

Quality Assurance in the ERP5 Development Process

Rogério Atem de Carvalho1, Renato de Campos2 and Rafael Manhaes Monnerat3

1Federal Center for Technological Education of Campos (CEFET Campos), R. Dr. Siqueira,
273, Campos/RJ, CEP 28030-130, Brazil ratem@cefetcampos.br

 2Sao Paulo State University (UNESP).Av. Eng. Luiz Edmundo C. Coube n 14-01,
Bauru, SP, Brazil rcampos@feb.unesp.br

 3Nexedi SARL, Bd. Clémenceau 59700, Marcq-en-Baroeul, France
monnerat@cefetcampos.br

Abstract. The design and implementation of an ERP involves capturing the
information necessary for implementing a system that supports integrated
enterprise management, starting at the enterprise modeling level and
finishing at the coding level. Unfortunately, in both academic and industrial
communities, large quantities of papers focus on ERP deployment
management, keeping specific development issues aside most of times.
Research on specific techniques for developing ERP software – open
source or proprietary, is rather deficient. This paper aims to help filling this
gap by presenting a development process for the open source ERP5 system,
highlighting the Quality Assurance (QA) techniques used, and the tools that
support it. The proposed process covers the different abstraction layers
involved, and supplies customized Enterprise, Requirements, Analysis,
Design, and Implementation workflows. Each of these workflows is
accompanied by one or more QA activities to assure the quality of every
modeling and implementation artifact delivered.

Keywords: Enterprise engineering, Enterprise Resources Planning (ERP), Software
development processes, Software quality assurance, Free/open source software

1. INTRODUCTION

Modeling an ERP software means to deal with the aspects related to the different
abstraction layers that must be taken into account in enterprise-integrated
management. The ultimate goal of developing an ERP system should be going from
the highest abstraction level considered, enterprise modeling, down to code
generation, without loosing modeling information, guaranteeing that the software is in
complete conformity with business requirements. To accomplish this, it is necessary
to define a process that can keep modeling information during its execution and that
supplies a high-quality final product. The analysis and documentation of business and
software requirements by means of models are essential for the system development,
making necessary the use of proper techniques and tools [1]. In this sense, a modeling
architecture that properly contemplates business processes aspects can facilitate reuse
and promote better functionality, better performance, and a better system
understanding [2].

678 Rogério Atem de Carvalho, Renato de Campos and Rafael Manhaes Monnerat

On the other hand, Free/Open Source ERP (FOS-ERP) are increasingly gaining
acceptance due to their lower costs and the perception that if customization is
inevitable, why not adopt a solution that exposes its code to the adopting organization,
which can freely adapt the system to its needs [3]? For FOS-ERP, modeling methods
have their importance increased, since they can empower the availability of source
code by extending and changing it in a way adherent to enterprise models, which can
bring more innovation to integrated management.

However, FOS-ERP projects currently don’t follow enterprise systems modeling
techniques [3]. Moreover, they lack a more including Software Quality Assurance
(SQA) approach, like all other open source projects – an exploratory study had show
that SQA methods in FOSS projects are limited to testing, bug tracking, and Software
Configuration Management [4], in other words, they only use code-related SQA
techniques.

This paper aims to help filling these gaps by presenting a development process for
the FOS-ERP ERP5, highlighting the SQA techniques used, and the tools that support
it – a work initially proposed in [5]. Moreover, since that large quantities of papers
focus on ERP deployment project management and deployment techniques [6], and
research on specific techniques for developing ERP software, in special in a quality
driven fashion, is rather deficient, this article also aims to contribute by discussing
aspects of ERP development. The next section introduces briefly ERP5 main
concepts, the following describe process’ phases, highlighting SQA techniques used,
and finally conclusive remarks are presented at the end.

2. ERP 5

ERP5 aims at offering software for integrated management based on the open
source Zope platform, written in the Python scripting language [7]. This platform
delivers an object database (ZODB), a workflow engine (DCWorkflow), and rapid
GUI scripting based on XML. Additionally, ERP5 incorporates data synchronization
among different object databases, through the implementation of the SyncML XML
based protocol, and a object-relational mapping scheme that allows much faster object
search and retrieval and also analytical processing and reporting. ERP5 is named after
the five core business entities that define its Unified Business Model (UBM, Figure
1):
Resource: describes an abstract resource in a given business process (such as

individual skills, products, machines etc).
Node: a business entity that receives and sends resources. They can be related to

physical entities (such as industrial facilities) or abstract ones (such as a bank
account). Metanodes are nodes containing other nodes, such as companies.
Path: describes how a node accesses needful resources.
Movement: describes a movement of resources among nodes, in a given moment

and for a given period of time.
Item: a physical instance of a resource.

Quality Assurance in the ERP5 Development Process 679

Figure 1. ERP5 Unified Business Model. The Five Main Classes Form the Basis for
Creating New ERP5 Instances

The structure of ERP5 instances is defined through mappings of the particular
domain concepts to the five core concepts and supportive classes or, in very rare
cases, through the extension of the UBM. This mapping is documented by a proper
instance’s lexicon. Its behavior is implemented through workflows, which implement
the business processes, and consider the concept of Causalities (chains of related
events). Very flexible and extensible modules, called Business Templates, are also
provided for Accounting, Production Planning, Payroll, Finance, MRP, CRM,
Trading, Electronic Commerce, Reporting, and others.

ERP5 development process covers the different abstraction layers involved, and
supplies customized workflows and SQA techniques. The process is based on the
Generalized Enterprise Reference Architecture and Methodology (GERAM), which
provides a description of all elements recommended in enterprise engineering and a
collection of tools and methods to perform enterprise design with success [8].
Following the classical – but still effective – work of McCall [9], next sections will
present SQA techniques and tools used in each workflow.

3. ENTERPRISE MODELING

This workflow stands between Concept and Requirements phases of the Unified
Process [10], and concentrates on the modeling of function, information, resources,
and organization views, according to the GERAM modeling framework. For the sake
of addressing enterprise integration [11], models can be built on top of CIMOSA [12]

680 Rogério Atem de Carvalho, Renato de Campos and Rafael Manhaes Monnerat

or Eriksson & Penker approaches [13], depending on the kind of enterprise being
modeled and the preferences of modelers. The Enterprise Modeling workflow consists
of the activities shown in Figure 2, and can be summarized as follows:

Figure 2. Enterprise Modeling Workflow

1. Objectives Modeling: define the strategic objectives of the entity.
2. Process and Activities Modeling: define the behavioral and functional aspects of

the organization (Business Modeling Discipline).
3. Resources Modeling: describes the human, informational and technological

resources.
4. Information Modeling: describe, using a high abstraction level, the information

handled by the organization.
5. Organization Modeling: describe the structure of the organization.

SQA Techniques: model documenting, using both textual and diagrammatic
modeling artifacts. Model quality is guaranteed by Formal Technical Reviews.

SQA Tools: Any UML CASE tool for Information and Process and Activities
Modeling. Text editors for Objectives, Resources, and Organization Modeling.

4. REQUIREMENTS

The information captured by the Enterprise Modeling workflow is detailed and
consolidated as requirements for the information system, following the Requirements
Workflow, shown on Figure 3. Its activities are:
1. System Requirements Definition: provides a basic requirements document. These

requirements are a composition of features identified by the Process and Activities
Modeling phases of the Enterprise Modeling workflow with some more detailed
system’s functionalities that can be identified at this point and are necessary to the
consolidation of the business process information needs.

Quality Assurance in the ERP5 Development Process 681

2. Use Case Identification: Use Cases are identified from the activities of an Activity
Diagram that represents a specific business process. This activity defines the basic
system’s architecture, and helps driving requirements detailing.

3. Basic Iteration Planning: establish use case development priorities according to
their criticality.

Figure 3. Requirements Workflow
SQA Techniques: Quality is guaranteed by Formal Technical Reviews, which

check if all user requirements were captured and documented.
SQA Tools: ERP5 Feature is a tool that aims to help register, control and manage

system requirements. This tool is integrated with ERP5 Use Case and ERP5 Project,
creating a chain that associates a requirement to one or more use cases (for functional
requirements), and then the use cases to project activities. With these tools it is
possible to keep track of all requirements implementation and associated resources
and costs, in every development phase. Customer inquiries on implementation status
are easily answered and change management is facilitated for both the product and the
process.

5. ANALYSIS

After the enterprise modeling stage it is necessary to define the activities that will
transform structural and behavioral models into source code that reflects integrated
business requirements. The workflow for this phase, presented in Figure 4, is
executed for every Use Case:

682 Rogério Atem de Carvalho, Renato de Campos and Rafael Manhaes Monnerat

Figure 4. Analysis Workflow

1. Use Case Detail – Actions: it is used two-column Use Cases, one for describing

actors’ actions and other for describing system’s responsibilities or reactions [14].
For this incremental process, in the Analysis activities only the actions and some
basic reactions are described, since detailed reactions are identified only during the
Design activities. Security issues can also be addressed in this activity.

2. Documents Analysis: ERP5 is a document oriented ERP based on document
workflows, since documents are considered a common language understood by all
personnel in any organization. This activity consists of identifying the documents
that support a given Use Case, starting by ERP5 default document templates that
provide a basis for customization.

3. 5 Abstractions Test: the goal of this test is to find out if the UBM can support the
Use Case, or in other words, if the resources flows described in a given business
process can be represented by ERP5 core model. If not, Core Extensions are
implemented.

4. Lexicon Building: maps concepts from the business world of the client to ERP5.
This is necessary because, to support reuse, ERP5 names are quite general.
SQA Techniques: Quality is guaranteed by Formal Technical Reviews, which

check requirement covering by use cases. Additionally, abstraction tests highly
promote reuse, also facilitated by the presence of a lexicon.

SQA Tools: ERP5 Use Case module allows the definition of Use Cases, including
their actors and scenarios. ERP5 Document Analysis module helps the identification
and naming of documents and their items. ERP5 Lexicon module helps mapping

Use Case
Detail: Actions

Document
Analisys

5 Abstractions
Test

Lexicon
Building

Core
Extension

[Core Extension][No Core Extension]

Quality Assurance in the ERP5 Development Process 683

domain terms into ERP5 terms. Any XMI compatible [15] CASE Tool can be used to
create UML models.

6. DESIGN

The Design workflow is based on an adapted version of the Workflow, Object
Oriented Method (WOOM) [16]. This method focuses on tying structure (classes) to
behavior, modeling the second as state machines. The activities of this phase are
represented by Figure 5, and described as follows:

Figure 5. Design Workflow

1. Use Case Detail – Reactions: the reactions correspond to the second column of the
UC, they define what the system is suppose to do according to an actor’s action.

2. Design Statechart Diagram: states names correspond to the state of the system in a
particular moment. From the UC, verbs in the actions column identify state
transitions; in the reaction column verbs identify states internal activities. Figure 6
shows an example of a single UC row with a correspondingly transition in a
statechart diagram.

3. Fill WARC Table: a new modeling artifact, named WARC Table (Workflow –
Action/Reaction – Responsible – Collaborators), is used to associate structure to
behavior, guaranteeing encapsulation in object-oriented design. For the process
here proposed, a different use of the WARC table is considered: a state transition is
associated for each action, and a state internal action to each reaction – forming the
Responsible column of the table. The objects that are manipulated by the transition
or internal action are listed in the Collaborators column (the objects that
participates on the UC were already identified in the Analysis phase). Table 2
shows the rows that represent in the WARC Table the UC step exemplified on
Figure 6.

4. Write Contracts: This final step takes care of writing a contract [17] for each action
and reaction. Contracts will determine what each transition/internal activity must

684 Rogério Atem de Carvalho, Renato de Campos and Rafael Manhaes Monnerat

do to collaborate to the workflow correct realization. For describing operation’s
responsibilities, pseudo-code, proto-code, plain text, Object Constraint Language
(OCL) and Activity Diagrams can be used.

Figure 6. Example Transformation from a Use Case Row to a Statechart Diagram’s

Transition and State in WOOM

SQA Techniques: use of a well-defined modeling method (WOOM), formal

technical reviews for checking the quality of models developed under this method,
and Model Checking for checking the consistency of workflows.

SQA Tools: Any XMI compatible CASE Tool can be used to create UML models.
For supporting WOOM, currently is in development ERP5 Deployér, which will
provide integration between use cases and WARC tables. Additionally, formal
methods based on Model Checking [18] are under investigation to make Deployér
check workflow consistency automatically, reducing the necessity for testing code. A
plug-in for the Use Case Module will implement WARC tables with some basic
features such as selection lists of available classes, transitions, and state activities and
automatic updating of class diagrams. These features will avoid ordinary modeling
mistakes and accelerate code transformation.

Table 1. Example WARC Table Row for Figure 6

Action/Reaction Responsible Collaborators

Select item includeItem() Product

Insert item on list InsertNewItem() Purchase, Item

Quality Assurance in the ERP5 Development Process 685

7. IMPLEMENTATION

Implementation in ERP5 Process consists of generating code from UML diagrams,
writing algorithms for completing this code, and testing. Implementation workflow is
executed for every use case as shown in Figure 7, and described as follows:

Figure 7. Implementation Workflow

1. Structure and Behavior Generation: using a code generation tool – ERP5

Generator, the new type and related workflow are automatically generated from a
XMI file.

2. Prepare Test Documents: these documents are instances of each scenario of each
Use Case with specific values.

3. Code Completion: represents the implementation in source code of the algorithms
of the workflow’s transactions and internal activities.

4. Unit Testing: is run by a testing script, which automates the steps described in the
Test Documents. This activity is supported by the ERP5 testing framework.

5. Integration Testing: the Use Case is tested in conjunction with others to check
consistency among functionalities that must work integrated.
SQA Techniques: Black and White box testing is used at this stage, since it

comprises of both coding and module integration activities. Software Configuration
Management is accomplished through the use of a proper tool. Code generation
avoids common programming mistakes, reducing testing activities to the code
manually written during the code completion activity.

SQA Tools: ERP5 Generator is a tool that generates structural, behavioral, and
GUI elements from specific artifacts. From Class Diagrams, Python classes, their

686 Rogério Atem de Carvalho, Renato de Campos and Rafael Manhaes Monnerat

relational mapping and basic GUI for object maintenance (create, destroy, getters and
setters) are generated. From Statechart Diagrams workflows are generated. ERP5
Generator parses XMI files exported by a compatible CASE tool, check it against a
WARC Table, and creates the portal type and associated workflow. Complementing
Generator, ERP5 Subversion integrates version control with testing and project
management. Finally, ERP5 Test Case provides template testing scripts that automate
most of Unit and Integration tests, and Zelenium, a Zope GUI test tool provides user
interface testing.

8. CONCLUSIONS

 This paper presented ERP5 architecture, its proposed development process and
associated SQA techniques quite briefly, given space limitations. It is believed that
ERP5 framework addresses all the eleven McCall’s quality factors, being highly
reusable, easy to maintain, strongly secure, and very usable. Also, ERP5 Process
defines a clear flow of model transformations, with consistency checks supported by
proper techniques and tools in each transformation. Aiming to enhance even more the
use of tools during the development, ERP5 Déployer, a tool fully adherent to the
proposed development process and integrated with all others cited on this work, is in
development. This tool will automate the development workflows, provide template
documents for managers – based on the Project Management Body of Knowledge
(PMBoK), and improve consistency checks among the successive model
transformations that occur during the process, automating it even more.

It is important to note that the goal of the presented process is to supply ERP5
adopters with the option of a model-driven development method based on proper
practices and tools, but they are not obliged to follow it entirely.

REFERENCES

1. M. Odeh and R. Kamm, Bridging the Gap Between Business Models and System Models,
Information and Software Technology. Volume 45, pp.1053-1060, (2003).

2. R.D. Campos, R.A.D. Carvalho, and J.S. Rodrigues, Enterprise Modeling for
Development Processes of Open Source ERP, in Proc. 18th Production and Operation
Management Society Conference (Dallas, USA, 2007).

3. R.A.D. Carvalho, Issues on Evaluating Free/Open Source ERP Systems, in Proc. of
Research and Practical Issues of Enterprise Information Systems (IFIP Series) (Springer-
Verlag: New York, 2006), pp.667-676.

4. L. Zhao and S. Elbaum, Quality assurance under the open source development model,
The Journal of Systems and Software. Volume 66, pp.65-75, (2003).

5. R.A.D. Carvalho and R.D. Campos, A Development Process Proposal for the ERP5
System, in Proc. of 2006 IEEE International Conference on Systems, Man, and
Cybernetics (Taipei, Taiwan, 2006).

6. V. Botta-Genoulaz, P.A. Millet, and B. Grabot, A Survey on the recent research literature
on ERP systems, Computers in Industry. Volume 56, pp.510-522, (2005).

Quality Assurance in the ERP5 Development Process 687

7. J.P.S. Solanes and R.A.D. Carvalho, ERP5: A Next-Generation, Open-Source ERP
Architecture, IEEE IT Professional. Volume 5, pp.38-44, (2003).

8. IFIP – IFAC GERAM: Generalized Enterprise Reference Architecture and Methodology,
IFIP – IFAC Task Force on Architectures for Enterprise Integration (1999).

9. J.A. McCall, P.K. Richards, and G.F. Walters, Factors in Software Quality. Volumes. 1,
2, 3 - AD/A-049-015/055 (Springfield, 1977).

10. J. Arlow and I. Neustadt, UML and the Unified Process – Practical Object-Oriented
Analysis & Design (Addison Wesley: London, 2002).

11. V. Botta-Genoulaz, P.-A. Millet and B. Grabot, A Survey on the recent research literature
on ERP systems, Computers in Industry. Volume 56, pp.510-522, (2005).

12. F.B. Vernadat, Enterprise Modeling and Integration (EMI): Current Status and Research
Perspectives, Annual Reviews in Control. Volume 26, pp.15-25, (2002).

13. K. Kosanke, F. Vernadat, and M. Zelm, CIMOSA: Enterprise Engineering and
Integration, Computers in Industry. Volume 40, Number 2, pp.83-97, (1999).

14. H. E. Eriksson and M. Penker, Business Modeling with UML (John Wiley & Sons: New
York, 2000).

15. R. Wirfs-Brock, Designing Scenarios: Making the Case for a Use Case Framework,
Smalltalk Report (SIGS Publications: NY, Nov-Dec 1993).

16. Object Management Group, MOF 2.0/XMI Mapping Specification, v2.1 (2005).
17. R.A.D. Carvalho, Device and Method for Information Systems Modeling, Brazilian

Patent PI0501998-2 (June 09, 2005).
18. B. Meyer, Applying Design by Contracts, IEEE Computer. Volume 25, Number 10,

(1992).
19. K.S. Merz, Model Checking and Code Generation for UML State Machines and

Collaborations, in Proc. 5th Workshop on Tools for System Design and Verification
(Augsburg, 2002).

