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Abstract. The phenomenon of subscriber churn is becoming more and more
serious in the fixed-line communications industry. In order to build customer
loyalty and maximize profitability in the ever-increasing competitive
marketplace, a churn prediction method becomes necessary for a fixed-line
services provider. However, today’s researches on churn prediction in the
telecommunications industry mostly concentrate on mobile services field,
rarely on fixed-line services field. One prime reason is the less amount of
qualified information for churn prediction in the fixed-line services providers.
In response to the limitation of information, especially the incompletion of call
details and unreliability of subscribers’demographics in the investigated fixed-
line services provider, we propose, design and experimentally evaluate several
chumn-prediction models applying three different data mining techniques
(Decision tree, regression, neural network), with predictors (i.e. input
variables) derived only from subscribers’ contractual information and bill
details. The predictors can be mainly categorized into four types: duration of
service use, payment type, amount and structure of monthly service fees,
change of the monthly service fees. The result shows that these limited but
appropriately designed predictors can effectively predict subscribers’ churn
probabilities and decision tree outperforms regression and neural network in
this study, with the optimal predictive and explanatory power. What’s more, it
also indicates that duration of service use is the most predictive predictor, and
payment type and other variables of amount and structure of monthly service
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fees within different months especially the latest months are also effective
predictors. According to the result that the predictors within the latest months
are more effectual, we then build different decision tree models using
historical data of different amounts of months. We find that with the reduction
of early monthly data for prediction, the model performance index “churner
captured proportion in top ranks” declines very slightly, which can be ignored.
However, the amount of the data for processing and the runtime of prediction
model decreases significantly. Hence, we suggest that using relatively fewer,
latest months® data to predict subscribers’ churn trends would be an effective
way.
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