Grid Computing Simulation and
Verification Based on pi Calculus

Tao Hu', Shaofan Chen?, and Weibo Lin®
1 Information Management Deparment, Tourism College, Hainan
University, 58 Renmin Ave, Haikou, Hainan, 570228, P.R. China
2 Information Scinence and Technology college, Hainan University
3 Library of Haian University, linweibo@163.com

Abstract. As weakness exists in describing behaviors and mobility in Petri
Net theory, we put forward a mode using pi calculus to describe the gird
computing, and present its simulation and verification. We briefly introduce
the pi calculus at first. Then, it is drawn in detail how to outline single node
computing and grid computing by pi calculus: it can be described as a two-
player game. The first player moves the first token from the node to a
neighboring node along an outgoing edge. On the other hand, the second
player can respond only by moving the other token from the node it is on to
adjacent node along an outgoing edge. It can be defined the winning
mechanism which is related to the relation of the two computing ways: strong
bi-simulation, weak simulation or reduction simulation. Many properties (such
as deadlock or mutual exclusion violation) may be checked in this fashion. At
last an example scenario is presented.

1 Introduction

To provide security modeling, a modeling language - SJAN is described in [1].
SJAN models its security representation by the simple reductions. Once a scenario
has been modeled, it can be easily implemented in the real implementation language.
SJAN is also suitable for modeling web-services based computation and grid
computing. It is developed a logical framework usable for representing, monitoring
and enforcing service contracts like SLAs with a combination of adequate logical
formalisms in [2]. It may be used in the automation of contract enforcement
processes such as the detection of contract violations, authorization control, conflict
detection, service billing and reporting. It is not suitable for grid computing or web-
service based computation simulation and verification. It is presented a novel grid
Node by Node security model in [3]. The numerous grid nodes are partitioned into
different autonomy areas and each area is designated a server. SPI calculus is used to
verify the security negotiation process. It is a security model which cannot be used

Please use the following format when citing this chapter:

Hu, T., Chen, S., Lin, W., 2006, in International Federation for Information
Processing, Volume 205, Research and Practical Issues of Enterprise Information Systems, eds.
Tjoa, A.M., Xu, L., Chaudhry, S., (Boston:Springer), pp.133-142.

134 Research and Practicial Issues of Enterprise Information Systems

for grid computing simulation to reflect the relationship between single node
computing and grid computing. A calculus is defined for spatial reasoning on a grid
structure in [4]. It also presents a logical calculus, investigates the complexity of the
satisfiability problem, and proves its NP completeness and specifies additionally a
concrete algorithm for solving it. In the paper [5], an abstract model of agent-based
service publication and discovery for resource management in grid context is
presented, which is the basis for analyzing service publication and discovery. Qi et
al. [6] presents a new calculus called Membrane Calculus for gird transactions based
on P systems and Petri Nets. The paper provides a general semantic calculus of Grid
transactions which has two distinct advantages: dynamic structure and location
mobility.

A task may be completed in a computer (node) — we call it single node
computing, and it may be divided into several subtasks and finished in many
computers (nodes) — grid computing. But what is the relationship of single node
computing solution and grid computing solution for a task? If a task can be done by
single node, and whether it can be completed by grid computing? Otherwise, if it can
be done by grid computing, and whether it can be completed by single node?

In order to solve these problems, a two-player game simulation is introduced: a
two-player game on the directed graph who nodes are the processes and whose
arrows are given by the transition relation. The two players representing single node
and grid computing respectively move alternately. The play is finite, and one player
may be in its final position the player whose turn it is cannot move. If a player wins,
then it can simulate the other. If losing, it cannot simulate.

The contributes of this paper are: 1) putting forward a new model to support
concurrent grid computing or web serviced based computation simulation and
verification; 2) using pi calculus to describe the business transaction processes; 3)
presenting the algorithms for discussing the relation of the single node computing
and grid computing.

This paper has been organized as follows. In Section 2 we introduce the pi
calculus notation and its functionality briefly. In Section 3 we describe the idea of
modeling web-services based computation and grid computing. Then grid computing
simulation discussion and verification solution based on pi calculus will be addressed
in Section 4. An example scenario is provided in section S. In Section 6 we conclude
our work and describe our future plan.

2 n-Calculus

The pi calculus provides a framework for describing concurrent systems and
reasoning about their behaviors. The entities of the pi calculus are names and
processes. Names can be thought of as communication pipelines. Processes, or
agents, use names to interact, and pass names to one another by informing them in
interactions. Names received by a process can be used and mentioned by it in further
interactions. Processes can be defined as follows [7-10]:

P:=0|xy.P|x(z).P|7.P|[x=y].P|P+Q|P|Q|vzP|\P

Research and Practical Issues of Enterprise Information Systems 135

Where,

(1) 0 is inaction,; it is a process that can do nothing;

(2) The output prefix x).P sends the name) via the name X and evolves to P;
(3)The input prefix x(z).P can receive any name via X and continue as P with the
received name substituted for the bound variable z.

(4) The unobservable prefix 7.P can evolve invisibly to P. As in CCS (A calculus
of Communicating Systems), 7 can be thought of as expressing an internal action of
a process.

(5) The match prefix can evolve as P if X and y are the same name, and can do
nothing otherwise.

(6) P+ Qare those of P together with those of Q. When one of them is chosen,
the other is rendered void.

(7)P| Q. The components P and Q _can be executed independently and can
interact via shared names. For instance, X yP|x(2z)Q has this capability: to send
¥ via name X , to receive a name via X , and evolve to P|Q(y/ z) invisibly as an
effect of an interaction between its components via the shared name X ;

(8) In the restriction vzP , the scope of the name z is restricted to P . Components
of P canuse z to interact with one another.

(9) Finally, the replication !P can be thought of as an infinite
composition P | P |....

To make process evolvement behavior precise, and it is defined the reduction rule:
—>, on processes. The assertion P — P expresses that process P can evolve to
process P as a result of an interaction that is an action within P . The essence of
reduction is captured in:

(xy.R+M,)|(x(2).B, + M,) - B | B{y/z}

The _process P, on the left of the arrow consists of two components. Process
P1(xy.F,+M,) can send y viax, and process P2(x(z).FP, + M,) receive a
name via X . It expresses that P has a reduction arising form an interaction between
its components (P1, P2) viax . y is passed form the first component to the second
and it will substitute the placeholder z in P, the two prefixes are consumed. The
other two components, expressed by M. , and M , » are rendered void; in summary,
P evolvesto B | P,{y/ z} . Table 1 presents the reduction rules.

Table 1. The Reduction Rules

R-INTER _
(xy.B+M,))|(x(2).P,+M,)—> P |P{y/z}
R-TAU t.P+M — P
R-PAR P> P
P|P,—> P| P,
R-RES P> P
vzP — vzP

136 Research and Practicial Issues of Enterprise Information Systems

R-STRUCT Pl EPZ _)Pz‘ | Plv
B—>PF

In pi calculus, its operational semantic can be represented as labeled transition
system (LTS).

Definition 1 Labeled Transition System (LTS) LTS can be defined as:

LTS = (S,T,{——>:teT})

S: set of states (processes, agents)

T: set of transition labels (actions), and may use Act instead.

—L 5 <= §xT xS : transition relation

The transitions of each composite process (agent) should follow label transition
rules such as:

L2 @ @)= ¢
PIOSP |0

3 Modeling web-services based computation and grid computing

3.1 Expressing workflow basic forms in pi calculus

A task can be described in workflow. There are the following basic workflow forms:
AND-join, AND-split, OR-join, OR-split, Iteration and Causality [11]. Table 2 gives
their forms in Petri Net and pi calculus.

Table 2. Workflow Basic Forms in pi calculus
Workflow

Petri Net 7 calculus
meta
P=aR
O=bR
And-join P | Q N R'
R =cR

And-split O_ P=a.(b.Q|cR)

Research and Practical Issues of Enterprise Information Systems 137

P=acR

Or-join 0= beR
Or-split P=acQ+bc.R

Error! Objects cannot be created from

editing field codes.

© OO |
Causality (I Q — bR
Do- :Djm:m:P=aQ
Iteration Q =b.P+b.0
While- P=ab.P+al
Iteration

3.2 Computing Modeling

It can be used to simulate a single node computing and the grid computing between
many nodes as a two-player game on the directed graph who nodes are the processes
and whose arrows are given by the transition relation. The two players move
alternately. The play is finite, and one player may be in its final position the player
whose turn it is cannot move. A play begins with two nodes occupied by tokens. The
first player moves the first token from the node to a neighboring node along an
outgoing edge. On the other hand, the second player can respond only by moving the
other token from the node it is on to a neighboring node along an outgoing edge. If
the play is infinite, then the second player wins. If after some finite number of steps
the player whose turn it is cannot move, then that player loses.

For given starting processes, the second player has a winning strategy for the
game if and only if the processes are reduction bi-similar. That is, they are related by
a bi-simulation on the graph.

At the beginning of introducing the bi-simulation, we first describe the T action.
Our aim in analyzing the behavior of composite systems is to ignore, as far as
possible, their internal actions. We usertto represent the internal action of a
composite process. T does not represent a potential communication, and is therefore

138 Research and Practicial Issues of Enterprise Information Systems

not directly observable. We regard two processes as equivalent if they exhibit the
same (in some sense) pattern of external actions. This amounts to abstracting form
such a process just that external aspect of its behavior which is relevant when it
occurs as a component of a still complicated process.

The relations of process P (we use it to represent single node computing or grid
computing) and Q (the left computing) can be described as Definition 2 —Definition
6

The transition relations describe how processes can evolve step by step. The
transition P —%— P’ expresses that P can evolve to P ' by performing the action

a
0, sending or receiving a name. P —=> P expresses that P can evolve to P as a
result of an evolution whose content is action a, but which may involve any number

of internal actions before or after a.

4 Computing Verification

Pi-calculus can be used to simulate the grid computing, and it can also present grid
computing verification. It can use the following algorithms to accomplish this
function.

Algorithm 1

1) begin.

2) divide the task into several sub-tasks according to each node’s computing
capability;

3) present the workflow diagram according to the transaction rules in single
node computing;

4) present the workflow diagram according to the transaction rules for grid
computing;

5)change them into the pi-calculus form by LTS(Table 3 - Workflow Basic
Forms in pi calculus, Table 2 -Lable transition rules and Table 1- reduction rules)
obtained in steps 3) and 4), and it can be expressed by P and Q respectively;

6) check if existing deadlocks or mutual exclusion violation in them;

7) deduce the bi-simulation type of them belong to: weak bi-simulation,
reduction bi-simulation or strong bi-simulation defined in section 3. This can be
described as a two-player game. P is a player, and Q is the other. If P wins, then Q
cannot simulate the grid computing, that is, the grid computing among the nodes are
not successful to accomplish the assigned task. If Q wins, the grid computing is
succeeding in completing the mission. If there are the above simulations between P
and Q, we say Q wins. Otherwise, Q loses;

8) end.

Research and Practical Issues of Enterprise Information Systems 139

S An Example Scenario

The following is a

diagram of describing “open account” for a bank client as

shown in Fig 1. Assigning that this job is completed with three nodes (computers),
which are client representative (abbr. representative), credit manager (abbr. manager)

and client. Here a repres

ents an account.

The grid computing is as following:

def
Represerfltc/ltive = in(a).Start(a)
Start(a) = Collect(a)

Collecting
inform ation

Creating new
account

* Account(Init

lizing]

def
Collect(a) = Creat

def
Create(a) = Initial

Checking credit
information
S

| Checking credit is

satisfied or not
> Not satisfied
Denying Approving >
account account
gosiat_ (accomt__
N, S B S
: Account [Deni Account{Appr | Accepting
ed] oved] information
: Account[Op
en) H
Publishing the ™\
(Card

o

Satisfed

Fig. 1. Activity diagram of Open Account
e(a)

ize(a)

def -
Initialize(a) = out (Initializing(a)). Representative

def
Manager = in(b).st

def
startEvaluate(b) =

Deny(b))

artEvaluate(b)

if satisfied(b) then Approve(b) else Deny(b) (Approve(b) +

140 Research and Practicial Issues of Enterprise Information Systems

def

Deny(b) = done(b).Manager
def ———
Approve(b) = out (Approved(b)).Manager
def
Client = in(c).startOpen(c)
def
StartOpen(c) = Accept(c)
def
Accept(c) = Open(a)
def
Open(c) = Publish(c)
def ———
Publish(c) = out (done(c)).Client

In the other way, this task can be done in a single computer (node). The single
node computing is as following:

def
Representative = in(a).Start(a)
def

Start(a) = Collect(a)

def
Collect(a) = Create(a)

def
Create(a) = Initialize(a)

def
Initialize(a) = out

(Initializing(a)). in(Initializing(a)).startEvaluate(Initializing(a))

startEvaluate(Initializing(a)) Z if satisfied(Initializing(a)) then
Approve(Initializing(a)) else Deny(Initializing(a)) (Approve(Initializing(a)) +
Deny(Initializing(a)))

Deny(Initializing(a)) Z 5;; (done(Initializing(a))). Representative

Approve(Initializing(a) = E(Approved(Initializing(a)))
.in(Approved(Initializing(a))).startOpen(Approve(Initializing(a)))

StartOpen(Approve(lnitializing(a))) Z Accept(Approve(lnitializing(a)))

Accept(Approve(Initializing(a))) Z Open(Approve(Initializing(a)))

def
Open(a) = Publish(Approve(Initializing(a)))

Research and Practical Issues of Enterprise Information Systems 141

Publish(Approve(initializing(a)))
def
= out (done(Approve(Initializing(a)))). Representative

The Mobility Workbench (MWB) is an automated tool for manipulating and
analyzing mobile concurrent systems (those with evolving connectivity structures)
described in the polyadic pi calculus.

The main feature of this version of the MWB is checking open bi-simulation
equivalences, and doing so with high efficiency. The open bi-simulation
equivalences are described in a polyadic setting, and efficient characterisations of
both the strong and the weak equivalences are illustrated and proven to coincide with
their standard formulations.

We use MWB here to check the relations of the above processes as shown in Fig
2. 1t is revealed that the two processes are strong bi-simulation, and they can
simulate each other.

YWINNT (systam 32y omdere - mwh

Fig. 2. Computing simulation and verification by MWB

6 Conclusions and Future Work

In order to describe the relationship of single node computing solution and grid
computing solution for a task, a two-player game simulation is introduced. At first, a
new model is put forward to support concurrent grid computing or web serviced
based computation simulation and verification; then pi calculus is used to describe
the business transaction processes; finally, it is presented the algorithms for
discussing the relation of the single node computing and grid computing. As Petri
Net theory lacks of the ability of expressing process behaviors and mobility, this
mode supports describing the process behaviors and the communications among the

142 Research and Practicial Issues of Enterprise Information Systems

Processes. Additionally, it also discloses the relationship of single node computing
solution of grid computing solution. In the future, we will detail the model checking
and verifying functionality to meet the rigorous demands from grid computing.

Acknowledgments

This research is supported by the National Science Fund No. 70561001/G0110 and
the Province Science Fund Project “the Research on the collaboration security
pattern in e-Government”.

References

1. YJ. Lee and P. Henderson, A Practical Modelling Notation for Secure Distributed
Computation, Proceedings of the 19th International Conference on Advanced Information
Networking and Applications (AINA’05), pp. 439—442, 2005.

2 A. Paschke and M. Bichler, SLA Representation, Management and Enforcement,
Proceedings of the 2005 IEEE International Conference on e-Technology, e-Commerce and e-
Service, 2005.

3. Z.Y. Xia and Y.C. Jiang, A Novel Grid Node-by-Node, GCC 2004, LNCS 3251, pp. 356—
363, 2004.

4. M. Ragni, An Arrangement Calculus, Its Complexity, and Algorithmic Properties, KI 2003,
LNAI 2821, pp. 580-590, 2003.

5. C.L. Weng, X.D. Lu, and Q.N. Deng, Formalizing Service Publication and Discovery in
Grid Computing Systems, GCC 2003, LNCS 3032, pp.669—676, 2004.

6. Z.W. Qi, C. Fu, D.Y. Shi, J.Y. You, and M.L. Li, Membrane Calculus: A Formal Method
for Grid Transactions, GCC 2004, LNCS 3251, pp.73-80, 2004.

7. R. Milner, Communication and Concurrency (International Series in Computer Science,
Prentice Hall, 1989).

8. R. Milner, Communicating and Mobile Systems: the m-Calculus (Cambridge 1999).

9. R. Milner, J. Parrow, and D. Walker, A Calculus of Mobile Processes, Part I and Part II.
Information and Computation 100(1), 1-77 (1992).

10. C. A. R. Hoare, Communicating Sequential Processes (Prentice-Hall, 1984).

11. WM.P Van der Aalst, Structural Characterizations of Sound Workflow Nets, Technical
Reports, 96/23, Eindhoven: Eindhoven University of Technology, 1996.

