

A Hybrid Approach for Business Process Verification

Bing Li and Junichi Iijima

Graduate School of Decision Science and Technology, Tokyo Institute of Technology
W9-66, 2-12-1 Ookayama, Meguro, Tokyo, Japan {li.b.ab, iijima.j.aa }@m.titech.ac.jp

Abstract. Business Process Verification (BPV) works as one of the important
functions in the emerging Business Process Management�Systems. Current
proposed approaches are not yet well applied because of the gap between�
formal models defined in the academia and informal models used in the
industry. This paper attempts to propose a hybrid approach to solve this
problem. XPDL will be used to describe business processes and Situation
Calculus will be employed as the formalism to perform the function of BPV. A
typical order fulfillment process is exemplified to illustrate the approach and
the demonstration system implements the automatic transformation from the
XPDL-defined process and performs the logical verification.

Keywords: Business process verification, XPDL, Situation calculus

l. INTRODUCTION

As part of modern enterprise information systems, Business Process Management
Systems (BPMS) are increasingly important and receive greater consideration from
the enterprise’s executives and IT engineers. BPMS can be defined as a generic
software system that is driven by explicit process designs to enact and manage
operational business processes from the perspective of IT system engineers [1].
Business process design is important in the emerging BPMS.

Many previous and current research efforts are related to business process design,
also called workflow modeling or business process modeling. These approaches can
be classified into two categories. Applications of formal methods in business process
modeling fall in the category of formal approaches, which usually employ
mathematical logic [2-4]. The obvious strength of these approaches resides in the
precise and inferable process model that can be verified mathematically and
automatically. But since these formal approaches emphasize mathematical notation
and calculi, they are not yet well applied to the BPM industry. On the other hand,
informal approaches are more supported by BPMS vendors. They usually define a
process in graphical or text-based languages. Then the defined process is simulated
and tested to uncover potential errors that have been existent in the design phase. The
merit of these informal approaches is their friendliness to general users. But the
function of business process verification is obviously insufficient and detection of
design errors is possibly postponed to the simulation phase or even to the execution
phase.

 2 Bing Li and Junichi Iijima

A hybrid approach integrating both informal and formal approaches in business
process design, promises to combine the aforementioned separate strengths in BPMS.
This paper attempts to elucidate such a hybrid approach for business process
verification (BPV), which is especially important in dynamically designing business
processes. A typical order fulfillment process will be used to explain the approach and
implementation of model transformation from the XPDL-defined process. A general
explanation and the detailed underlying formalization can be found in Li et al. [5] and
[6].

2. EXAMPLE

2.l Order Fulfillment Process

Figure 1.�Order Fulfillment Process (BPMN)

As shown in Figure 1, a simple but typical example – order fulfillment process – is
used to explain the approach in this paper. This process can include the five basic
workflow patterns found in Havey [7]. For convenience, in this paper these workflow
patterns will be referred to as XOR-Split, XOR-Join, AND-Split, And-Join and
Sequence. To avoid displaying the whole lengthy process definition in XML syntax,
Business Process Modeling Notation (BPMN) [8] is used to illustrate the process
graphically and intuitively. From this BPMN-defined process model, the constituent
activities and the transition routing can be clearly shown. BPMN can undoubtedly
provide the communication convenience to some extent. However, it can not precisely
represent a process model or allow for easy analysis. Therefore we prefer to use an
XML-syntaxed language in this research.

2.2 XML Process Definition Language (XPDL)

XPDL[9] is an industrial standard which is supported by many BPMS developers
and vendors. This approach selects XPDL as the source process model for its
analyzability in XML syntax. XPDL focuses on the business logic and can specify
transition relations in business processes. Constituents in a process are represented by

A Hybrid Approach for Business Process Verification 3

using the concepts such as Workflow Process, Activity, Transition and so on. By
employing this process specification standard, the approach will make it easy to
integrate the industrial efforts and put them into practice. For example, the XPDL
specification related to the activity “check_credit” is shown as follows. Referring to
Figure 1 helps to understand the XML-based specification intuitively. The activity
can be referred by using the id of “check_credit”; the activity will be implemented by
an application, which can be a software application or another process; the input
parameters are “CardNo” and “Rate” that refer to the NO. Of the credit card and the
rating of the credit; the performer information can be provided. The control flows are
represented by transitions. There are one incoming transition – from “xor_split” to
“check_credit” and one outgoing transition – from “check_credit” to “xor_join”; the
transition conditions can be represented by using equations or other mathematical
expressions.

…
<Activity Id="check_credit">
 <Implementation>
 <Tool Id="check_credit_app" Type="APPLICATION">
 <ActualParameters>
 <ActualParameter>CardNo</ActualParameter>
 <ActualParameter>Rate</ActualParameter>
 </ActualParameters>
 </Tool>
 </Implementation>
 <Performer>orderProcessor</Performer>
 <ExtendedAttributes/>
</Activity>
…
<Transition From="xor_split" Id="order_fulfillment_tra2" To="check_credit">
 <Condition Type="CONDITION">
 PayWay= ="credit" CreditStatus= ="none"
 </Condition>
</Transition>
…
<Transition From="check_credit" Id="tra3" To="xor_join">
 <Condition Type="CONDITION">
 CreditStatus = = "valid"
 </Condition>
</Transition>
…

The above XML script specifies the activity from the perspectives of input

parameters, performers and transitions. In particularly, transition relations construct
the control flow of a business process and related errors can lead to deadlock or
unreachable activities. This paper concentrates on the control flow perspective, but
the approach is possibly applied to verify other aspects of business processes such as
global constraints [2].

In XPDL, the complex transitions can be represented by routing activities that
correspond to the gateways in BPMN. In the above example, the “xor_split” and

 4 Bing Li and Junichi Iijima

“xor_join” are routing activities. A transition has some conditions and only when
these conditions are satisfied, the transition can happen.

In respect to transition conditions, the repressiveness of the current XPDL
specification is not so robust. This problem can be overcome by clearly defining the
format of conditions or directly using some XML-syntaxed rule languages.

3. FORMAL VERIFICATION

3.l Motivation of Formal Verification

Formal verification is necessary in the emerging BPMS[10]. Expanding and fast
changing business needs require that business processes should be designed and
deployed quickly. Human-designed processes are prone to containing potential errors
or bugs, which may increase development time and cost. But formal verification of a
business process before execution can greatly reduce errors in the design phase.

In detail, formal verification can bring the following benefits. First, it can remove
any ambiguity from a business process�and make it more precise. Formal verification
will employ a formal language, which is usually a mathematical logic. Based on such
a formal language, business processes can be specified in a precise and concise way.
Second, this formal process specification will enable inference functions, including
automatic verification, process analysis, etc.

But a gap exists between the industrial standard process description language, such
as XPDL, and formal languages�that are used in the academic research. This is why
the function of verification is still not sufficient in BPMS products. This hybrid
approach attempts to bridge this gap between XPDL and a formal language –
Situation Calculus.�This strategy is also meaningful to other BPM languages such as
Business Process Execution Language (BPEL).

3.2 Formalism of Situation Calculus

Situation Calculus was first introduced by John McCarthy and later extended by
Ray Reiter. Much research work has been done in this formalism and it has become a
formal language to model dynamical domains.

Situation Calculus has strength of reasoning about actions. This formalism can be
applied to business process modeling including verification [4].The semantic
transformation from XPDL to Situation Calculus seems intuitive and uncomplicated.
Furthermore Situation Calculus is extensible to include some dynamic features such
as concurrency and reactiveness. Some basic concepts including action, situation and
fluent will briefly introduced. Detailed explanations can be found in Reiter [11] and
Brachman et al. [12].

Actions are represented by action functions that consist of functional symbols and
corresponding arguments. Situations are world histories represented by the sequence

A Hybrid Approach for Business Process Verification 5

of actions. Fluents are functions and predicates that are dependent on the situation,
which can represent the status and changes of the modeling world.

A domain model in Situation Calculus mostly consists of actions. An action is
specified by precondition and successor state axioms. These axioms will be
constructed by action functions, situations and fluents. Truth values of the fluents in
these axioms will separately ensure executability of the action and satisfiability of the
successor states.�

The underlying concept is that the execution of an action will change the world
states by making the related fluents become true; thus the new world state may satisfy
the precondition of another action; then, this will result in the execution of an action
sequence, that is, a situation starting from the initial world state.

3.3 Transformation from XPDL

XPDL is in XML syntax and has no obvious relationship with formal languages,
which make it hard to be verified directly.� Formal languages usually enable
reasoning, including automatic verification, thanks to the underlying formal
semantics. Thus transformation from XPDL is meaningful and Situation Calculus is
selected for the strength explained in the section above. The specification in Situation
Calculus will provide a precise and inferable process model�for future analysis.

This research focuses on the control flow perspective of a business process and the
transformation of transition relations in XPDL to Situation Calculus is most part of
our work. As explained in Section 2.2 (XPDL) and Section 3.2�(Situation Calculus),
the activities in XPDL correspond to the actions in Situation Calculus; the parameters
correspond to the arguments in the action functions. Thus the obvious gap lies
between the transition conditions in XPDL and the precondition and successor state
axioms in Situation Calculus.

To bridge the gap between XPDL and Situation Calculus,�we devise XML
Situation-calculus Specification Language (XSSL), which attempts to represent some
concepts in Situation Calculus by using XML syntax. In this format, the
transformation will be convenient to introduce.�Moreover, XSSL will enable the
separation of activity specification from process specification, which can improve
reusability of some common activities�or processes.

Furthermore, it potentially improves the usage of Situation Calculus with more
extension work�to improve the expressiveness of XSSL.�The key is to define XSSL
more independently from XPDL, and represent more concepts of Situation Calculus
in XML syntax.

The following XML script specifies the action of “check_credit”, which actually
expresses the elements of XSSL. The XPDL-defined process specification can be
automatically transformed into the XSSL-defined one. From the XSSL script, the
important element is “Action”, which corresponds to the “Activity” in XPDL. An
action is represented with its arguments, preconditions and postconditions. These
concepts can be directly mapped into the formalism of Situation Calculus.

…
 <Action Id="check_credit">
 <args>

 6 Bing Li and Junichi Iijima

 <arg>CardNo</arg>
 <arg>Rate</arg>
 </args>
 <preconditions>
 <precondition>OrderStatus= ="received"</precondition>
 <precondition>PayWay= ="credit"</precondition>
 <precondition>CreditStatus= ="none"</precondition>
 </preconditions>
 <postconditions>
 <postcondition>CreditStatus= ="valid"</postcondition>
 <postcondition>OrderStatus= ="checked"</postcondition>
 </postconditions>
 </Action>
…

When comparing this XSSL-defined activity with the XPDL-defined one, the main

difference can be found to be in the transformation�from the transition conditions in
XPDL to the preconditions and postconditions in XSSL. This transformation is
implemented based on the formal definition in Li et al. [�]. The defined mappings
process different types of routing activities and calculate the preconditions and
postconditions.

3.4 Logic Based Verification

The formalism of Situation Calculus can be implemented by a Prolog Interpreter
[��]. Similarly, the logical process model – a formal specification in Situation
Calculus�– can be implemented by Prolog programs. Thus XSSL-defined process
specification can be transformed into a Prolog format, which is an inferable model
that can to be verified�automatically. The following Prolog script specifies the action
of “check_credit” based on the formalism of Situation Calculus.

…
poss(check_credit(PID,CardNo,Rate),S):-
 order_status(PID,received,S),
 pay_way(PID,credit),
 credit_status(PID,none,S),
 card_no(PID,CardNo),
 rate(PID,Rate).

credit_status(PID,valid,do(A,S)):-
 A=check_credit(PID,CardNo,Rate);
 credit_status(PID,valid,S).

order_status(PID,checked,do(A,S)):-
 A=check_credit(PID,CardNo,Rate);
 order_status(PID,checked,S),
 not A=enter_order(PID,OrderInfo).
…

A Hybrid Approach for Business Process Verification 7

The above Prolog-defined process specification can be automatically generated
from the XSSL-defined one. Moreover, some extra processing work should be done
such as the introduction of the process id (PID), which enables the process
concurrency and instances, and recovery of data relations. This kind of information is
expressed in XPDL and can also be extracted into XSSL. It will be our extension
work to study on how to represent extra information such as data relation in XSSL
while keeping the independence of XSSL from XPDL.

In order to improve the performance of verification in Prolog, some extra
processing work is introduced. For example, backtracking on situations will lead to
memory overflow from our development experience. To solve this problem, situations
are constructed from the transition routing information in XPDL. That is, the possible
routes can be extracted from XPDL, enabling the construction of action sequences –
situations.

4. DEMONSTRATION OF THE BPV SYSTEM

The interface of the implemented demonstration system is shown in Figure 2.

Figure 2.�User Interface of the Demonstration System

A business process is defined in XPDL. This XPDL-defined business process can

be defined with the aid of some XML editors or directly transformed from some

 8 Bing Li and Junichi Iijima

graphical process model such as a BPMN-defined process one, which is currently not
the focus of this research.

Load XPDL will parse the XPDL file and show the constituent activities in the left
panel and other related information such as initial situations for testing. Generate
XSSL will automatically generate the XSSL file from the XPDL file, and�
Transform Prolog will automatically transform the XSSL file into the Prolog file.�
These Prolog files will finally be used to build up the knowledge base for the
background Prolog engine to make verification – to check the queries from the users.

The system is currently implemented at the activity level, that is, the whole process
is verified after checking each activity involved. E.g., to check the activity of
“check_credit”, there is only one possible route according to the XPDL definition
(referring to Figure 1). First, select it to construct the situation to be verified and also
set the initial situation or use the default settings�(Add ω); second, Start will start
the prolog engine and build up the related knowledge base; Check Executability will
query this engine and show the result as “ż” for success and “×” for failure. The
current result show that the route will succeed under the default initial situation
settings�– that�is, there is an order paid by credit card in the initial situation; and after
executing the activity of “receive_order”, the activity of “check_credit” can be
executed.

The successful result shows that the checked activity is executable in a certain
situation. After each activity involved in a process is verified, the whole process is
actually ensured to be executable.�It is direct to make the whole process verification
if we encapsulate the checking for each involved activity and just check the last
activity in the transition route. When there is an error, it is necessary to backtrack and
find where the problem occurs – that is, the transition condition can not be satisfied.

The verification employs action reasoning in Situation Calculus, which enables
automatic verification at the semantic level. The precondition of each activity is
verified to ensure that there is no deadlock in the process. The successor state
condition interconnects the activities and represents the state changes in the process,
thus making the whole process verification possible.

5. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a hybrid approach for business process verification and
explained it focusing on the model transformation from an XPDL-defined process.
The underlying formalization was explained in Li et al. [�]� that provided the
theoretical foundation for this paper. The implementation of the prototype system and
the internal automatic transformation demonstrated the feasibility of the approach.

This hybrid approach integrates the informal language – XPDL, and the formal
language – Situation Calculus. By linking them to cooperate in business process
verification, we can obtain some meaningful results. Practicability and robustness are
two direct benefits. Besides, the formalized process specification is more precise and
becomes inferable, enabling more potential analysis of business processes.

Much work still needs to be done in the future research. Only some concepts in
XPDL are currently mapped to Situation Calculus. In order to put this approach into

A Hybrid Approach for Business Process Verification 9

large-scale industrial application, some further extension of the transformation should
be done. Furthermore, this approach is currently only applied to business process
verification and it could be also used to dynamically aid process design such as
providing some recommendation for process composition.

REFERENCES

1. M. Weske, W.M.P. Van Der Aalst, and H.M.W. Verbeek, Advances in business process
management, Data & Knowledge Engineering. Volume 50, pp.1-8, (2004).

2. S. Mukherjee, H. Davulcu, M. Kifer, P. Senkul, and G. Yang, Logic Based Approaches to
Workflow Modeling and Verification, Logics for Emerging Applications of Databases
(Springer, 2003).

3. G.K. Janssens, J. Verelst, and B. Weyn, Techniques for Modeling Workflows and Their
Support of Reuse, in Business Process Management, LNCS1806 (Springer, 2000), pp.1-
15.

4. M. Koubarakisa, and D. Plexousakis, A formal framework for business process modeling
and design, Information Systems. Volume 27, (2002), pp.299-319.

5. B. Li, and J. Iijima, Bridging The Gap Between XPDL And Situation Calculus: A Hybrid
Approach For Business Process Verification, in Proc� of the 5th International Workshop
on Modeling, Simulation, Verification and Validation of Enterprise Information Systems
– MSVVEIS 2007 (INSTICC, 2007), pp. 151-156.

6. B. Li, and J. Iijima, Formal Verification of XPDL-based Business Process Definition, The
International Journal of Business Process Integration and Management (submitted,
2007).

7. M. Havey, Essential Business Process Modeling, 1st edition (O’Reilly: 2005).
8. OMG, Business Process Modeling Notation Specification (2006).
9. WfMC, Process Definition Interface – XML Process Definition Language, Version 2.0

(2005).
10. W.M.P. Van Der Aalst, and A.H.M. Ter Hofsede, Verification of Workflow Task

Structures: A Petri-Net-Based Approach, Information Systems. Volume 25, Number 1,
pp.43-69, (2000).

11. R. Reiter, Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems (MIT Press: Massachusetts, 2001).

12. R. Brachman and H. Levesque, Knowledge Representation and Reasoning (Morgan
Kaufmann, 2004).

