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Abstract. We describe the key elements of a working program which can
assist in the overall management of the information resources of an
organization. This program can reason about the relationships between
components of an EIS, and concludes that a problem exists when those
relationships become abnormal. This program can also reason about the
behaviors of the components of an EIS, and concludes that a problem exists
when those behaviors are abnormal.

1 Introduction

One of the ultimate goals of enterprise information systems (aka enterprise resource
planning systems) is to develop and/or coordinate systems such that the
conglomerate of the information resources of an organization works together for the
good of the organization in the best of possible ways. This entails that information is
timely and accurate, and more importantly, that the digestion and dissemination of
that information occurs at the most appropriate of times in the most appropriate of
ways.

To assist in this goal, we propose an architecture for a high level reasoning
module that will sit on top of an enterprise information system (hereafter, EIS).
Such a module can reason about the relationships among components within a
system. It can also reason about the behavior of the components of a system. If
either the behavior or the relationships vary from accepted norms, then a problem
within the system is detected.
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We make the simplifying assumption that an EIS that is composed of many
components. It is assumed that these components communicate with each other and
with our program via message passing. (The actual mechanism by which our
program receives information is immaterial.) The purpose of our program is to
identify problems within the EIS. These problems can be with either the software or
with the data. Problems are identified when messages conflict with each other, or
when messages conflict with the program’s beliefs.

1.1 Programming Tool: Answer Set Programming (SMODELS)

The basic strategy is as follows. An agent architecture is used to represent entities,
their interrelationships, and their actions. In the example presented here, the only
action is that of transmitting a message. These details are represented in a logic
programming paradigm, called Answer Set Programming, which is more clearly
specified as A-Prolog [1, 2]. A-Prolog can be viewed as a purely declarative
language with roots in logic programming [3, 4], the syntax and semantics of
standard Prolog , and in the work on nonmonotonic logic [5]. The inference engine
used is SMODELS. This inference engine is aimed at computing answer sets (stable
models) of programs of A-Prolog [6, 7]. This paradigm is very powerful in that it
can represent multiple views of the world.  This is important, because in the
presence of uncertainty, the ability to postulate different ways that the world could
be is very important. Not only can we represent different ways of perceiving the
world, but we can also reason about those differences. Further, this paradigm allows
the software to introspect with respect to its own beliefs.

1.2 Knowledge Representation Tool: Action Language Formalism

We are using specific action language formalism. This action formalism is very
powerful in that it allows us to reason about prerequisites to actions, consequences of
actions, co-requisites of actions, mutual exclusivity of actions, and sequences of
actions. It also allows us to represent and reason about time. For example, things
that are true in one moment of time, may or may not be true in another moment of
time.  Not only can we take time into account in our reasoning, but we can
combine this with our introspective ability, and determine what was believed at some
time in the past. We can also project into the future. This ability to predict is
essential. In fact, one method of detecting problems is the fact that present
observations may not match our earlier predictions. Further, predicting future
actions allows us to identify potential opportunities for problems, allowing us to take
proactive action.

To adequately represent and reason about these actions, we use the family of
action languages [8, 9] originating with the action language A [10]. These languages
encapsulate the significant issues broached by situation calculus [11], a formalism
developed to deal with time-varying variables (called fluents.)
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The structure of this paper is as follows. First, we present a very simple problem
that the program is trying to solve. Next, we discuss elements of a working program
to detect problems with regard to our simple scenario. This presentation is followed
by a discussion of the results of the program.

2 Illustrative Problem

A very simple problem has been designed to demonstrate some of the techniques that
will be followed. In this simple scenario, there are 3 entities. The only actions these
entities can perform are communicating messages. (This is not a limitation; it serves
only to simplify the problem.) A bias that is purposefully designed into the software
is that it assumes that fewer problems are preferred over more problems. That is to
say, when faced with competing explanations of the world, favor the explanation(s)
in which there are fewer entities experiencing a problem. This matches our intuition.

3 Discussion of the Program

The program has the following structure: the objects of the domain, the background
theory of the domain, and general rules of inertia. The objects of the domain are:
time periods, and their general relationships to each other; entities; messages
transmitted by the entities; fluents (time-varying variables); and actions that can be
performed. The background theory of the domain consists of dependencies among
the fluents, and causal laws. Causal laws state the impact of actions. The general
rules of inertia are used to define what remains constant between time periods, and to
define what changes between time periods.

3.1 Description of objects in the domain

The objects of the domain are: the time periods involved, the entities, the messages
the entities transmit, valid truth values, fluents, and the actions that can be
performed. The first statement below defines the number of time periods that will be
reasoned about. The second statement defines those time periods as integers
between 0 and n. The third statement defines a total ordering upon the time periods,
and defines what time periods are next to other periods.

const n=10.

time(0..n). 1)

next(T1,T2) :- time(T1), 2)
time(T2),

T2=T1+1.
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This last statement defines that time period T2 immediately follows time period
T1. Time T1 is next to time T2 if both T1 and T2 are time periods, and time T2
equals time T1 + | time unit. Note that in this definition, next is not symmetric.
That is, while T1 is next to T2, the reverse is not true. (Next means “subsequent”,
not “adjacent”.)

Other objects in our domain which we need to represent include the entities we
are reasoning about, the messages that are transmitted.

entity(el). 3)

message(m1). 4)

In the process of transmitting the message, the entity also relates his/her belief in
the truth of the message. For example, “the forecast for today is for severe
thunderstorms, but I don’t believe it will rain at all.” Therefore, in order for a
communicator to express belief or disbelief in a proposition, true values need to be
objects of our domain. Those truth values are defined with statements such as the
following.

truth_value(1). %% 1 represents “true” 5)

Background knowledge is given by a collection of domain dependent fluents. A
fluent is a time-varying variable. An example would be something like the president
of the United States. This same term has different denotations at different moments
of time. For instance, reagan = president(usa) can be true or false depending on
time. If this question is asked with respect to 1980, the answer would be yes. If this
question is asked with respect to 1990, the answer would be no.

In the next three rules, inertial fluents are being described. Domain dependent
fluents do not have to be inertial, but are described as such for simplification. A
fluent is inertial if its truth value stays the same unless it is changed by an action.
For example, if the light is on, it remains on until an action changes that fluent. Such
actions might include: turning the light off, turning the circuit off, or a power
outage. As example of this definition is the following.

fluent(i,f1). 6)

A fluent is described by two parameters, as in fluent(i,f1). The first parameter
identifies the type of fluent. The second parameter identifies the fluent itself. There
are two values for type of fluent: i means the fluent is inertial, and n means the
fluent is not inertial. We described inertial fluents above. A fluent is not inertial if it
is true only for the time period in which an action affected it. For example, if at time
T1 my daughter said that she loved me, the fact that that message was uttered is true
only for time T1. It is not true that she uttered that at time T2 UNLESS she uttered it
again.

This example also demonstrates another issue. With the utterance of that
message, two fluents were affected. I learned something about my domain from the
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message: the fact that my daughter loves me. This is an inertial fluent, and would
remain true through all successive time periods unless an action changes that. The
second fluent affected by this example is the fact that the message was uttered. This
is a non-inertial fluent, and is true only in time T1, unless it is uttered again.

The fluent described next, received(M,A,Truth_value), says that the system
received a message M from entity A with some truth value. That is, entity A says
that message M is true (or conversely, false). A Truth_value of 1 means true, and a
Truth_value of 0 represents false. Notice that this fluent is not inertial. Receiving a
message at time T does not imply receiving the same message at time T+1.

fluent(n,received(M,A,1)) :- entity(A), 7)
message(M).

The example presented here is very simple, and is used to illustrate our approach.
The example consists merely of entities transmitting messages. At this point in the
discussion, it would be natural to expand the domain by defining actions which
would allow entities to achieve some collection of goals. A general scenario would
be to plan and execute actions to achieve those goal(s), and to modify those plans
according to information received from the entities. It also would be reasonable to
allow us to request certain types of information from the entities, etc. For the
moment, these actions and goals will be ignored. For the purposes of the example,
only one action will be introduced. The following rule defines that action as that of
transmitting a message. This rule states that entity A transmits message M with
truth_value V. Stating this in the language of fluents, A says that fluent M has truth
value V.

action(issue(A,M,V)) :- entity(A), 8)
message(M),
truth_value(V).

3.2 Background theory of the domain: dependencies among fluents

The foregoing discussion concludes the presentation of those types of rules which
define the objects of the domain. The second major portion of the program is the
background theory that is needed to reason and act in this environment. This
additional background consists of:  (a) dependencies between fluents, and (b)
dynamic causal laws. Some dependencies will be domain dependent, and others will
be domain independent. Dynamic causal laws describe actions that may be
performed in the environment. They specify prerequisites to actions, consequences
of actions, actions that may be performed in parallel, and actions that are mutually
exclusive with each other. The following two rules specify the domain dependent
dependencies for the example.

holds(m2,T,0) :- time(T), 9)
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holds(m1,T,1).

holds(m2,T,0) :- time(T), 10)
holds(f1,T, 1),
holds(m3,T,1).

The basic form of the holds predicate is holds(Fluent, time, Truth value).
Hence, holds(m2,T,0) means that fluent m2 is false at time T. Similarly, holds(ml,
T, 1) means that fluent ml is true at time T. The first rule states a dependency
between two fluents: fluent m2 and fluent m1. It states that m2 and m1 CANNOT
be true at the same time. The second rule creates a dependency between three
fluents: m?2, f1, and m3. This rule states that at a point in time, if f1 is true, and if
m3 is true, then m2 MUST be false.

The next fluent dependency rule is the following:

holds(M, T, V) :- time(T), 11)
entity(A),
message(M),
truth_value(V),
holds(received(M,A,V),T, 1),
not holds(problem_entity(A),T,1).

This rule states that the information received from entities that are not known to
be problem entities is to be believed. The form of negation here, not, is weak
negation. It is not known for a fact that entity A is not a problem entity. However,
there is not any evidence to believe that entity A is a problem entity, therefore that
entity is to be given the benefit of the doubt. To not do so would place us in a state
of paralysis: we would never act until we were absolutely certain of all the facts.
Unfortunately, real life rarely is so simple.

Note that according to rule 21, we believe precisely what the entity informs us of.
In the example just given about rain, the entity informed us that he/she/it does not
believe the message. This is signified by the variable V in the formula
holds(received(M,A,V),T,1) of rule 21. Looking at the head of the rule 21, this same
V is the truth value we assign to the fluent representing the message. In this case the
meaning is that we adopt the entity’s belief as our own belief.

Rather than believing what an entity transmits, we could take the posture of
doubting what an entity transmits. Here is an opportunity for greater generalization.
In what kinds of situations should information from an entity/person/source should
be distrusted? Perhaps the person (entity) is unqualified to speak about a subject.
So, strictly speaking, there is not a problem with the entity, yet there is reason to not
believe the message without further investigation.
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3.3 Background theory of the domain: dynamic causal laws

We have been discussing the lengthy and very important topic of background theory
needed to reason and act in this environment. We mentioned that there are two
broad components to this: dependencies between fluents, and Dynamic causal laws.
We have just finished discussing dependencies between fluents, and will now discuss
dynamic causal laws. Recall that dynamic causal laws deal with the actions of the
domain, fully specifying their impacts and their relationships to one another.
Normally, it is this section that is the most important and most lengthy of the two.
However, since there is only one action in the example, this incredibly important
section may seem trivial.

holds(received(M,A,V),T2,1) :- next(T1,T2), 12)
entity(A),
message(M),
truth_value(V),
occurs(issue(A,M,V),T1).

If the message is issued at time T1 then it will be received at time T1+1. The
occurs predicate means that the action occurred at time T1.

3.4 Laws of Inertia

The rules of inertia are used to define what fluents remain unchanged from one time
period to the next. Inertial fluents remain unchanged unless they are specifically
impacted by one or more actions. These rules are a standard part of any action
theory. One of the rules of inertia is the following.

holds(F,T2,1) :- next(T1,T2), 13)
fluent(i,F),
holds(F,T1,1),
not holds(F,T2,0).

3.5 Program execution: rules for detecting problems

The following two rules are used to discover problems,. The first rule declares that it
is possible for any entity to be a problem entity. The second rule states that it is
desired to conclude that an entity is a problem entity only if we are forced to
conclude this by the facts of the program.

{holds(problem_entity(A),0,1) : entity(A)}. 14)
minimize {holds(problem_entity(e1),0,1),holds(problem_entity(e2),0,1), 15)
holds(problem_entity(e3),0,1)}
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The first rule is a choice rule. Roughly speaking {p(X): q(X)} says that an
answer set A of the program containing this rule may contain an arbitrary subset p of
q, i.e. an arbitrary collection of atoms p(t1),...,p(tn) such that for every i, q(ti) is in A.
For instance, a program

{p(X) : 9(X)}
q(a)

has answer two sets {q(a)} and {q(a),p(a)}. In the case of the first answer set, the
arbitrary subset chosen was the empty set, hence only q(a) appears in the answer set.
In the case of the second answer set, the arbitrary subset p of q chosen was p(a).
There are no other arbitrary subsets. Choice rules can be viewed as shorthand for a
fairly large number of normal rules. They allow shortening the program and thereby
improving its efficiency.

4 Program Execution

This final section shows a series of executions of the program. At the end of each
execution, the program will print out the fluents that are true. The execution of the
program starts with a very simple case, and produces very clean, intuitive results
(Execution 1). Building upon this example, a contradiction will be introduced,
which suggests problems (Execution 2). However, the source of problems is not
clear, so multiple models of the world will be maintained to account for the
uncertainty that is introduced. This ability to represent multiple views of the world is
unique among the techniques of artificial intelligence, and is provided solely by the
semantics of logic programs.

This execution will then be expanded with additional information which allows
the software to very clearly identify the source of problems (Execution 3). This
additional information illustrates nonmonotonic reasoning: in step 2 it will be
believed that one of two entities are equally likely to be the problem; in step 3 that
previously held belief that one of the entities is possibly the problem will be
withdrawn .

4.1 Execution 1: E1

Let us say that initially fluent f1 is true, and fluent f2 is false. The values of other
fluents are unknown. Our starting values are stated as follows.

holds(f1,0,1).
holds(£2,0,0).
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The program will execute for 1 time period and display the fluents which are true
at that time. Let us say that E1 = “entity el says that message m1 is true”. This is
denoted by the following rule:

occurs(issue(el,m1,1),0).

This rule states that at time 0, it happened (occurred) that entity el issued
message m1. Entity el believes that message m1 is true. If the program is run, the
following will be displayed.

Stable Model: holds(m1) holds(f1) holds(received(ml,el,1))

holds(ml) is true by rules 12 and 11. holds(fl) is true by rule 14.
holds(received(ml,el,1)) is true by rule 12. This result is as expected. This
basically says that what was true at the beginning (fl1) is still true, a message was
communicated, and that message was received.

4.2 Execution 2: E2

Now, let us try a different execution, E2. E2 will be the same as E1, except that it
has an additional action: “e2 says that m2 is true”. So, the rules to embody this
execution are as follows:

holds(f1,0,1).
holds(2,0,0).
occurs(issue(el,m1,1),0).
occurs(issue(e2,m2,1),0).

According to rule 9, message m1 and message m2 CANNOT be true at the
same time. Hence, either entity el is wrong, or entity €2 is wrong.

It is expected to learn that either entity el or entity €2 is a problem entity. The
software will in fact return two models: one in which entity el is a problem entity,
and the other one in which entity €2 is a problem entity. This is precisely what
would happen in the real world. We are faced with a contradiction (m1 and m2
cannot both be true), and lacking any more information, the strongest position one
could logically take is to believe that at least one of the entities is a problem entity.
The software has performed as expected and desired.

4.3 Execution 3: E3

Let us consider yet another execution of this program, E3. E3 will be the same as
E2 with the addition that “e3 says that m3 is true”. The rules that would embody this
execution are:
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holds(f1,0,1).
holds(£2,0,0).
occurs(issue(el,ml,1),0).
occurs(issue(e2,m2,1),0).
occurs(issue(e3,m3,1),0).

In the previous execution, E2, there was a contradiction, and there was equal
reason to believe that either entity el or entity e2 was a problem entity. There was
no additional information to solidify our suspicions, therefore we were left in the
position of believing that either one of them could be a problem entity, but we could
not determine which one with any degree of certainty.

In another execution of the program, consider that we have the same information
as before, but with the additional information that “e3 says that m3 is true”. The
same contradiction exists as before, yet it can now be firmly determined which entity
is the problem. Rule 10 says that if f1 and m3 are true, then m2 cannot be true. This
is combined with rule 9 that says that m1 and m2 cannot both be true. Hence, it is
now believed (without contradiction) that entity e2 is a problem entity.

5 Expanding This Werk

We could log observations to endow the module with the ability to learn patterns of
communication for the various entities. This might help identify intermittent
problems vs. persistent problems. This might also lead to proactive solutions if
certain causes for past problems recur.

We should expand our list of actions. A very complex arsenal of actions which
interrelate with each other would be interesting. We could make predictions about
the consequences of actions, and observe whether those predictions came true. A
significant arena of enhancement would be in defining what constitutes a “problem”.
That is, forms of problems in addition to inconsistencies (and discrepancies between
predictions and observations) need to be identified, along with appropriate solutions.
As an example, we could model and analyze more deeply the relationships between
components. Abnormalities in those relationships could be considered problems. In
the scenario here, a problem was defined as an inconsistency caused by a message.
An example of a problem in which there is not an inconsistency would be a situation
where there is an increase in the purchase of raw materials at the same time in which
there is a reduction in cash flow (thereby exacerbating the cash flow problem.)
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