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Abstract. Network with Generalized Precedence Relations (GPRs) is a very
important model in network planning technology which is the core technology
of project management software. The most important problem should be
solved first is to identify the network feasibility under GPRs in project
planning phase, which determines whether its successive works can be
processed successfully or not. This paper puts forward the definition of parallel
subnetwork and studies the methods of its identification and feasibility
discrimination. And then, we propose distinguishing methods for network
feasibility in an acyclic network with GPRs, study the identifying methods for
subprojects and GPRs arcs which need to be adjusted when the network is
infeasible. The analysis of time complexity and computational example
manifests that the proposed algorithm is feasible and effective in practice.

1 Introduction

Network planning technology is the core technology of project management software
which is the most important part in large project information systems. With the help
of network models, we can establish close relations among subprojects, between
resources needed by each subproject and cost, which is an important basis for
optimizing project scheduling, investment management, resources allocation etc by
computer. Most network planning software used at present such as Primavera Project
Planner (P3), Microsoft Project for Windows and so on are based on classical CPM
[1] or PERT [2] model.
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As we known, the classical CPM [1] or PERT [2] model reflects the strict partial
ordering [3] that exists among subprojects of a project, i.e. a successor subproject
only can be started when its all predecessor subprojects have already been finished.
However, there are other precedence relations called generalized precedence
relations (GPRs) [3] between subprojects of a project besides the strict precedence
relation in project planning in practice. Therefore, GPRs network model is more
suitable to large project management than the classical CPM [1] or PERT [2].

Elmaghraby and Kamburowski [3] constructed the structure of GPRs network
model based on the works of Roy [4] , Kerbosh and Schell [5]. Other related studies
include De Reyck and Herroelon [6], Sakellaropoulos and Chassiakos [7], etc.

There are very complex relationships of time lags between different nodes in
GPRs networks. Therefore, it is difficult to consider all constraint conditions
carefully and completely in project planning phase. As a result, there may be
contradictable time lag constraints which will lead to network infeasible. However,
this phase determines whether its successive works such as identifying critical paths
and critical subnetworks can be processed successfully or not. Therefore, the most
important problem should be solved first is to identify network feasibility under
GPRs.

Elmaghraby and Kamburowski [3] and Cesta et al [8] gave the definition of
network feasibility in relation to this problem. In this paper, we study identifying
methods for the feasibility of acyclic networks with fixed subproject durations under
GPRs based on their works.

The remainder of this paper is organized as follows. Section 1 introduces the
notation and terminology used in this paper. Section 2 gives some important
definitions about networks with GPRs. Section 3 is problem statement. Section 4
puts forward identifying methods for network feasibility and analyzes the time
complexity about the proposed algorithm. Section 5 gives a computational example.
Section 6 is reserved for our overall conclusion.

2 Notation, Terminology, and Basic Definitions

We mainly use notation and terminology in line with EImaghraby and Kamburowski
[3] and modify some of them if it is necessary.
G=(N,A,9,dg): anetwork under GPRs, where N is the set of nodes, 4 is the

set of arcs, # is the set of subprojects arcs, ? is the set of GPRs arcs and
A=AUP.

m(orm;, m, , 7, ps, ): path(or a path between node / and j, a path numbered £,

path 4 on parallel subnetwork PS)).
d,(or d,d;,d;,d, d,,,d,’nlvk »dps, ) the duration of a subproject & (or a subproject

ij>
(ij), path 7, PSy). The superscript / (or ) indicates the lower (or upper) bound of
the subproject’s (or path’s, PS;’s) duration.
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g,;(or g,g,.8/,8,,8",g,") : the length of a GPRs arc between node i and j.
The superscript / (or «) and up denote the lower (or upper) bound and updated value
of the length respectively, and the subscript 7 denotes the total length of GPRs arcs
onpath 7.

g:m,, (org,,): the minimal (or maximal) accumulative total time lag of several
common arcs.

g:m,,‘ ps, (OF g:ub, rs, ): The minimal (or maximal) accumulative total time lag of

several common arcs can be taken in parallel subnetwork £.

Gops (O gt e, g%, gt ): The updated minimal (or maximal) accumulative

total time lag of several common arcs (or common arc (J,)) can be taken in the set of
parallel subnetworks.
gimv (or g,,, ): The minimal (or maximal) accumulative total time lag of several

GPRs arcs only passed by one parallel subnetwork.
t; : the realization time of node j. sy the start-time of subproject /.
Ju: the finish-time of subproject 4. PS: the set of parallel subnetworks.
PS, , : aparallel subnetwork with begin-node /, and end-node j,.

P, (orP,,s’m ): the set of paths between node i and j (or the set of paths on
PS. ).

ToJo

PSAEN (pSLAtY & PS“G-1): the set of parallel subnetworks which pass common
arc (i), where PS_'"” is a parallel subnetwork passing (i,)).

deg (i) (or deg/, (i) ): in-degree (or out-degree) of node i.
CA(i,j): common arc (//). ML ;: a minimal loop between node i and ;.

Subnetwork (SN): A subnetwork is composed by all paths between node i and ;.
Parallel Subnetwork (PS): The meaning is the same as completely parallel network
in Dodin [9], i.e. a parallel subnetwork is composed by at least two parallel paths
with identical direction between two nodes. For example, path (1-2-6) and
(1-5-6) compose PS¢ in Fig. 1.

Network Feasibility (NF): We incorporate the definition of network feasibility
given by Elmaghraby and Kamburowski [3] and Cesta et al [8] to define it as
follows:

A network G=(N,#4,2,d g) is called feasible if there are project schedules
which satisfy conditions: M.1,-1,=d Y, j)e A,
(2).gfj St,-t,<g; , Vi, ))eP; (3).4,=0;(4).t;, 420 .

The same definition of network feasibility is used to define the feasibility of a
parallel subnetwork. d, g )

Parallel Subnetwork Feasibility: A parallel subnetwork PS=(VN, A, %, ,d,g) is
called feasible if there are project schedules which satisfy conditions: (5).

t-ty=d, VG, ))eAy 5 (6).8,<t,—t,<gh , V(i,j)eB; (Dt 1,20

j ol
where #,; and %, are the set of subprojects and GPRs arcs in the PS respectively.

ijo1



714 Research and Practicial Issues of Enterprise Information Systems

Minimal Loop (ML): A loop which does not contain any other loops is called a
minimal loop. For example, path (0—-1-2) and (0-3-4-13) compose ML, ; in Fig.
1.

Common Arc (CA): A GPRs arc passed by several parallel subnetworks is called a
common arc. For example, CA(6,10) is passed by PSs ;o and PSs ;6 in Fig. 1.

----------
......
.

52,0907

-._
‘\

", <129)
1] 14\ }

Activity (forward 'é ©) Activity (backward
d h ’ arc) and its duration arc) and its number
w _2u._<g Minimal and max- t(7): The earliest(latest) reali-

imal time lags zation time of node /

Fig. 1. An improved example of Elmaghraby and Kamburowski [3]

3 Problem Statement

A project is composed by many subprojects. According to technological conditions
and resource constraints, we can get the datum of GPRs between different
subprojects. However, we can not judge whether there are contradictions with these
datum by our experiences or intuitions due to complex GPRs, so we can not
determine whether the network schedule is feasible or infeasible.
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Our problem is: How can we identify whether there is at least one feasible
project schedule in a given set of subprojects durations d,(V(i, /) € /) and GPRs

length interval [g,’j » ;1(¥(i, j) € P) in an acyclic network under GPRs? And should

we adjust which subprojects’ durations or/and the length of GPRs if there is no
feasible project schedule?

The first problem can be solved by identifying the solution of the linear program
(1)-(4). Simplex method and ellipsoid method can be used to identify the network
feasibility. The former performs very well in practice but needs exponential time in
the worst conditions. The later is a polynomial time algorithm but has little value in
practice [10].

For the second problem, Bartusch [11] and Zhan [12] used cycle structure to
identify some contradict GPRs if subprojects have fixed durations. However, the
cycle structure does not conform to the reality of a project because there is no work
to be done over again in the project under GPRs.

Furthermore, these methods or models are helpless for our problems if the
durations of subprojects are stochastic.

We base our models and algorithms on an acyclic network structure with GPRs
and aim at to extend them to stochastic durations of subprojects. The later will be
discussed in another paper.

4 Feasibility Identification and Complexity Analysis

4.1. Feasibility Identification for Parallel Subnetworks

Parallel subnetwork feasibility can be identified by theorem 1.

Theorem 1: A parallel subnetwork is feasible if and only if its intersection of the
duration intervals of all parallel paths is not empty.

Proof: Necessity: Suppose that parallel subnetwork PS, —is composed by m

paths named 7,,7,, -, 7, respectively.

If PS,, is feasible=7 = certainly exists.=¢, € ﬂ:ﬂ[ d,’,k ,d, 1# @, where
[, .d; Jk=1,2,---,m) is the duration interval of path &

Sufficiency: ﬂ;":l[ a',’,‘t ,d; 1#® =1, certainly exists. = PS,  is feasible.

Corollary 1: For parallel subnetwork PS, . , If Vr,(k=1,...,m),3g;,g;]=
[g;,+o] then PS,, is feasible, where P, == {7, 7,,- 7,}.

Theorem 2: The necessary condition for GPRs network feasibility is that all
parallel subnetworks in network G are feasible.
Proof: The conclusion is obvious.
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4.2. An Identifying Method for Network Feasibility (Algorithm 1)

Suppose that there are only one network begin- and end-nodes.
4.2.1. Basic Ideas of Algorithm 1

@®. Searching all minimal loops in network G under GPRs, then combining
minimal loops which have the same start- and finish-nodes, and so getting all parallel
subnetworks (including some parallel subnetworks generated by eliminating some
arcs of subnetworks).

@. The feasibility of parallel subnetworks is the necessary condition of the
network feasibility and it can be identified easily. Therefore, we check the feasibility
of all parallel subnetworks firstly.

®. Searching the set PS““” which passes CA(i,j), then computing the maximal

interval value of CA(ij) in each parallel subnetwork PS;"” e PS“"/ and the

intersection of these maximal intervals which is used as the new interval value of
CA(ij) (called CA(ij) updated).

@. Checking the feasibility of all parallel subnetworks with updated value of the
CA(ij), if all of them are feasible then the network G is feasible, otherwise, the
network G is infeasible.

4.2.2. Steps of Algorithm 1

Step 1. Searching all minimal loops in network G under GPRs: (.Numbering
arcs in regularity: We can modify the method of numbering nodes in regularity or
ternary tab method for an optimal tree. @.Algorithm of searching minimal loops:
We can modify ROOTP or ROOT algorithm to search all minimal loops in a
network.

Step 2. Searching the set of parallel subnetworks: Searching minimal loops
which have identical start-node / and finish-node i,,, then incorporating them as

parallel subnetwork PS,, (ie{0;-n-1}, i,e{l,ntand i, >i), and
regarding other minimal loops as parallel subnetworks. All parallel subnetworks
belong to the set of parallel subnetworks.

Step 3. Searching parallel subnetworks which pass CA(i,j) € ? and incorporating
them into the set of PS“¢-7

Step 4. Computing the duration interval of PS_/"” € PS““/If the interval is
empty then PS,fZ(”’ is infeasible. Adjusting the durations of subprojects or/and the

length of GPRs arcs which belong to PS;:"”, making PS_\"/ feasible.

Step 5. Computing the maximal interval of CA(i,) in PS{;"*” € PS““” in the
condition of guaranteeing parallel subnetworks PS,HC;Z”' 7 feasible: @.Let the duration
of parallel subnetwork # be [d,’,sk s dps, ], computing the maximal interval of common

arc g,,;. @. The maximal interval of common arc g, in parallel subnetwork PS; can
be computed by formula (8).
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l ! !
[gpub,PSk > g;ub,PS,( 1= [max{dps, - Z (1) s, dq - 2 Turs, g:rw ,Z,,hm gpub}:
: u ! u
mln{(d‘nsk - z . J)emypsy dU B Z T hPSy gpnv )’ z Thpsy gpub }]

®.The maximal accumulative total interval of several common arcs in the set of
parallel subnetworks can be determined by formula (9).

lup u,up = n ! u
[8 s> &t ps ] ﬂk=l[gpub,PSk Epps,] )

®. The maximal interval of CA(i,j) which belongs to g, in the set of parallel
subnetworks can be determined by formula (10).

®)

1up

uup Y _ n Lup _ u 1
[gij-PS’ gij-PS] - nk=l[max{(gﬂ'4b-‘"5k Z(:',f’)sgm_m RGR L)) gf’j’)’ & )

(G NP -0 373 N UF) -

Step 6. Computing the intersection of maximal intervals of the CA(ij) in
PS; 107 & PSC) If the intersection is empty then the network is infeasible, so
adjusting the durations of subprojects or/and the length of GPRs arcs which belong
to PS_\"”, making PS{1"7 feasible.

Step 7. Checking the feasibility of each parallel subnetwork according to the

updated value of the CA(i,). If all of them are feasible then the network is feasible,
otherwise, the network is infeasible.

(10)

4.3. The Time Complexity Analysis of Algorithm 1
Table 1 is the time complexity analysis of each step of algorithm 1. As a result, the

time complexity degree [13] of algorithm 1 is O(N[*x|4|+| 2| *|A]"). Therefore,
algorithm 1 is effective in practice.

Table 1. The Time Complexity Analysis of Algorithm 1

Steps of algorithm 1 Computing times Complexity degree

Step 1 INPx|A|+|A} O(NPx|A|+|AP)
Step 2 (141-3)x(4|-2)/2 o(AP)

Step 3 |2 ]x|A]x( 4]-2) O(2|x|AF)

Step 4 R A|-2| A]-1]x(A]-2x| 2] O A x| P])

Step 5 2(1 4]-2)'x| 2P| O( A x|?])

Step 6 2| 4]-2)x| 2| o(4]x|2])

Step 7 [204]-2+] 4]-1]1x( 4]-2) o(A4l)

Algorithm 1 O(N| x| A|+]|?|x|4])
4.4. A Theorem

Theorem 3: Algorithm 1 does not identify a network infeasible if it is feasible in
reality, or vice versa.
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Proof: The precondition of maximizing intervals of common arcs is to guarantee
each parallel subnetwork to be feasible, which ensures that the intersection of these
arcs intervals in different parallel subnetwork is maximal. Therefore, updating GRPs
arcs according to the intersection does not decrease the solution space of feasible
schedules of the network.

According to theorem 2, algorithm 1 checks the feasibility of parallel
subnetworks two times, which is the necessity condition to guarantee network
feasibility. Therefore, algorithm 1 does not identify a network infeasible if it is
feasible in reality.

Algorithm 1 does not identify a network feasible if it is infeasible in reality: If
this happens then at least one of the four conditions (1)-(4) in line with network
feasible is not satisfied. However, according to algorithm 1, A feasible network
satisfiest, -, = d,,Y(i, j) e A;t, -1, € [g,.’j‘"”,g,.';""’] c [g;.,g;‘.],‘v’(i,j) e? ;and
£=0. This contradicts the assumption. 0

S An Example for Algorithm 1

We use algorithm 1 to identify the feasibility of figure 1 and all results are shown in
Table 2 and 3.

Table 2. Searching Minimal Loops

Iterative Deleted Iterative Deleted
order ML, arcs order ML, arcs
0-1-2-13f  }0-1§ 2-6-15 § 26
ML, = ML, =
© o 0-3-4-13% ¥o-3£ © 2 2-13-15% 2-13%
1-5-6§ }1-5§ 7-13-14§ 7-13§
ML, ;= ML,,=
@ n 11-2-6% ¥1-2% e 2-12-14% 7-12%
34-13 § §3-4-13p 6-10-16§ 6-10-164
ML, = ML =
e 3-8-7-13% $3-8 E ® oo 6-15-12% 6-15 6%
=Y11-8-7-12 11-8-7§ =‘{13-15-16-17" 13-15-16-17§
12 g 11-12% B $13-14-17 E 13-14 E
§ 5-9-10p 5-9§ 12-14-17§  }12-14-17§
= ML =
© S10 ¥5-6-10£ ;565 27 212-17 E 12-17 E
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Table 3. Searching Parallel Subnetworks

Feasibility Feasibility of PS;;
CA Step 3 of PS, PS5 Step6 iy idated GPRs
(2,6) {PS, 6:PS5,15) Vo ()13 {3} v
(2,13) {PSy,5,PSo,5} v [4.8]; [4,0]  [4.8] v
(4,13)  {PSo13:PSs 5} v [0,3]; [-7,3] [-7.3] v
(713)  {PS;13;PS7,4} v [2,12]; [2,0]  [2,12] v
(7,12) {PS7,14;PSH,12} V [6,00]; [6,00] [6,0] ‘/
(6,10)  {PSs510;PSs 6} v (25{2) {2} v
(6,15) {PSe16:PS515) v (0% 1261 {0} v
(13,15)  {PS,;PSi3y V [L5]; [Leo]  [1,5] v
(12,14)  {PS;,4PS1217}  PSiparx [2,0]; @ @ v
(14,17) {PS13,17;PSIZ,I7} PSlz,n" [0,c0]; ) o} \/
(12,14 (PS; 3PSy 202} {2)© v
(4,17)®  {PS;3,;iPSi10y [0.]; {2} {2} v

Note: @ The computing results are obtained with updated GPRs. @ symbol “v” and “x”
represent feasible and infeasible respectively in table 3. ® PS),,, is infeasible, so we have to
adjust the durations of subprojects or/and the length of GPRs arcs of PS),;; and make it
feasible. Here, we adjust the maximal lag of arc (12,17) to 2, then re-compute the maximal
intervals of CA(12,14) (and CA(14,17)) in PS),,, and PS;,4 respectively and the intersection
of these maximal intervals.

The computational results manifest that algorithm 1 is effective in identifying the
feasibility of a network. At the same time, all infeasible parallel subnetworks can be
found. So, we can adjust the durations of subprojects or/and the length of GPRs arcs
to make a feasible project schedule.

6 Conclusions

This paper puts forward the definition of parallel subnetwork and studies the
methods of its identification and feasibility discrimination. And then, according to
the definitions of network feasibility defined by Elmaghraby and Kamburowski [3]
and Cesta et al [8], we propose distinguishing methods for network feasibility with
fixed subproject durations under GPRs; study the identifying methods for
subprojects and GPRs arcs which need to be adjusted when the network is infeasible.
The analysis of time complexity and computational example manifests that the
proposed algorithm is feasible and effective in practice.
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