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Abstract. Localization in an ad hoc mobile sensor network is an important 
requirement as most of the applications that use sensor data require sensor 
location information to complete the processing. A typical sensor network has 
over hundred to thousand sensor nodes, and considering the size and cost of a 
sensor, using only GPS for localization is not very attractive. The mobility of 
sensor nodes could lead to network topologies wherein accurate computation of 
absolute position of all the sensor nodes may not be possible. In this paper, we 
propose a topology based localization approach that suggests a best possible 
approximate position for sensor nodes for which computation of exact absolute 
position is not possible. We have identified four basic topological 
configurations that help compute position with varied degree of accuracy. These 
atomic configurations have been identified keeping in mind the simplicity of 
the computational procedures associated with these configurations.  In order to 
put less demand on a computational capability of a sensor node, we suggest that 
only a pre-defined number of sensor nodes are compute-enabled (c-nodes) in 
the sense that they have adequate computational power. Similarly, only a pre-
defined number of sensor nodes are GPS-enabled. In such a sensor network, the 
distributed computation of localization is achieved by distributing the 
computational requirements of individual sensor nodes across the c-nodes. Each 
sensor node strives to improve its localization by constantly monitoring its 
neighborhood and requesting an associated c-node to recompute position 
whenever neighborhood topology changes. We provide some initial results that 
bring out the merits of the proposed approach. 

1  Introduction 

Recent technological advancements and availability of wireless devices have 
increased the demand for self-organizing networks without the need for any dedicated 
infrastructure. These ad hoc networks consists of multiple nodes, with each node self-
sufficient in terms of communication and computation powers, interact with each 
other in a cooperative way to address issues at network level and in interacting with a 
central station. A sensor network with wireless capability is a constrained wireless ad 



hoc network with limited power, communication, and computational abilities. Further, 
the sensor network tends to be large in size with hundreds and thousands of sensor 
nodes. An ad hoc sensors network is static if the nodes that are part of the network, 
after an initial configuration, do not change their position. On the other hand, in the 
case of an ad hoc  mobile network, the nodes of the network move arbitrarily, 
independent of each other, resulting in dynamic and ad hoc changes in the network 
topology. It is a challenging task to define a self-organizing network in the case of a 
mobile ad hoc network.  

A smart sensor network [11] consists of a number of sensors spread across a 
geographical region and each sensor node has adequate intelligence. Such sensor 
networks are deployed in a variety of application scenarios such as (a) military sensor 
networks to detect the presence of hazardous material; (b) environmental sensor 
networks to detect and monitor environmental changes; (c) traffic sensor networks to 
monitor vehicle traffic on highways; and (d) surveillance sensor networks to monitor 
for security purposes. In each of these cases, it is required for a smart sensor node to 
communicate the sensed data (such as temperature and atmospheric pressure) to a 
central station for intelligent processing of aggregated data from multiple sensors and 
decision making. An important attribute of the data communicated by a sensor node is 
its current location that is essential in many of the applications such as traffic 
monitoring or surveillance.  

GPS [4] is well-known approach for obtaining an absolute position of a node. 
When a receiver is outside a constellation of transmitters, standard iterative 
techniques may not converge to a correct solution. In this case it is required to use the 
known solutions to pseudo-range equations. [10] describes a five dimensional 
optimization procedure derived from the pseudo-range equations to compute position 
in the absence of navigation data. However, from the point of view of deploying this 
technology in a large sensor network where each sensor node is constrained by power, 
size, form factor, and cost factor, one can only selectively deploy this technology in a 
sensor network. 

Localization refers to the problem of computing the position of a sensor node in an 
ad hoc network. In a large sensor network, it is not possible to configure the position 
of a sensor node even in the case of a fixed ad hoc network as the process of 
installation of sensor nodes might be just randomly dropping of the sensors over a 
region of interest. The position of a sensor node can be either an absolute position or a 
relative position. However, it is useful to determine the absolute position as relative 
position would have to be redetermined if there is a topology change even though the 
node under consideration might not have moved. Being able to know their absolute 
position is one of the important characteristics of the nodes of a self-organizing 
network. 

Localization approaches depend on some sort of communication between anchor 
points (or reference points) and the node whose location needs to be determined. 
There has been significant research in studying location identification and some of 
these results are briefly described in the following. Bulusu et al [2] describe an 
approach wherein multiple nodes in a network that form a mesh serve as reference 
points and transmit periodic beacon signals containing their reference positions. From 
the beacon signals received by a node from a set of reference points, the node 
localizes to the region that coincides with the intersection of the connectivity regions 



 

of the set of reference points. Doherty et al [3] describe a method for estimating 
unknown node positions in a sensor network based on connectivity-induced 
constraints. Feasible solutions to the position estimation are determined using convex 
optimization. [6] describes a self-localization method based on time-of-arrival and 
direction-of-arrival measurements by a subset of sensor nodes from a number of 
source signals placed at unknown locations. The method is for solving self-calibration 
problem with minimum number of sensor nodes and sources and provides an initial 
estimates for an iterative descent computation needed to obtain maximum likelihood 
calibration parameter estimates. [7] describes Ad hoc Positioning System that is a 
distributed, hop by hop positioning algorithm and works as an extension of both 
distance vector routing and GPS positioning in order to provide approximate location 
for all nodes in a network where only a limited fraction of nodes have self-location 
capability. [5] describes an algorithm in the context of a distributed sensor networks 
using which each sensor node determines its position in physical space based on their 
location in the network topology. The algorithm is based on determining, for each 
sensor node, the number of hops it is away from each of the basis nodes (those nodes 
that are aware of their location) and converting these hop-based distances into 
Cartesian coordinates. [9] describes a distributed technique for achieving fine-grain 
location awareness based on a limited fraction of beacons. The technique called as ad 
hoc localization system enables nodes to dynamically discover their own locations 
through ranging and estimation processes. 

[8] describes a distributed algorithm for determining the positions of nodes in an 
ad-hoc, wireless sensor network in two phases: the startup-phase addresses the issues 
related to sparse availability of GPS-enabled nodes and uses a cooperative mechanism 
to spread location information of the anchor nodes throughout the network; and 
refinement phase addresses the issues related to reducing the error in initial position 
estimates. 

[1] describes efficient algebraic tools for solving explicitly nonlinear geodetic 
problems such as GPS pseudo-ranging based on the algebraic techniques of Grobner 
bases and Multipolynomial resultants. The problems of localization can also be posed 
as a solution of a system of quadratic equations and the approaches suggested in [1] 
can be used to solve these pseudo-range equations.  

In this paper, we propose a topology based localization approach. Briefly, we 
consider a sensor network in a field, with each sensor node having the property of 
wireless communication and low mobility. Some of the sensor nodes are GPS-enabled 
and are called as g-nodes. Similarly, some of the sensors are compute-enabled and 
these nodes are called c-nodes. Given this scenario, our objective is to achieve self-
localization in each of the sensor nodes. Figure 1 depicts a typical sensor network. An 
ng-node is either a c-node or w-node. 

2  Atomic Configurations 

The process of localization is to be able to assign the absolute position to a node in a 
sensor network. Such a position is necessary for an intelligent sensor node to 



Fig. 1. Typical Sensor network. An ng-node is either a c-node or w-node 

undertake location-specific sensing. Self-localization refers to a process wherein a 
node is able to establish its position based on the neighborhood information. In order 
to achieve self-localization, we propose to define a few topology based configurations 
and embed a configuration identification procedure in each of the nodes. These 
configurations are called as atomic configurations as they are, in some sense, 
minimum amount of information that is required to localize a node within some 
bounds. The reason for identifying multiple atomic configurations is that in an ad hoc 
mobile sensor networks, depending on the various factors and the intended 
application, not all sensor nodes may be equipped with GPS capability. Addition of 
such a GPS feature would make a sensor node not only costly but also bulky and 
stresses the battery power. On account of the fact that only a few nodes are GPS-
enabled and with sensor node mobility, there are certain topological possibilities in 
which exact computation of position of all the sensor nodes is not possible. In order to 
address such a situation, additional configurations have been identified so that where 
exact position identification is not possible, an approximate position could be 
assigned. An effort has been made to suggest atomic configurations keeping in mind 
computational simplicity. While position recomputation could be on rare occasions in 
a fixed sensor network, it is required to recompute the position quite often in the case 
of a mobile sensor network and this recomputation frequency not only depends on the 
self-mobility of a sensor node but also the mobility of the other nodes in the sensor 
network. 
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Fig. 2. Illustration of atomic configurations. A,B,C and D  respectively illustrate the atomic 
configurations C1, C2, C3, and C4.  

In the following, we describe four atomic configurations giving details such as 
configuration identification mechanism and position computation procedures. In the 
following, note that a g-node has been used to stand for a GPS-enabled node or 
location-aware node. 

Configuration 1 (C1): A pictorial depiction of C1 is shown in Figure 2. Note that, 
in this configuration, there are two g-nodes and two w-nodes and W1 is only within 
the range of G1 and W2 while W2 is only within the range of G2 and W1.  

Configuration 2 (C2): A pictorial depiction of C2 is shown in Figure 2. Note that 
this configuration is an improvement over C1 in terms of the accuracy of position 
computation. In this case, there are three g-nodes (G1, G2, and G3) and three w-nodes 
(W1, W2, and W3) with the restriction that W1 is only within the range of G1, W2, and 
W3 and similar restrictions apply for W2 and W3. 

Configuration 3 (C3): A pictorial depiction of C3 is shown in Figure 2. Note that 
this configuration is an improvement over C1 and C2 in terms of the accuracy of 
position  computation. In this case, a single w-node (W1) is within the range of two g-
nodes G1 and G2 thereby improving the position computation accuracy. 



Configuration 4 (C4): A pictorial depiction of C4 is shown in Figure 2. Note that 
this configuration is an improvement over C1 through C3 in terms of the accuracy of 
position computation. In this case, one w-node (W1) is within the range of three g-
nodes (G1,G2, and G3) resulting in a well-know configuration. 

 

Configuration Identification
// Executed by w-node
// NeighborhoodData contains all possible instances of one or more identified configurations

{ Identify all the neighboring nodes (n-list) (1 hop away) and compute range from itself (w-node) to each  of
the identified neighboring node;

// each neighboring node is within the communication range of w-node

Let GN be the number of g-nodes in n-list;
If GN == 0 { return null set;}
If GN >= 3 { select three g-nodes from n-list;

Form NeighborhoodData with configuration id as C4;  return NeighborhoodData;     }
If GN == 2  { select two g-nodes from n-list;
Form NeighborhoodData with configuration id as C3;  return NeighborhoodData;     }
Let WN be the number of w-nodes in n-list; Let w-list be n-list without g-node;
While (w-list is not empty)

{ Identify two w-nodes in w-list such that they are within the range of each other and each of the
two w-nodes has only one g-node within its range and let w2 be the list of these two w-nodes;

If w2 is not empty { Append w2 with configuration id as C2 to NeighborhoodData;
Remove w2 from w-list; Continue; }

Identify one w-node in w-list such that it has only one g-node within its range and let w1  
be the list of this w-node;
If w1 is not empty { Append w1 with configuration id as C1 to NeighborhoodData;

Remove w1 from w-list; Continue; }

Return NeighborhoodData;
}

}

 

Fig. 3. Describes the steps involved in identifying the configurations in a sensor network. Note 
that this algorithm is executed by each w-node and hence, the configuration identification is 
from the point of view of a w-node. 

Figure 3 describes the procedure for identifying the atomic configuration of the sub 
network. 

In the following, we describe a computational procedure for each of the identified 
four atomic configurations. 

In Algorithm C1, θ is computed by applying cosine rule to the triangle formed by 
W1 with G1 and G2 as shown in Fig. 2. Observe that in the algorithms C1 through C3, 
the position of a w-node is not determined uniquely and hence, each of these 
algorithms provide a narrowed search space for computing the possible positions. 



 

Further, the multiple instances of the configurations C1 and C2 help in progressively 
reducing the solution search space. Also, multi-hop neighbors of a w-node whose 
locations are known would help in providing more constraints for reducing the search 
space.  

 

Computational Procedure for C4
// Executed by c-node on behalf of a w-node
{  Let W1, G1, G2, and G3 be as shown in Fig. 2;
   Compute the coordinates of W1 by triangulation using G1,   
   G2, and G3 information;
   Return the coordinates;
}

Computational Procedure for C2
// Executed by c-node on behalf of a w-node
{ Let θ12 and θ23 be as shown in Fig. 2;
  Compute ϕ12 using Algorithm C1 between W1 and W2;
  Compute ϕ23 using Algorithm C1 between W3 and W2;
  Identify m points on arc ϕ12 and n points on arc ϕ23;
  Let NSS be NULL;

For each point p in m
      For each point q in n

{   Compute distance d between p and q;
    If d is close W13 Add p to NSS;
}

Find arc A defined by NSS
Return angle subtended by A;

}

Computational Procedure for C3
// Executed by c-node on behalf of a w-node
{ Let R1, R2, G, and q be as shown in Fig. 2;
  Compute θ using R1, R2, and G;
   Return q;
}

Computational Procedure for C1
// Executed by c-node on behalf of a w-node
{ Let R1, G, W, and q be as shown in Fig. 2;

Compute θ as

ϕ = (360 - 2*θ);
Return ϕ;

 // ϕ is the narrowed search space
}
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D: Algorithm C4C: Algorithm C3

B: Algorithm C2
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Fig. 4. Computational procedure for each of the identified four atomic configurations. 

3  Self-Calibration of Position 

Given a sensor network as shown in Figure 1, we describe an approach in which a 
sensor node uses the state of the sensor nodes in its neighborhood to self-calibrate its 
estimated position. The sensor node uses Configuration Identification Mechanism 
discussed in the previous section to improve its estimate over time. As the nodes 
move around, the state in the neighborhood changes and the node uses this change to 
its advantage to improve its position awareness. On initialization, the node performs 
the algorithm described in Figure 5 to obtain an initial estimate of its position. Note 
that the accuracy of its estimate depends on the neighborhood topology and due to the 
ad hoc nature of the mobile sensor network, this topology changes dynamically. After 
the successful initialization, the node constantly monitors for (a) any change in the 



neighborhood topology; and (b) any change in the position estimate of its neighbors. 
In either of the cases, it recalibrates itself using the algorithm described in Figure 5. 
Observe that in the algorithm described in Fig. 5, the node interacts with a c-node to 
help compute its position. Fig. 6 describes the algorithm executed by a c-node in 
order to compute the position of a w-node on receiving the inputs from the w-node. 
Note that c-node receives multiple instances of a configuration related data and 
computes the possible angular position of w-node. Finally, when it has received and 
processed all the data sets, the resulting angular position is converted to possible 
positions and is returned to w-node. 

 

Localization - Client
// Executed by w-node on need basis; Interacts with c-node assigned to w-node;
// A c-node is assigned during initialization statically and subsequently gets reassigned during
dynamic assignment
{   Analyze neighbors to determine the best possible configuration; // Use algorithm described
in Fig. 3 and obtain NeighborhoodData

For each NeighborData in NeighborhoodData
{  Send NeighborData to c-node;  Wait for Ack;
}
Receive PositionData;
If Exact Position { Store Exact Position; return; }
Analyze Possible Positions based on past position and mobility information;
Store the analysis result as Feasible Positions;

}

 

Fig. 5. Localization Algorithm – Client 

Observe that in the algorithm described in Fig. 5, a w-node interacts with a 
particular c-node for computational purposes. There are three ways to assign a c-node 
to a w-node so that position computation can be distributed across the available c-
nodes. In a static assignment, a w-node is configured to have an associated c-node. 
While it is easier to achieve load balancing by equally distributing the w-nodes to the 
available c-nodes during configuration, depending on the topology, this may have an 
excessive traffic across the network.  

A dynamic assignment, on the other hand, tries to minimize the network 
overloading and hence, reducing the delay in communicating the results back to a w-
node. However, in this case, additional computational effort is required to achieve 
load balancing. As a compromise, in quasi-dynamic assignment, instead of 
reassigning whenever there is a change in topology, the reassignment is made at 
regular, long intervals. 
Observe that this periodicity could vary over time based on the nature of mobility of 
sensor nodes. A distributed dynamic assignment algorithm is described in Figures 7 
and 8. 

 
 



 

Localization - Server
// Executed by c-node in response to data received from a w-node
{ Receive NeighborData from w-node;  Analyze the data and check for configuration;

If no more of neighbor data from w-node
{  Convert ThetaSet to Possible Positions;   return Possible Positions to w-node }
Switch {
    Case C4:   Use algorithm C4 and compute Position;   return Exact Position to w-node;
    Case C3:   Use algorithm C3 and obtain Theta;
    Case C2:   Use algorithm C2 and obtain Theta;
    Case C1:   Use algorithm C1 and obtain Theta;
}
ThetaSet = ThetaSet  n Theta;

Send ACK to w-node;
}

 

Fig. 6. Localization Algorithm - Server 

 
 

Dynamic Assignment  - Client
// Executed by w-node
{   Discover all c-nodes in the network;
    Arrange c-nodes in non-decreasing order of hops into c-list;
    // c-node and w-node are separated by a number of hops;
    Start Timer; // set to available time before which all w-nodes should have their c-nodes assigned;

// this time includes guard band time also
While (not yet assigned a c-node)
{ Select next c-node from c-list; Send assign request to c-node;

Wait for ACK or NACK
If ACK is received {c-node gets assigned; return; }
If Timer expires { Reassign previously assigned c-node; return; }

}
Reassign previously assigned c-node;

}

 
 
Fig. 7. Algorithm for dynamic assignment at client 
 

C-nodes implement the position computation algorithms described in Section 2 for 
the various atomic configurations. Further, as it receives multiple data related to a 
particular configuration from a w-node, the c-node computes position for each of 
these data related to the configuration to finally return a best approximate value if the 
configuration under consideration is not C4.  

Our initial simulations involved defining networks over a region of 100 square 
units with 120 nodes each with one unit range. We have implemented the algorithms 
related to the four atomic configurations and the configuration identification 



procedure. The following figures, Figs. 9 and 10, describe some of the experimental 
results.  
Note that, in the Figs. 6A and 6B, the nodes connected by solid lines indicate that the 
position computation is by using C4 configuration, the nodes connected by long 
broken lines indicate that the position computation is by using C3 configuration, and 
the nodes connected by dotted lines indicate that the position computation is by using 
C2 and C1 configurations. 
 

Dynamic Assignment  - Server
// Executed by c-node; w-list contains granted requests
// ow-list contains pending requests in the received order with the most recent at the head
// W is the limit number of w-nodes that can be assigned to c-node

{   Start Timer; // set to available time before which all w-nodes should have their c-nodes  assigned
    While (1)

{  While (1)
     { Check for request; If received Break;

If Timer Expires Break both loops; Sleep (0);
      }
     if |ow-list|  < W  {Add request.w-node at the head of ow-list; Continue; }
     For each w-n in ow-list
     if  w-n.Hops > request.w-node.Hops { Remove w-n from ow-list; Send NACK to w-n;

Add request.w-node at the head of ow-list; Break;
      }
}

// Timer has expired
If |ow-list| >= W {  Copy W requests from ow-list to w-list on first-come-first-served basis;

Send ACK to each of the w-nodes in w-list;
Send NACK to the remaining requests in ow-list;
Check for requests from w-nodes and for each such request send NACK;
// these are the requests sent by w-nodes just before timer expiry to c-node
Return; }

// c-node can accommodate a few more w-node requests received within Guard Band time interval
Start Timer // set to guard band time interval;
While (1)
{   Check for request;
    If received request

If |w-list| < W { Add request.w-node to w-list; send ACK to request.w-node;}
Else Send NACK to the corresponding w-node;

Else Sleep (0);
If Timer Expires Break;

}
}

 
 
Fig. 8. Algorithm for dynamic assignment at server 
 
It is observed that, in Experiment 2, there were more number of nodes that were 
localized using C2 and C1 configurations as compared with those  of Experiment 1. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.  Results of experiment 1 

4 Conclusions and Further Work 

In this paper, we have proposed a topology based localization approach in the context 
of ad hoc mobile sensor networks. In a mobile sensor network in which there are a 
limited number of nodes with GPS-capability, there is a need for localization  

 



Fig. 10. Results of experiment  2 

procedure that addresses the issues related to topologies in which exact computation 
of position of many sensor nodes is not possible. Under these conditions, the approach 
suggested in this paper provides a best possible approximate estimate of the position 
of such sensor nodes. In order to achieve cost minimization while deploying a sensor 
network, we have suggested that the nodes in a sensor network could be of three 
types: g-nodes – those nodes that are GPS-enabled or location-aware; c-nodes – those 
nodes that have adequate computation power; and w-nodes – a wireless mobile sensor 
node. 

We have suggested algorithms for atomic configurations that get executed on a c-
node on behalf of a w-node during the self-computation of the position by the w-node. 
The idea behind identifying atomic configurations is to simplify the computational 
effort and handle the availability of only limited information. We have also suggested 
a dynamic assignment algorithm that dynamically, in a distributed fashion, assigns the 
best possible c-node for a w-node so that an attempt is made to achieve load balancing 
and minimize traffic across the network due to the interaction between w-nodes and c-

 

 



 

nodes for position computational purposes. The results provided in this paper suggests 
that there are several w-nodes that require the usage of C1 and C2 configurations, 
along with other constraints, to determine their position. As part of the ongoing 
simulation work, we are working towards identifying different network topologies 
with a sufficiently large number of nodes and measuring the effectiveness of the 
suggested approach in terms of the extent of application of different configurations in 
localizing the nodes. Further, we are investigating the utility of distinct graph patterns 
such as (a) densely connected subnets; (b) sparsely connected subnets; and (c) 
partially localized chains. We also intend to explore the effects of density of w-nodes 
and sparsity of g-nodes on localization.  

 

References 

1. Awange, J.L., “Gröbner bases, multipolynomial resultants and the Gauss-Jacobi     
combinatorial  algorithms – adjustment of nonlinear GPS/LPS observations,”  Ph. D. Thesis, 
University of Stuttgart, 2002. 

2. Bulusu, N., J. Heidemann, and D. Estrin, “GPS-less low cost outdoor localization for very 
small devices,”  IEEE Personal CommunicationsMagazine, 7(5):28–34, October 2000. 

3. Doherty, L., K. Pister, and L. El Ghaoui, “Convex position estimation in wireless sensor 
networks,”  Proceedings of IEEE INFOCOM 2001, volume 3, pages 1655–1663, Anchorage, 
Alaska, April 22-26 2001. 

4. Hofmann-Wellenhof, B.,H. Lichtenegger, and J. Collins, Global Positioning System: Theory 
and Practice, Fourth Edition, Springer-Verlag, 1997. 

5. McLurkin, J.D., “Algorithms for Distributed Sensor Networks,”  Masters Thesis for 
Electrical Engineering, University of California, Berkeley, December 1999. 

6. Moses, R.L., D. Krishnamurthy, and  R. Patterson, “A Self-Localization Method for 
Wireless Sensor Networks,”  Eurasip Journal on Applied Signal Processing, Special Issue on 
Sensor Networks, No. 4, Vol. 2003, March 2003. 

7. Niculescu, D. and Badri Nath, “Ad hoc positioning system (APS),”   Proceedings of 
GLOBECOM, San Antonio, November 2001. 
 

 


