A Modeling Approach for Service-Oriented
Architecture

Tao Zhang', Shing Ying', Sheng Cao?, Jiankeng Zhang®, and Jun Wei?
1 State Key Laboratory of Software Engineering, Wuhan University,
Wuhan, Hubei Province 430072, P. R. China cwhzhangtao@163.com
yingshi@whu.edu.cn
2 Computer Center, Hubei Telecom, Wuhan, Hubei Province 430023, P.
R. China caosheng@ttsc.hbtelecom.com.cn
3 Trillium Business Unit, Continuous Computing(]China)Co. Ltd,
Shenzhen, Guangdong Province 518057, P. R. China
jacken.zhang@ccpu.com
4 Fakultit Informatik, Technische Univésitdt Dresden, Emil-Ueberall-
Strasse 31, 01159 Dresden, Germany weijun1980@googlemail.com

Abstract. Specifying service-oriented system, which is a new type of
Enterprise Information System, is critical with the rapid development of Web
Services. For the purpose, this paper presents an approach to model Service-
Oriented Architecture (SOA). We do not exclude the traditional opinions of
software architecture description as the current specification approaches; on
the contrary, some similar conceptions, such as service components and
connectors are defined in this paper. For architectural reuse, the notion of
composite service components is specified to model services composition and
that of composite connectors is defined to abstract the complex
communication protocols. Within the context of the Travel Reservation
System (TRS), we demonstrate the usage and practicability of our approach
based-on Web Services.

1 Introduction

With the rapid development of information science and technology, different kinds
of enterprise information systems are proposed to handle the diverse changes of
requirements anywhere and anytime. In order to deal with the situation better,
service-oriented systems are hot spots to decrease dependencies between different
information artifacts. At the same time, Web Services has made considerable
progress recent years, thus Service-Oriented Architecture (SOA) is paid extensive
attention. SOA provides a new blueprint to solve software reuse and enterprise

Please use the following format when citing this chapter:

Zhang, T., Ying, S., Cao, S., Zhang, J., Wei, J., 2006, in International Federation for
Information Processing, Volume 205, Research and Practical Issues of Enterprise Information Systems,
eds. Tjoa, A.M., Xu, L., Chaudhry, S., (Boston:Springer), pp.63-72.

64 Research and Practicial Issues of Enterprise Information Systems

information system integration which publish business functionality in the form of
programming and accessible software services, other application programs can use
these services by published and discoverable interfaces [1-4]. Owing to its loosely
coupled, open, high dynamic and high flexible nature, software systems developed
based on SOA can be better suitable for requirement and application environment
changes.

For the sake of the service-oriented system design, it is imperative to model SOA
at an abstract level, taking no account into concrete technologies involved in the
application employed. However it is impossible to describe SOA sufficiently by the
current popular UML-based approach [5-7] and BPEL [8, 9] since UML is short of
the support to describe some elements involved in software architecture and BPEL
focuses on the specification of abstract or executive business processes but not on the
description of functional units of system architecture. On the other hand, the existing
ADLs (architecture definition languages) [10-14] cannot specify SOA very well in
spite that we can benefit from the approaches based-on them.

Therefore, on the basis of traditional software architectural describing
techniques, this paper puts forward a modeling method for SOA by SO-ADL. Unlike
other specification approaches, we do not exclude the traditional architectural
description opinions since they are helpful to specify SOA to some extend, so some
similar conceptions are defined as the first-class entities in our approach. Meanwhile,
to the end of architectural reuse, composite service components and composite
connectors are specified, too. Then, by using Web Services [15, 16], the usage of our
method is manifest within the context of the Travel Reservation System (TRS).

The remainder of this paper is organized as follow. Section 2 highlights the
requirements for modeling SOA. Then, SO-ADL is illuminated in Section 3, and
Section 4 elucidates the specification of Travel Reservation System (TRS).
Furthermore, related work is discussed in Section 6 and Section 7 concludes this

paper.

2 Requirements

SOA is a particular kind of software architectures that is designed to create a
dynamically organized environment of networked services that are composable and
interoperable [17]. In order to provide an effective and practical approach to specify
SOA, several requirements should be taken into account at least.

Firstly, the description should capture the structure of SOA in an abstract layer
and as far as SOA is concerned, services are its building blocks that communicate by
transmitting synchronous or asynchronous messages. Secondly, it should give strong
consideration of SOA’s highly dynamic structure, highly flexible nature and its
composable ability in descriptions. Thirdly, the notation has to accord with the
vocabulary used to describe SOA in natural language for improving its usability and
architectural reuse. Besides, the approach should keep the balance between concision
and understandability, simplicity and functionality. And as the changeful nature of
SOA itself, it should be open and extensible not only at describing syntax but also at
specifying framework.

Research and Practical Issues of Enterprise Information Systems 65

3 SO-ADL

This section gives the definition of SO-ADL at length and their corresponding
notations are specified, too. Unlike existing modeling approaches referred before,
traditional software architectural specification techniques are not excluded in our
method; on the contrary, we believe that they are helpful in SOA description issues
and several similar conceptions are defined. Then, aiming at architectural reuse, our
approach allows the definition of composite service components and composite
connectors to abstract the complex constructs. Meanwhile, we adopt the traditional
types-and-instances model and both of service components and connectors have
types which are defined at design time and instances which are specified at run-time,

3.1 Service Components

The concept of Service Components is introduced to abstract and specify the
computing units related to services since they either provide or request services or
both provide and request services simultaneously. As shown in figure 1, a service
component type is defined from four aspects as follows,

- Identification refers to the name of the service offered and it is a unique
identifier, which identifies the service component.

- Interface specifies the service a service component provides or requests and it is
a set of interaction points between a service component and its external world.
The notion of interface separates the services from their implementations, and
then service provider is able to change the implementation without any influence
on service consumer, which only needs to know interface specifications of
provider service component. There are two types of interfaces: provision
interface and request interface.

- Specification is a brief description of services provided by service components,
including service specification, which declares what the service offers and
service contract that gives information about how to use the service and indicates
the roles a service component acts. SO-ADL prescribes specification should be
described in a machine-and-human readable format and platform-independently,
while it has not any further restrictions on the definition mechanism in detail.

- Condition defines pre-conditions, post-conditions and invariants of service
components that are useful during the service components’ composition process.
Similarly, SO-ADL does not limit the describing techniques for condition
declaration and various logical methods are applicable.

At first sight, our definition of service components looks similar to the
components defined in traditional ADLs given in [11-14], and they have some
similar features indeed. However, compared with common components, service
components are larger granularity that provide relatively integrated functionality and
rely on a bigger data set. Meanwhile, service components are much closer to
business requirements than ordinary components just like the advantage of SOA
relative to traditional software architecture. On the other hand, service component

66 Research and Practicial Issues of Enterprise Information Systems

notion is not the same as that of service since a service component is a functional
unit rather than a business-oriented service in spite of their many similar properties.

ServiceComponent Identification {
Interface {
provision g

[request 1
}
Specification {
. serviceSpecification = ."{
Legend [1 Service Component cerviceContract=*.."
Q- Requesi-typed Interface H
@ Provisior-typed Interface Condition { .
preConditior =
postCondition

invariant="...”

\
:

Fig. 1. The Notation of Service Component Type

3.2 Connectors

The notion of connectors is used to model the communication mechanisms between
service components explicitly. Note that some ADLs are short of the definitions of
connectors, therefore the interaction pattern specified by them is asymmetric. Thus,
the interaction patterns cannot be described independent of the computation unit,
which violates the design principle of SOA. Accordingly, we define connectors in an
explicitly manner and direct connections between different service components are
prohibited without connectors while connectors can link each other directly.

Connector ldentification {

o
] provider
requestor r
1
i
Specificatior. {
glueProtocol = “..

1
Legend j
ceen o Connectar Coordinator |
[Requestor-typed Interface coordinationSpec=*. [

)
B Providei-typed Interface] !

Fig. 2. The Notation of Connector Type

As shown in figure 2, SO-ADL specifies connector type in four aspects as
following,
- Identification is the name of a connector that is a unique identifier to identify it.
- Role specifies the interface of a connector. A role prescribes the responsibility of

service component that is attached to the connector and there are two types of
roles: provider and requestor.

-~ Specification declares the glue protocol between the different roles of the
connectors, which are the transport protocol between different service

Research and Practical Issues of Enterprise Information Systems 67

components in fact. SO-ADL supports various kinds of transport protocols based-
on different implementation techniques.

- Coordinator is defined to enable proper connectivity of service components that
is responsible for the compatibility of type between connector and service
component. The coordinator are defined by declaring the coordination
specification, including the coordination information and policy which give
constraints to restrict the attachments of service components and connectors.

3.3 Configuration

A service-oriented system is configured by service component instances and
connector instances and the symbol-as” in textual notation while “—”link in
graphic notation are used to identify configuration relationships. For example,
attachment of service component instance s and connector instance c is noted: “s.p as
c.r” (p is a provision interface of s while r is a requestor role of c). That is, s provides
its services to other service component instances through c. Thereby declaration of
service-oriented system configuration is composed by the declaration of service
component instances, connector instances as well as their attachment relationships.

As far as SOA, its configurations are open, highly dynamic and highly flexible
which allow unbounded creation, deletion and modification of constructs. Therefore,
we introduce a role-driven way of configuration, that is, configurations are triggered
on-demand directly. Note that, roles and services are relatively determinate by
business requirements in spite of the changeable structures. Further discussion is
beyond of the scope of this paper. Then, based-on services and roles elicited from
requirements analyzing, we can draw various configurations as blueprints of service-
oriented systems.

3.4 Composite Constructs

As SOA is defined in terms of its ability to compose and recompose services, it is
imperative to define the composition of service components. Therefore, the notion of
composite service components is defined to support composed service component
specifications and to achieve architectural reuse simultaneously.

Note that service components are not allowed to link one another directly, thus,
composite service components have inter-structures that are configured from other
service components’ instances and corresponding connectors’ instances. To gain
service composition diagrams automatically, a composition process is designed,
which can be implemented in programming language. According to the composition
process, we define composite service components by declaration of their
constituents’ instances and their configuration. For conciseness, we do not introduce
any new notation for composite service component specification while describe it
based-on basic constructs defined before. In this way, composite service components
are specified from four aspects in the same form as primitive service components
while there are some differences in contents. As a matter of fact, SO-ADL does not

68 Research and Practicial Issues of Enterprise Information Systems

give any restrictions of composing patterns and it is useful to specify different
composite service component composed in different ways.

For example, figure 3 shows the ordinal composition pattern and “dummy
provision” and “dummy request” are specified to define the composite service
components’ interfaces that are attached to the first service component’s interfaces in
the composing sequence and the last one. What’s more, composite service
component specification declares its inter-structure (or inter-configuration). As far as
condition, its pre-condition and post-condition will be the pre-condition of the first
service component and the last one’s post-condition respectively, while its invariant
will be the logical “and” of the constitutes’ invariants.

CompositeServicecComponent

provisi request

| ¢ Service | «; Service ¢ Service ;
@ |- @ component O\“ Component; O @1 Componen, ~O-1 0

Fig. 3. Ordinal Composite Service Component Type-Graphic Notation

On the other hand, considering the complex communication mechanisms
between service components, SO-ADL supports the definition of composite
connectors for architectural reuse. As connectors are allowed to connect each other
directly, composite connectors have interior structures that are composed by different
connectors. SO-ADL does not limit the composition patterns, either. And different
composite connectors can be depicted by connector specifications and their inter-
structure declarations. Furthermore, the approaches presented in [18, 19] are helpful
to provide some operators with which new connectors can be built up from old
connectors using well-founded operators for composition.

3.5 Dynamic Structures

The dynamic changes of SOAs encounter the key issues in three aspects: dynamic
modification, dynamic configuration and reconfiguration, and dynamic composition
and recomposition. Dynamic modification is an intrusive change which may modify
the structures or behaviors of the service components, whereas, the other ways of
dynamic changes are non-intrusive changes.

Our approach supports all of the above three kinds of dynamic changes in SOA.
It is obvious that the dynamic modification has no influence on the definition of
SOA since SO-ADL is specified as platform-neutral and implementation-
independent. At the same time, in view of the loosely-coupled nature defined in SO-
ADL, the dynamic modifications almost have no effects on users.

As configurations are triggered on-demand directly in virtue of a role-driven way
in our method, dynamic configuration and reconfiguration are also supported. We
can identify services, roles as well as their relationship, which are elicited during the
requirement analyzing by use case techniques (which is out of the scope of this

Research and Practical Issues of Enterprise Information Systems 69

paper), then, which can be mapping into the descriptions of service components and
connectors. In so far as implementation, specification of constructs and their
configuration relationships will be mapped to lower level. Similarly, dynamic
composition and recomposition can be described in SO-ADL as an automated role-
driven process, too.

4 Case Study

An application scenario of Travel Reservation System is given to manifest the effect
of our approach based-on Web Services. We simplify the concrete scenario in order
to illustrate the practicability of the method this paper presented and in the scenario;
the requirements of the travelers trigger the dynamic configurations of service-
oriented systems and composition of different service components.

To satisfy the needs of travelers, a simple reservation system may include
different services, and then, we define service components in the TRS, including
airline reservation service component, hotel reservation service component as well as
the corresponding connectors are defined, too. Suppose a simple TRS depicted as
figure 4 that is constituted from a primitive hotel reservation service component, a
composite AirlineReservation service component, several Traveler service
components and connectors between them. The instances of the above service
components and those of the connectors compose the simple TRS.

Fig. 4. The Specification of a Simple Travel Reservation System

As referred before, Web Services are used to implement the application system;
therefore, WSDL [20], SOAP [21] and other techniques may be involved. Except

70 Research and Practicial Issues of Enterprise Information Systems

declaration of interfaces, WSDL is adopted to specify service components’
specifications that only need to indicate URIs of the WSDL documents. Furthermore,
a composition process is designed to gain a service composition diagram
automatically, which can be implemented in programming language. For instance,
the AirlineReservation service component, which is able to provide the airline
reservations from one place to Los Angeles, then to Washington, is composed from
two service components that provide different airline reservation services. As far as
the condition declaration of service component, description logic is used to express
the pre-conditions, post-conditions and invariants, containing and, or and not logic
symbol. Simultaneously, we can decompose a complex condition to atomic
conditions, which can be matched by single service component respectively. So,
several service components can be orderly composed to satisfy the request as the
same as the definition of the AirlineReservation service component.

When it comes to definition of connectors, SOAP is helpful to be the glue
protocol that specifies the communication pattern between different roles of
connectors and it abstracts the interaction mechanisms between various service
components in fact. SOAP is used as the main communication protocol of TRS that
allows different composite connectors to express complex protocols yet. And the
coordinator will prescribe the configuration relationships between service
components and connectors, and between different connectors that may be specified
by other techniques provided by Web Services (not included in this paper version).

Then, based-on the identification of roles and their relationships elicited in upper
phases, we can configure a simple TRS as figure 4. Meanwhile, with the dynamic
changes of roles’ specification, the TRS will be dynamic reconfigured and the
service components involved will be dynamic recomposed too.

5 Related Work

The work presented in this paper has been influenced by several different proposals.
First of all, we are inspired by the research work on software architectures, especially
the specification of different ADLs, such as Darwin [11], Wright [12, 22], xADL
[13], and ABC [14]. The elements defined within them are the foundation of our
describing, and the framework of our approach is benefit from them, too. Although
we cannot use the tools they provided, our approach can benefit from the
methodologies used by them.

On the other hand, the modeling of SOA based-on UML is a hot-spot nowadays.
In most of these UML-based approaches, we noticed the methods presented by
Baresi et al. [5, 6] and AMir et al. [7]. Baresi et al. describe SOA by the static model
and dynamic model in UML, then, encode the model into a transition system. AMir
et al. use the UML profile to specify SOA, and their SOA UML profiles consist of
five profiles: the resource profile, the service profile, the message profile, the service
policy profile, and the agent profile. Then the notation of UML and the stereotype is
used to describe them. However, both of them fail to model SOA appropriately since
UML itself lack the support to describe the peculiar elements involved in software
architecture that is overcome by our approach. In addition, we can take advantage of

Research and Practical Issues of Enterprise Information Systems 71

the use case technologies defined in UML to elicit the roles and services, which are
the key elements of our approach, from business requirement.

In the context, we mush mention the work done by Kriiger ef al. [10] who
propose an ADL for describing service, which views roles and service components
as fundamental elements in SOA. Furthermore, they substantiate their view of
services as cross-cutting architectural aspects by providing a mapping from services
to aspects in Aspect]. But, the ADL does not emphasize the whole structure
description of SOA and the corresponding graph supports. Besides, Stojanovic ef al.
[23] present a CBD-based method to model SOA. However, it limits to the
traditional component modeling techniques and does not concern the properties of
SOA eligibly. The approach in this paper gives relatively sufficient consideration of
the above problems.

6 Conclusions

This paper addresses the problem of modeling SOA that gives the blueprints to a
kind of enterprise information system. For the purpose, SO-ADL is put forward to
specify SOA and its effect is shown within the application scenario of travel
reservation system. In future, we will devote ourselves to the research of SO-ADL-
based service-oriented development process and its corresponding tools. At the same
time, how to bridge the gap between different service-oriented development phases
better is our concern, too.

Acknowledgements

This research work is supported by the National Nature Science Foundation of P. R.
China under No. 60473066 and Young Outstanding Talent Foundation of Hubei
Province, P. R. China under No. 2003ABB004.

I appreciate the help from my colleagues; they are Huiming Xiong, Xiangyang
Jia, Zaoqing Liang, Peng Ye, Honghua Cao, Jie Zhang, Hua Qin, and Yi Zhang.

References

1. M. Endrei, J. Ang, and A. Arsanjani, Patterns: Service-Oriented Architecture and Web
Services (April 2004); http://www.ibm.com/redbooks/.

2. M. P. Papazoglou, D. Georgakooulos, Service-Oriented Computing: Introduction,
Communications of the ACM 46(10), 24-28 (2003).

3. T. Erl, Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services
(Prentice Hall, New Jersey, USA, 2004).

4. M. P. Papazoglou, Service-Oriented Computing: Concepts, Characteristic and Directions,
in: Proceedings of the 4™ International Conference on Web Information System Engineering,
Roma, Italy (2003), pp. 3-10.

72 Research and Practicial Issues of Enterprise Information Systems

5. L. Baresi, R. Heckel, S. Thone, and D. Varrd, Modeling and Validation of Service-Oriented
Architecture: Application vs. Style, in: the Proceedings of ESEC/FSE 2003, Helsinki, Finland,
September (2003), pp. 68-77.

6. L. Baresi, R. Heckel, and S. Thone,, Modeling and Analysis of Architectural Styles Based
on Graph Transformation, in: the Proceedings of 6" ICSE Workshop on Component-Based
Software Engineering (CBSE6): Automated Reasoning and Prediction (2003), pp. 67-72.

7. R. Amir and A. Zeid, A UML Profile for Service Oriented Architectures, in: the
Proceedings of OOPSLA ’04, Vancouver, British Columbia, Canada, Oct. 24-28 (2004),

pp.192-193.
8. T. Andrews, F. Curbera, and H. Dholakia, Business Process Execution Language for Web
Services, Version 1.1. BPEL4WS Specification, 2003;

http://www.ibm.com/developerworks/library/ws-bpel/.

9. OASIS. Web Services Business Process Execution Language Working Draft (February 27,
2005); http://www.oasis-open.org/apps/org/workgroup/wsbpel/.

10. LH. Kriiger and R. Mathew, Systematic Development and Exploration of Service-Oriented
Software Architectures, in: the Proc. of the fourth Working IEEE/IFIP Conference on
Software Architecture (WISCA’04).

11. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, Specifying Distributed Software
Architectures, in: the Proceedings of the Fifth European Software Engineering Conference
(Springer-Verlag, New York, 1995), pp.137—154.

12. R. Allen, A Formal Approach to Software Architecture, PhD thesis, School of Computer
Science, Carnegie Mellon University, 1997.

13. E. M. Dashofy, A. van der Hoek, and R. N. Taylor, An Infrastructure for the Rapid
Development of XML-based Architecture Description Languages, in: the Proceedings of the
24" International Conference on Software Engineering (ACM Press, New York, 2002),
Pp.266-276.

14. H. Mei, F. Chen, and Q.X. Wang, ABC/ADL: an ADL Supporting Component
Composition, in: the Proceedings of the 4™ International Conference on Formal Engineering
Methods (Springer-Verlag, New York, 2002), pp.38-47.

15. F. Curbera, R. Khalaf, and N. Mukhi, The Next Step in Web Services, Communications of
the ACM 46(10), 29-34 (2003).

16. M. Champion, C. Rerris, and E. Newcomer, Web Service Architecture, W3C Working
Draft (November 2002); Attp.//www.w3.0org/TR/2002/WD-ws-arch-20021114/.

17. J. Bloomberg, The Role of the Service-Oriented (May 2003) Architect;
http.//'www.therationaledge.com/may_03/f bloomberg/.

18. B. Spitznagel and D. Garlan, A Compositional Approach for Constructing Connectors, in:
the Proceedings of the 2nd Working IEEEE/IFIP Conference on Software Architecture (IEEE
Computer Society, 2001), pp. 148-157.

19. A. Lopes, M. Wermelinger, and J. L. Fiadeiro, Higher-order Connectors, ACM
Transactions on Software Engineering and Methodology 12(1), 64-104 (2003).

20. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, W3C. Web Services
Description Language (WSDL) Version 2.0; http://www.w3.org/TR/2005/WD-wsdl20-primer-
20050510.

21. M. Gudgin, M. Hadley, N. Mendelsohn, J-J. Moreau, and H. Nielsen, W3C SOAP Version
1.2 (June 24, 2003);http://www.w3.0rg/TR/2003/REC-soap12-part0-20030624/.

22. R.J. Allen and D. Garlan, A Formal Basis for Architectural Connection, ACM
Transactions on Software Engineering and Methodology 6(3), 213-249 (1997).

23. Z. Stojanovic, A. Dahanayake, and H. Sol, Agile Modeling and Design of Service-
Oriented Component Architecture, in: 1st European Workshop on Object-Orientation and
Web Services, in conjunction with ECOOP 2003, July 21-25, 2003, Darmstadt, Germany,
IBM Technical Report.

