should be efficient, dynam-
ic, and robust. Current manual approaches to service management are costly and 
consume resources and IT professionals’ time, which leads to increased customer 
dissatisfaction. With the advent of new devices and services the complexity is fur-
ther increased.  

Given the multiple sources of the heterogeneity of networks, users, and applica-
tions, constructing SSONs in large distributed networks is challenging. Media 
content usually requires adaptation before it is consumed by media clients. For ex-
ample, video frames must be dropped to meet QoS constraints. Other examples are 
when a client with a PDA requires a scale down for a video, or when content must 
be cached to be viewed by a mobile user.  In addition to adaptation, new users 
may request to join or leave the overlay, a network node may fail, or a bottleneck 
may degrade the SSON’s performance. Consequently, the overlay must be adapted 
to overcome these limitations and to satisfy the new requests.  It is obvious that 
with a large number of overlays, the management task becomes harder to achieve 
using traditional methods. Therefore new solutions are needed to allow SPs to 
support the required services and to focus on enhancing these services rather than 
their management. 

The concept of autonomic computing (AC) [4] is proposed by IBM to enable 
systems to manage themselves through the use of self-configuring, self-healing, 
self-optimizing, and self-protecting solutions. It is a holistic approach to computer 
systems design and management with the goal to shift the burden of support tasks, 
such as configuration and maintenance, from IT professionals to technology. 
Therefore, AC is a key solution for SSON management in heterogeneous and dy-
namic environments. 

Establishing a SSON involves 1) Resource discovery to discover network-side 
nodes that support the required media processing capabilities. 2) An optimization 
criterion to decide which nodes should be included in the overlay network. 3) 
Configuring the selected overlay nodes, and 4) Adapting the overlay to the chang-
ing network context, user, or service requirements, and joining and leaving nodes.  
In AC, each step must be redesigned to support autonomic functions. In other 
words, in Autonomic Overlays (AO), each step imposes a set of minimum re-
quirements. For example, the resource discovery scheme should be distributed and 
not rely on a central entity, dynamic to cope with changing network conditions, ef-
ficient in terms of response time and message overhead, and accurate in terms of 
its success rate. The optimization step is mapped into a self-optimization that se-



lects resources based on an optimization criterion (such as delay, bandwidth, etc.) 
and should yield the cheapest overlay, and/or an overlay with the least number of 
hops, and/or an overlay that is load-balanced, and/or a low latency overlay net-
work, and/or a high bandwidth overlay network. The configuration of the selected 
overlay nodes in a given SSON is mapped into a self-configuration and self-
adaptation. Self-configuring SSONs dynamically configure themselves on the fly. 
Thus they can adapt their overlay nodes immediately to the joining and leaving 
nodes and to the changes in the network environment. Self-adapting SSONs self-
tune their constituent resources dynamically to provide uninterrupted service. Our 
goals are to automate overlay management in a dynamic manner that preserves the 
flexibility and benefits that overlays provide, to extend overlay nodes to become 
autonomic, to define the inter-node autonomic behavior between overlay nodes, 
and to define the global autonomic behavior between SSONs. 

This paper proposes a novel management architecture for overlay networks. 
Our contributions are twofold. First we introduce the concept of Autonomic Over-
lays (AO), in which SSONs and their constituent overlay nodes are made auto-
nomic and thus become able to self-manage. Second, autonomic entities are driven 
by policies that are generated dynamically from the context information of the us-
er, network, and service providers. This ensures that the creation, optimization, 
adaptation, and termination of overlays are controlled by policies, and thus the be-
haviors of the overlays are tailored to their specific needs.  

The paper is organized as follows. Section 2 discusses the related work. Section 
3 introduces the proposed autonomic overlay architecture. Section 4 discusses the 
experimental evaluation. Finally, in Section 5, we draw our conclusion and sug-
gest future work. 

2 RELATED WORK 

The proposed autonomic overlays draw upon IBM’s vision and blueprint [7]. The 
work presented in this paper is concerned with all possible phases of the service 
delivery in SSONs – from the instant of requesting a service to the instant of ter-
minating it. Thus we present an integral approach to SPs wishing to deliver servic-
es over their infrastructure. 

IBM identified the complexity of current computing systems as a major barrier 
to its growth [5]. The solution to this problem lies in more intelligent systems 
called autonomic computing (AC). AC simplifies and automates many system 
management tasks traditionally carried out manually. Systems that manage them-
selves are able to adapt to changes in their environment in accordance with busi-
ness objectives. The result is a great savings in management costs and IT profes-
sionals’ time. This will free the latter to focus on improving their offered service 
rather than managing them manually. Some of the main scientific and engineering 
challenges that collectively make up the grand challenge of autonomic computing 



were outlined in [6]. Also, a set of characteristics required by AC were identified 
and explained in [7].  

According to the IBM vision [4], an AC system is a system that knows itself 
and its environment, configures and reconfigures itself under varying and unpre-
dictable conditions, heals itself, provides self-protection, and keeps its complexity 
hidden. Although the IBM vision is a holistic approach to designing computer sys-
tems, much of the research in this field focuses on a few specific aspects of this 
vision.  

Autonomic communications were proposed in [8]. It has a similar concept to 
IBM’s autonomic computing. The difference is that, in the former, the focus is on 
individual elements of the network, how their behavior is learned and altered, and 
how they interact with other elements. Our work focuses on service specific over-
lay networks; thus, the interaction between the network and computing entities is 
based on a service request/offer concept in which each entity is responsible for its 
internal state and resources. An entity may offer a service to other entities. The of-
fering entity responds to a request based on its willingness to provide a service in 
its current state. A generic architecture for autonomic service delivery was pro-
posed in [9]. It defines a resource management model based on virtualization. 
However, it is service-independent, and is unlikely to achieve the specific QoS re-
quirements for each service dynamically without human intervention. A model for 
dynamic fault tolerance technique selection for grid work flow, that allows the 
system to configure its fault tolerance mechanism, was developed in [10]. 

Policy-based management for computer systems has also been studied. Pattern 
classification and clustering techniques that support online decision making and 
incremental learning in autonomic systems were proposed in [11]. The use of pol-
icies to configure autonomic elements to enforce the required behavior in an 
Apache web server was presented in [12]. A set of UML-based models were de-
veloped and used in [13] to specify autonomic properties and to deploy policies as 
an executing system based on composition and model modification. A policy-
driven model based on multi-agent systems was also proposed in [14]. In their 
model, Web services are represented as agents and agent behavior is controlled us-
ing high level policies. A mapping of biological systems to PBMS was introduced 
in [15]. Their system is hierarchical and relies on mechanisms for organism regu-
lation, which supports self-management at different levels of the hierarchy. Hu-
mans in an organization thus specify policy at a level of abstraction that reflects 
their specific needs. The difference between our work and all these approaches is 
that the above approaches consider a particular service to which their design is ap-
propriate. In addition, policy generation is not a fully automatic process and hu-
man intervention is still needed.  

Projects such as Service Clouds [16], Autonomia [17], GridKit [18], Auto-Mate 
[19], and Unity [20] are using the autonomic concept in different ways. Service 
Clouds provides an infrastructure for composing autonomic communication ser-
vices. It combines adaptive middleware functionality with an overlay network to 
support dynamic service reconfiguration. Autonomia provides dynamically pro-
grammable control and management to support the development and deployment 



of smart applications; primarily, it achieves the self-healing property for failed 
entities. GridKit proposes a middleware that offers a consistent programming 
model across different communication types. AutoMate enables the development 
of autonomic Grid applications by investigating programming models, frame-
works, and middleware services that support autonomic elements. Finally, Unity 
designs both the behavior of individual autonomic elements and the relationships 
that are formed among them in order to create computing systems that manage 
themselves. A detailed survey on autonomic computing is available in [21]. 

3 AUTONOMIC OVERLAYS 

To tackle the complexity of overlay management, each SSON is managed by an 
SSON Autonomic Manager (SSON-AM) that dictates the service performance pa-
rameters. This ensures the self.* functions of the service. In addition to this, over-
lay nodes are made autonomic to self-manage their internal behavior and their in-
teractions with other overlay nodes. In order to ensure system wide performance, 
System Autonomic Managers (SAM) manages the different SSON managers by 
providing them with high level directives and goals. The following sections detail 
the different aspects of our architecture. 

Fig. 1. Autonomic overlays architecture 

3.1 Architecture Overview 

The set of components that makes up our architecture is shown in Fig. 1. The low-
est layer contains the system resources that are needed for multimedia delivery 
sessions. In particular, the Overlay Support Layer (OSL) receives packets from the 
network, sends them to the network, and forwards them on to the overlay. Overlay 
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nodes implement a sink (MediaClient, or MC), a source (MediaServer, or MS), or 
a MediaPort (MP) in any combination. MPs are special network side components 
that provide valuable functions to media sessions; these functions include, but are 
not limited to, special routing capabilities, caching, and adaptation. These ma-
naged resources can be hardware or software and may have their own self-
managing attributes.  

The next layer contains the overlay nodes. Overlay nodes are physical Ambient 
Network nodes that have the necessary capabilities to become part of the SSON. 
They consist of a control plan and a user plan. The control plan is responsible for 
the creation, routing, adaptation, and termination of SSONs, while the user plan 
contains a set of managed resources. The self-management functions of overlay 
nodes are located in the control plan. The Ambient manageability interfaces are 
used by the self-managing functions to access and control the managed resources. 
The rest of the layers automate the overlays’ management in the system using 
their autonomic managers.  SSON-AMs and SAMs may have one or more auto-
nomic managers, e.g. for self-configuring and self-optimizing. Each SSON is ma-
naged by an SSON-AM that is responsible for delivering the self-management 
functions to the SSON. The SAMs are responsible for delivering system wide 
management functions; thus, they directly manage the SSON-AMs. The manage-
ment interactions are expressed through policies at different levels. All of these 
components are backed up with a distributed knowledge. The following sections 
describe each component in detail. 

Fig. 2. The set of components that makes up the intelligent control loop 

3.2 Autonomic Elements 

1) Overlay Nodes Autonomic Manager(ONAM): Each overlay node contains a 
control loop similar to the IBM control loop [5] as shown in Fig. 2. The 
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Autonomic Manager (AM) collects the details it needs from its managed 
resources, analyzes those details to decide what actions need to change, generates 
the policies that reflects the required change, and enforces these policies at the 
correct resources. As shown in the figure, the ONAM consist of the following: 

• Monitoring Agents (MAs): collects information from the overlay node re-
sources, such as packet loss, delay jitter, and throughput. It also correlates the 
collected data according to the installed policies and reports any violation to the 
Analyze/Learning Agent (ALA). For example, an MA for a caching MP col-
lects information about the MP’s available capacity, and whenever the available 
capacity reaches 10% it reports to the ALA. Another example is the MA for a 
routing MP that relays data packets between overlay nodes: its MA collects in-
formation about the throughput and reports to the ALA whenever the through-
put reaches a high value. These collected data will be used to decide the correct 
actions that must be taken to keep the overlay node performance within its de-
fined goals. The MAs interact with the Resource Interface Agents (RIAs) to 
monitor the overlay node resources availability and to collect data about the de-
sired metrics. They also receive policies regarding the metrics that they should 
monitor as well as the frequency in which they report to the ALA. 

• Analyze/Learning Agent (ALA): observes the data received from the MAs and 
checks to see whether a certain policy with which its overlay node is abided is 
not being met. It correlates the observed metrics with respect to the contexts, 
and performs analysis based on the statistical information. In the case that one 
of policies is violated, it sends a change request to the Policy Generator (PG).  
This component is an objective of future work. 

• Policy Generator (PG): The difference between this control loop and the IBMs’ 
control loop lies in the use of a PG instead of a Plan component.  The Plan 
function –according to IBM [5] – is to select or create a procedure that reflects 
the desired change based on the received change request from the Analyze 
Agent. This is not sufficient in our case, where each overlay node receives high 
level policies and it is up to the overlay node to decide how to enforce these 
policies based on its available resources. Therefore, we envisioned a PG in-
stead. The PG reacts to the change request in the same way as in the Plan com-
ponent, although it also generates different types of policies in response to the 
received high level policies. For example, based on the goal policies received 
by the overlay node, the policy generator generates the tuning polices and 
passes them to the MAs (more about this in Section 3.4). Upon generating new 
policies, the policy generator consults a Conflict Resolution Agent (CRA) that 
ensures the consistency of the new generated policies with those that already 
exist. Generally, we divide conflicts into two types: static conflicts and dynam-
ic conflicts. In our model, a static conflict is a conflict that can be detected at 
the time of generating a new policy, while a dynamic conflict is one that occurs 
at run time. 

• Policy Enforcement Agent (PEA): The PG generates suitable policies to correct 
the situation in response to a change request, and passes these policies to the 



PEA. The PEA then uses the suitable RIA to enforce them. This includes map-
ping the actions into executable elements by forwarding them to the suitable 
RIA responsible for performing the actual adjustments of resources and para-
meters. The enforced policies are then stored in the Knowledge Base (KB). 

• Resource Interface Agents (RIAs): These implement the desired interfaces to 
the overlay node resources. The MAs interacts with them to monitor the availa-
bility of overlay node resources and the desired metrics in its surrounding envi-
ronment. Each resource type has its own RIA that translates the policy actions 
into an adjustment of configuration parameters that implements the policy ac-
tion.  

• Each overlay node has a set of interfaces to receive and export events and poli-
cies to other overlay nodes. These interfaces are essential to enable multiple 
overlay nodes to cooperate to achieve their goals. In particular, these interfaces 
are used by the SSON-AM to interact with the overlay nodes that agreed to par-
ticipate in the SSON. The SSON-AM sends the system policies to the overlay 
nodes through these interfaces, through which it also receives reports on their 
current status. 

2) SSON Autonomic Managers (SSON-AM): SSON-AMs implement the 
intelligent control loop in much the same way as ONAMs.  They automate the 
task of creating, adapting, configuring, and terminating SSONs. They work 
directly with the ONAM through their management interfaces. They perform 
different self-management functions, such as self-configuring, self-optimizing, 
and self-adapting. Therefore, they have different control loops. Typically, they 
perform the following tasks: 

• Self-configuration: SSON-AMs generate configuration policies in response to 
the received system policies. They use these policies to configure overlay nodes 
that are participating in a given SSON.  

• Self-optimization: during SSON construction, SSON-AMs discover the overlay 
nodes required to set up a routing path for the multimedia session. Therefore, 
they are responsible for optimizing the service path to meet the required QoS 
metrics induced from high level policies as well as the context of the service. 

• Self-Adaptation: SSON-AMs monitor the QoS metrics for the multimedia ses-
sion and keep adapting the service path to the changing conditions of the net-
work, service, and user preferences. They also monitor the participating overlay 
nodes and find alternatives in case one of the overlay nodes is not abiding to the 
required performance metrics. 

 
SSON-AMs receive goal policies from the SAMs to decide the types of actions 

that should be taken for their managed resources. A SSON-AM can manage one or 
more overlay nodes directly to achieve its goals. Therefore, the overlay nodes of a 
given SSON are viewed as its managed resources. In addition, they expose mana-



geability interfaces to other autonomic managers, thus allowing SAMs to interact 
with them in much the same way that they interact with the ONAMs. See Fig. 3. 

Fig. 3. The lower part represents an SSON that consists of a Source (S), a Destination 
(D), and a MediaPort (MP). The SSON is managed by a SSON-AM. It has its own Know-
ledge Base (KB).  The upper part represents a SAM and its components. 

3) System Autonomic Managers (SAM): A single SSON-AM alone is only able 
to achieve self-management functions for the SSON that it manages. If a large 
number of SSONs in a given network with their autonomic managers is 
considered, it is observable that these SSONs are not really isolated. On the one 
hand, each overlay node can be part of many SSONs if it offers more than one 
service or if it has enough resources to serve more than one session. On the other 
hand, the SSONs’ service paths may overlap, resulting in two or more SSONs 
sharing the same physical or logical link. For example, consider two SSONs 
sharing the same routing MP with the same goal to maximize throughput. This 
will lead to a competition between autonomic managers that are expected to 
provide the best achievable performance. Therefore, and in order to achieve a 
system wide autonomic behavior, the SSON-AMs need to coordinate their self-
managing functions. Typically this is achieved using SAMs.  

SAMs can manage one or more SSON-AMs. They pass the system high level 
policies, such as load balancing policies, to the SSON-AMs. Moreover, whenever 
they find shared goals between two different SSON-AMs, they inform them to 
avoid conflicting actions. The involved autonomic managers then contact each 
other and create a Virtual Management Overlay (VMO) among themselves as illu-
strated in Fig. 4. They use this VMO to coordinate their management actions be-
fore they are passed to their overlay nodes.  
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Sharing goals is not the only reason to create VMOs; SSONs sharing common 
links as well as SSONs that belong to the same policy domain (same service class, 
ISP, etc.) may also create VMOs among themselves to coordinate their actions.  
Moreover, SSONs that share common nodes/links affect each other’s perfor-
mance, as they compete for the shared resources. This might result in a degraded 
performance as the competition will cause the control loop to be invoked frequent-
ly in an attempt to reach the desired performance goals.  Also, all the SSONs in a 
given domain (ISP) are expected to achieve the domain wide policies together. 
VMOs allow these policies to be dispatched and adapted to each SSON in a way 
that achieves the desired goals. Moreover, VMOs also allow the sharing of control 
and information between different SSONs. A set of SSONs that are co-located in 
given vicinity (such as an area, domain, AS, etc.) usually has independent rout de-
cisions based on its observations of its environment. Sharing this information will 
result in a reduced overhead for each overlay to compute this information, and al-
lows for adapting and generating policies to achieve better performance. 

Fig. 4. Virtual Management Overlay (VMO) hierarchy 

3.3 Distributed Knowledge 

Each autonomic manager obtains and generates information. This information is 
stored in a shared Knowledge Base (KB) (see Fig. 3). The shared knowledge con-
tains data such as SSON topology, media type descriptions, the set of policies that 
are active, and the goal policies received from higher level autonomic managers. 
The shared knowledge also contains the monitored metrics and their respective 
values. When VMOs are created, each autonomic manager can obtain two types of 
information from its VMO peers. The first is related to the coordination actions 
and the second is related to the common metrics in which each autonomic manag-
er is interested. Therefore, knowledge evolves over time; the autonomic manager’s 
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functions add new knowledge as a result of executing their actions, obsolete 
knowledge is deleted or stored in log files, and autonomic managers in VMOs ex-
change and share knowledge. Also, goal policies are passed from high level auto-
nomic managers to their managed autonomic managers. The context information 
of the network, users, and services is also used primarily to aid in generating suit-
able policies at each level of autonomic managers.  

Fig. 5. Policy Levels 

3.4 Policies 

The use of policies offers an appropriately flexible, portable and customizable 
management solution that allows network entities to be configured on the fly.  
Usually, network administrators define a set of rules to control the behavior of 
network entities. These rules can be translated into component-specific policies 
that are stored in a policy repository and can be retrieved and enforced as needed. 
Policies represent a suitable and efficient means of managing overlays. However, 
the proposed architecture leverages the management task to the overlays and their 
logical elements, thus providing the directives on which an autonomic system can 
rely to meet its requirements. Policies in our autonomic architecture are generated 
dynamically, thereby achieving an automation level that requires no human inte-
raction. In the following we will highlight the different types of policies specific to 
autonomic overlays. These policy types are being generated at different levels of 
the system.  
Configuration policies: are policies which can be used to specify the configura-
tion of a component or a set of components. The SSON-AMs generate the confi-
guration polices for the service path that meets the SSON’s QoS requirements. 
The ONAMs generate the specific resource configuration policies that, when en-
forced all together, achieve the SSON QoS metrics. The user, service, and network 
context are used by these autonomic managers to generate configuration policies.   
Adaptation policies: are policies that can be used to adapt the SSON to changing 
conditions. They are generated in response to a trigger fired by a change in the us-
er, service, or network context. SSON-AMs receive these triggers either from the 
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SAMs or from the ONAMs, while the ONAMs receive these triggers either from 
the SSON-AMs or from their internal resources. Whenever a change that violates 
the installed policies occurs, an adaptation trigger is fired. The autonomic manager 
that first detects this change tries to solve the problem by generating the suitable 
adaptation policies; if it does not succeed, it informs the higher level autonomic 
manager. 
 Coordination policies: are policies which can be used to coordinate the actions 
of two or more SSON-AMs. They are generated by the SAMs to govern the beha-
vior of SSON managers that have conflicting goals to avoid race conditions.  
 Regulation policies: are generated by the overlay nodes themselves to control the 
MAs’ behavior with respect to their goals. For example, a MA that measures 
throughput has a policy to report throughput < 70%. Another regulation policy can 
be installed to replace this policy and report throughput < 90%.  The second regu-
lation policy can be generated in response to an adaptation policy that requires 
throughput to be at least 90%. The MAs therefore are made more active to contri-
bute to achieving the required tasks. 

 
Figure 5 shows how these policies are related to our autonomic architecture. At 

the highest level the SAMs define the set of system polices. These policies 
represent the system wide goals and do not describe either the particular devices 
that will be used to achieve the system goals or the specific configurations for 
these devices. SAMs pass these policies to the SSON-AMs. SSON-AMs refine the 
system policies and generate service specific policies. They do so by adding fur-
ther details to the system policies. These details are induced from the system poli-
cies as well as from the context information of the users, the network, and the ser-
vice. At this level, the goals of the SSON under discussion, such as the permitted 
QoS metrics, are defined. These goals are still device independent policies.  The 
set of service polices is then passed to the ONAMs. These autonomic managers 
further refine the received policies and generate the overlay node polices and their 
respective resource specific policies. Overlay node policies represent the goals 
that this overlay node is expected to achieve, while resource specific policies 
represents the actual actions that the resources of the overlay node has to do to 
achieve the overlay node goals. This separation of policies allows each autonomic 
element to focus on its goals and how to achieve them using its current resources 
while contributing at the same time to the overall system performance. By de-
coupling the functionality of adapting overlay node resources policies from the 
task of mapping system objectives and abstract users’ requirements, the policy se-
paration offers users and IT professionals the freedom to specify and dynamically 
change their requirements. The hierarchical policy model is used to facilitate the 
mapping of higher level system policies into overlay node objectives. Given sets 
of user, service and network context and constraints, as well as sets of possible ac-
tions to be taken, decisions for policy customizations are taken at run time based 
on values obtained from MAs to best utilize the available overlay node resources. 

In addition to generating policies from high level goals, the policy generator lo-
cated in each autonomic manager serves as a Policy Decision Point (PDP) for the 



low level autonomic manager. For example, the SSON-AM serves as a PDP for 
the ONAM. Whenever an ONAM detects that one of the configuration policies 
has been violated, it tries to solve the problem locally. If it is unable to do so, it 
consults the SSON-AM to which the overly node is providing a service. The 
SSON-AM then tries to solve the problem by either relaxing the goals of the ser-
vices or by finding an alternative overlay node that is able to achieve the SSON’s 
goals. The SSON-AM then informs the ONAM of its decision, and may also con-
sult its designated SAM to acquire decisions on situations that it cannot handle lo-
cally. The autonomic manager acting as a PDP decides which policies, if any con-
figuration or adaptation policies have been violated, were most important and 
what actions to take. It uses information about the installed policies and the cur-
rent context of the user, network, and service. 

Fig. 6. Overhead due to search messages. 

4 EXPERIMENTAL EVALUATION 

We used a discrete event simulator to evaluate the performance of the architecture. 
The measurements of search overhead, and success rate were tested in a large-
scale network.  

Our first concern was to compare the performance of the architecture in build-
ing SSONs with limited-flooding and limited-scope approaches. Limited-flooding 
has been predominantly used to discover services in environments such as ad hoc 
and pervasive networks. In a limited-flooding protocol, a service request is broad-
cast to all direct neighbors of the requesting node. Close neighbors send it on to 
their neighbors; the propagation is controlled by a TTL value that indicates how 
far the query should be sent from the requesting node. In a limited-scope ap-
proach, the service request is sent to nodes that bring it progressively closer to the 
destination and located within a scope angle.  
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The topology used had 2000 nodes in a 1000 X 1000 node two-dimensional 
overlay space.  The bandwidth assigned to each node was randomly selected be-
tween 128 and 512 kbits/s. The links propagation delay was fixed at 1 ms. To fol-
low a flash crowd characteristic, all nodes issued their queries at a random point 
during the first 30 seconds, with the simulation lasting for another 1000 seconds. 
We ran the simulation a number of times with different search scope values (rela-
tive value, similar to TTL except it measures how far the query travels in the net-
work in terms of network distance which is a relatively stable characteristic).  

4.1  Network Load 

This quantifies the cost of each approach. That is the total number of messages 
used to construct an SSON.  Fig. 6 shows that limited-flooding has the worst per-
formance: it produces a greater number of search messages, except in searches 
with small scope values. But as the search scope increases, the number of messag-
es in limited-flooding and limited-scope is at least two times higher than the num-
ber of messages in our approach. 

Fig. 7.  Success rate. 

4.2  Success Rate 

Success rate measures the accuracy of each approach.  Success rate is defined as 
the number of requests that receive positive responses, divided by the total number 
of requests. Fig. 7 shows that our approach results in a higher success rate. Li-
mited-flooding reach the 100% success rate after a 4000 search scope value. 
While limited-scope approach attains it after a 6500 search scope value. However, 
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our approach reaches the 100% success rate earlier. We believe that this is due to 
the huge network load generated by limited-flooding. For large search scope val-
ues, limited-flooding generates a large number of messages and receives a large 
number of reply messages. As a consequence, messages are dropped or lost due to 
collisions. 

5 CONCLUSION AND FUTURE WORK 

This work-in-progress provides a complete integrated architecture for autonomic 
SSONs management. It shows how it can be useful to avoid the complexity of ex-
isting service management systems. The road towards fully autonomic system ar-
chitecture is still long; however, this paper presents an autonomic overlay archi-
tecture that represents the basic building blocks needed by autonomic systems. 
The creation, provision, management and termination of SSONs are automated 
dynamically based on the context information available from the user, service, and 
the network provider. The required knowledge capability, reasoning capability, 
and the different autonomic manager components capabilities are being studied. 
The PG and the CRA components are being investigated in terms of their re-
quirements and implementation to generate different types of policies. The dual 
goals of these policies are to drive the autonomic system and dynamically manage 
SSONs. 
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