
Security Policy Satisfiability and Failure Resilience in
Workflows

Meghna Lowalekar Ritesh Kumar Tiwari Kamalakar Karlapalem

Center for Data Engineering
International Institute of Information Technology

Hyderabad, India - 500032
meghnal@students.iiit.ac.in, ritesh@research.iiit.ac.in, kamal@iiit.ac.in

Abstract. Security policy satisfiability and high failure resilience (i.e. survivabil-
ity) are desirable properties of every system. Security issues and failure resilience
are usually treated in stand alone mode and not in synergy. In this paper, we bridge
this gap for workflows. We propose techniques which ensure that user-task as-
signment is both secure and failure resilient and present frameworks that meet
different criteria of security policy, security constraints, and failure resilience.

1 Introduction

A user is capable of doing certain tasks in an organizational workflow. But from the
security perspective, all the information and resources cannot be made accessible to ev-
ery user as allowing such uncontrolled access gives unbounded privileges to the user,
thereby increasing the chances of attack and subsequent damage. Hence an access con-
trol mechanism based on user capability that satisfies the security policy and constraints
is needed for assigning users to tasks and their subsequent enactment during runtime.
Failure resilience (survivability) is a pivotal issue in any organization. Current state of
art focuses mainly on fault tolerance at the resource level. It is evident that users can
also fail (or be unavailable). Hence there is a need to focus on user level failure re-
silience for ensuring overall system survivability.For achieving high failure resilience
at the user level, a user should have the capability to do a large number of tasks, which
results in providing each user with access to a lot of information, thereby increasing the
chances of knowledge attacks.

Consider the tendering process which involves many tasks such as advertisement of
the requirement for goods or services, preparation of tender documents, registration of
suppliers, response to tenders (filling of quotations), evaluation of responses to tenders
and finally awarding the contract to a supplier. The process of tender management (in-
cluding tasks involved and why they are performed) is a company property and should
be preserved. In case of large tenders the process of responding to tenders also involves
many steps and many users. The response should be submitted by due date even if some
users who are involved in response preparation/processing are absent. A user should not
get the complete knowledge about the tendering process as this can lead to knowledge
attack. Therefore, it is important to achieve security along with failure resilience (ten-
dering process is deadline driven and should be completed even if some users are not

present). Similarly in case of defense procedures where tasks are very critical and de-
lay due to absence of any user is not allowed the problem of achieving high failure
resilience along with security is important.

1.1 Related Work

Hung et al. [1] present the security features of workflow systems. They discussed the
trade off between security and failure resilience. They have proposed a greedy algorithm
that determines task assignments that would achieve high failure resilience and low
security risk factor. In [1], access control policies and separation of duty constraints are
not considered.

Li et al. [2] introduced the concept of resilience policies in access control. Resilient
policies ensure that access is properly enabled so that a critical task can be completed
even in the absence of some users. Their work mainly focuses on checking the satisfia-
bility of a resilience policy in an access control state. They have shown the complexity
of the problem. They also described methods to determine whether a resilient policy is
consistent with the separation of duty policies.

Wang et al. [3] studied the resiliency problem in workflow systems. They described
that the resiliency in workflow systems differs from resilience policies. In a workflow
system, due to the existence of authorization constraints, there is a possibility that even
if a set of users together have the permission to perform all steps of the workflow, they
can not complete the task. They defined three levels of resiliency: static, decremen-
tal and dynamic. The work mainly focuses on checking whether a workflow model is
resilient or not i.e whether a workflow can be completed in the absence of some users.

1.2 Contributions and organization of paper

In this paper, we focus on operational failure resilience and access control in a user-
based system. Ideally, we want a user-task assignment which is both failure resilient
and secure (i.e. it satisfies the organizational security policy and associated constraints
and also does not provide a user access to a lot of information). To achieve this goal,
we use the following two approaches which are described in section 3.

i Generating all possible user-task assignments which satisfy security policy and
constraints (refer section 3.1).

ii Formulating the problem using Quadratic Programming(refer section 3.2).

Our work focuses on finding user-task assignments satisfying policy and separation of
duty constraints such that the workflow is min K failure resilient i.e workflow can be
completed even if K users fail.

The paper is organized as follows. In section 2, we describe the preliminaries and
calculation of failure resilience. In section 3, we explain the approaches for computation
of user-task assignments. In sections 4 we present results and in section 5, we conclude
with future work.

2 Preliminaries

A workflow can be defined as a set of tasks (T) coordinated by a set of events (E)
whose successful execution results in the completion of an instance of the activity. The
sequence of tasks in a workflow can have:

i Sequential constraints (Ti ≺ Tj): Execution of task Ti should be completed before
Tj starts executing.

ii Temporal constraints: Temporal constraints can be further classified as activation
time constraints and execution time constraints. Activation time constraints (i.e.
{Ti}activated[p, q)) denotes that task Ti can be activated by an authorized user only
within time period [p,q). Execution time constraints (i.e. {Ti}execp) denote that task
Ti can be executed by an authorized user for atmost p time units after the invocation.

Workflow tasks can be treated as a combination of automated and manual processes
which are represented (and controlled) by users . In most of the practical workflows,
user-task assignment is static due to specialized users that can do specific tasks or due
to initial work assignment to users. The approaches proposed in this paper, to achieve
failure resilience with access control are applicable for scenarios where Task-Based Au-
thorization Control [4] is used for enforcing access control on users.

U1,U2, . . . ,Un : Users
T1,T2, . . . ,Tn : Tasks
pol : Policy
C1,C2, . . . ,Cn : Constraints
cap : Capability
FRTi : Failure resilience of task Ti
FRactivity : Failure resilience of activity
exec(Ti) : Set of users having capability to execute task Ti
assigned(Ti) : Set of users assigned to task Ti

Table 1. Notations Used

2.1 User-Task Assignment

Let capability of a user (cap: U
cap−−→{T}) denote the set of tasks that the user is capable

of doing. Similarly, executability of a task
[
exec(Tk)

]
denotes the set of users that pos-

sess the capability to execute task Tk. Using the capability sets of users, we can compute
the executability set corresponding to every task of the workflow.

A user might possess the capabilities to perform all tasks of a workflow but the orga-
nization security policy can prevent it from performing some. Thus, if a user possesses
the capability of performing a task, it does not necessarily imply that it is assigned to

the task. But if a user does not possess the capability, then it can not be assigned to
the task. The organization security policy forces restrictions on the capability sets of
users and hence the executability set of a task. Separation of duty constraints further
reduce this set. If

[
assigned(Tk)

]
denotes the set of users that are assigned to task Tk

after satisfying security policy and constraints, then assigned(Tk)⊆ exec(Tk). Out of all
the users that are assigned to tasks, one user per task is chosen for executing the task.

Security policy defines which users are authorized to execute tasks based on or-
ganization security requirements. The term policy used in this paper encapsulates the
notion of both confidentiality and integrity policy associated with access control. Secu-
rity constraints place additional (activation and/or privilege level) restrictions on users
and tasks that satisfy the security policy.

Security constraints enforced on users can be classified [5] into:

i Temporal constraints,
ii Separation of duty (Static 1/ Dynamic/ Operational 2/ Object Based) constraints,

and
iii Location constraints.

There are two types of scenarios considered in the paper, which are as follows:

1. Purely static - All user task assignments are fixed before the execution of workflow.
Users are assigned to tasks considering all the constraints and this assignment does
not change at runtime. Failure resilience has a fixed value.

2. Purely dynamic- Before the execution of workflow users are assigned to tasks con-
sidering all the constraints but assignment can change at runtime to get more failure
resilience. Failure resilience changes dynamically but has a lower bound.

In static scenario, for all the tasks of a workflow, the set assigned(Tk) can be com-
puted using any of the approaches described in section 3. In case of dynamic scenario
quadratic programming approach (section3.2) can be used. Section 3.2 also shows how
to apply quadratic programming to change the assignments at runtime.

In the next part, we show the computation of failure resilience for a workflow ac-
tivity. The definitions and formulae hold for purely static scenario. For purely dynamic
scenario these constitutes the lower bound of failure resilience. This is because, in dy-
namic scenario assignment is changed to get more failure resilience, therefore, we will
get the failure resilience which we were getting in static case.

2.2 Failure resilience of task and activity

Failure resilience of a task denotes the maximum number of user failures a task can
handle. Similarly, failure resilience of an activity is the maximum number of user fail-
ures in the presence of which activity execution can continue uninterrupted. The activity
will fail when any of its constituent task can not be completed successfully. Therefore,
failure resilience of activity depends on the failure resilience of its constituent tasks.

1 If two tasks T1 and T2 are in SSoD and if (Ui,T1) ∈ user task assignment ⇒ (Ui,T2) /∈ user
task assignment.

2 If {T1,T2, . . .Tn} is set of critical tasks in a workflow, then as per operational SoD, any user Ui
cannot execute all critical tasks in any instance of workflow.

Definition 1 Failure Resilience of a task is one less than the number of users that are
assigned to the task

(
i.e. FRTi = (|assigned(Ti)|−1)

)
.

Lemma 1. Given an assignment of n users to t tasks, the workflow activity is guaran-
teed to execute as long as the number of failed users ≤ min∀i(FRTi) .

Proof. For the successful execution of an activity, all its constituent tasks should be
completed successfully. The activity will fail if all users in any of the constituent tasks
of the activity fail. In the worst case, the activity will fail when the number of users
that fail is

[
min∀i(|assigned(Ti)|)

]
. Therefore, an activity is guaranteed a successful

completion when the number of users that fail is ≤ [
min∀i(|assigned(Ti)|) - 1

]
.

Definition 2 Failure resilience of an activity is the minimum of failure resilience of its
constituent tasks i.e FRactivity = min∀i(FRTi)

Corollary 1 Given an assignment of n users to t tasks and the number of failed users
> min∀i(FRTi), the activity can still continue; but there exists at least one specific com-
bination of min∀i(FRTi) users whose failure will fail both a task and the activity.

T1 T2 T3 T4 T5

U4U2 U3 U1 U2 U2 U4 U4U1 U2U3

U4 U5

U2U1

Fig. 1. Workflow activity consisting of five tasks

Example 1. Figure 1 shows five tasks and users assigned to each of them. As tasks T3
and T4 have the minimum number of users, in the worst case, an activity will fail when
either of the user sets (U1,U2) or (U2,U4) fails. However, if user set (U1,U3,U4) fails,
even then the activity will be successfully completed. Therefore, it will not always be
the case that when

[
min∀i(|assigned(Ti)|)

]
users fail, then activity fails too.

Note that we have not considered sequence constraints in doing failure resilient
user-task assignment. Failure resilience is independent of simple task precedence. Con-
strained precedence can be handled by incorporating them as SoD constraints (refer
Proposition 1).

Relationship between task precedence and failure resilience: Consider a simplistic
workflow consisting of three tasks T1, T2, T3. Let T1 and T2 have a precedence rela-
tionship (T1 ≺ T2) while T3 does not have any precedence relationship ((T1,T2) 6≺ T3).
Precedence relationships between the tasks can be of two types:

i Simple precedence: (T1 ≺ T2) implies that the execution of T1 precedes T2, but
users in the set {assigned(T1)} will have no dependency relationships with those
in {assigned(T2)} at runtime.

ii Constrained precedence: (T1 ≺C T2) implies that the execution of T1 precedes T2
and if C is a separation of duty constraint, then all users in the set {exec(T1)}
will have a dependency relationship with those in {exec(T2)}. For example, if user
U1 ∈ {exec(T1),exec(T2)} and if it executes T1, then it cannot execute T2 in that
workflow instance. But as the set ∀k{assigned(Tk)} is calculated after taking all
security constraints into account (refer section 3), users in {assigned(T1)}will have
no dependency relationship with users in {assigned(T2)}.

Proposition 1 Precedence relationships do not have any implication on failure re-
silience.
Reason: Consider the above example. As the set {assigned(T1)} has no dependency
relationship with {assigned(T2)} and {assigned(T3)}, the number of users who can
execute Ti (i.e. |assigned(Ti)|) in any workflow instance will not depend on task prece-
dence. Hence, task precedence is not a determinant of the failure resilience of the work-
flow activity.

In this section, we have computed failure resilience for workflows assuming we
know the user-task assignment. In the next section, we show how to assign tasks to
users to achieve failure resilience.

3 Failure resilient user-task assignments

3.1 Exhaustive search

In this approach, we achieve our goal in the following manner:

i Based on user capability, we derive/identify all the tasks an user can possibly per-
form (without considering the security policy and constraints).

ii Applying security policy restrictions and separation of duty constraints, we identify
the combinations of user-task assignments that are not allowed in a secure state of
the system.
The permitted user task assignments satisfying security policy and constraints can
be derived as:
{User Task Assignment}Stepi\{User Task Assignment}Stepii =
{Permitted user task assignment}

iii From the permitted user task assignment set, we select the user-task assignments
that have min K failure resilience
(definition 3).

The diagrammatic representation of the system model for this approach is shown in Fig-
ure 2. (a) represents the possible user-task assignments considering only the capabilities
of users. The assignments that violate the security policy are removed from (a) to obtain
(b). (c) gives the different possible combinations of user-task assignments derived from
(b) that satisfy security constraints. (d) is derived from (c) to obtain the desired level of

(a)
on user capabilities

User Task assignment satisfying

security policy
(b)

User Task assignment satisfying

security policy and constraints(c)

(d)
satisfying security policy and constraints

Possible User Task assignment based

(min K) Failure resilient User Task assignment

(|b| ⊂ |a| at individual task level)

(|d| ⊂ |c| for all the tasks of an activity)

Fig. 2. Stepwise user task assignment

failure resilience. The steps that the model follows (Figure 2) to achieve security and
failure resilience are described below.
Step (a): Initially, all users are assigned to tasks that they are capable of doing. There-
fore, the outcome of executing step (a) in Figure 2 will be the set

[
∀k {exec(Tk)}

]
.

Step (b): The executability set of a task after applying the security policy (pol) will
be a subset of the executability set before applying the security policy. Therefore,[
∀k

(
exec(Tk)pol ⊆ exec(Tk)

)]
is what we get after executing step (b) of Figure 2.

Step (c): Security constraints on users are specified as rules in the rule base (refer Fig-
ure 3). (T1)Ui ⇒¬(T2)Ui represents static SSOD of user Ui over tasks T1 andT2. If there

Assignment
engine

Policy Base

Rule Base

Capabilites
of all Users

Sets of Secure
User−Task

binding
engine

Set selection
Secure

User task assignment

FR input

(Min K) FR

(Min K)

Fig. 3. Conceptual model of proposed system

are n security constraints C= {C1,C2, . . . ,Cn}, then all of them (i.e. C1∧C2∧ . . .∧Cn)
need to be satisfied for secure user-task binding. The literals in C1,C2 . . . are all of the
form (Ti)U j . We convert C into Conjunctive Normal Form (CNF) and then find all the
solutions that satisfy C using the modified DPLL algorithm [6]. Each solution is repre-
sented in the form Si = ∀k(U ′)i

Tk
where Si is the ith solution and (U ′)i

Tk
represents the set

of users which cannot perform task Tk in the ith solution. We need user-task bindings
which satisfy both security policy and constraints. Therefore, (U ′)i

Tk
should be removed

from exec(Tk)pol . For the ith solution,
[
(exec(Tk)pol+C)i = exec(Tk)pol − (U ′)i

Tk

]
is the

set of users which can be assigned to task Tk. The outcome of step 6 of Algorithm1 is
the solution for step (c) of Figure 2. The time taken by this approach largely depends

on this step.
Step (d): From the previous step, we have all possible sets of user-task assignment that

Algorithm1: Constraint Satisfiable User-Task Assignment(C)
1. Input: [i.] ∀k(exec(Tk)pol)

[ii.] Constraints C
2. ∀i(Ci ∈ C), generate CNF of literals for Ci
3. Generate ∧(∀i)(Ci)
4. Generate all solutions (sets of User-Task assignments) which

satisfy ∧(∀i)(Ci) using modified DPLL algorithm [6].
5. Convert all generated solutions (∀i(Si)) in form

∀i

[
Si = ∀k(U ′)i

Tk

]
where

(U ′)i
Tk

= Set of users that cannot do Tk in ith solution.

6. ∀i,∀k

[
(exec(Tk)pol+C)i = exec(Tk)pol − (U ′)i

Tk

]

Table 2. Algorithm for constraint satisfiable User-Task assignment

satisfy both the security policy and constraints. All these sets give a different secure
user-task assignment. But it is desirable to have failure resilience along with security.
Here we introduce the notion of min K failure resilience.

Definition 3 min K f ailure resilience: For achieving min K FR for an activity, there
should exist a set of user-task assignments in the activity for which FRactivity ≥K .

If K is greater than maximum achievable failure resilience then solution can not be
computed.

Definition 4 Maximum achievable f ailure resilience: Maximum achievable failure re-
silience of an activity is the maximum value of failure resilience which can be achieved
for the activity satisfying security policy and separation of duty constraints.

If K < Maximum achievable f ailure resilience and for the ith solution (FR i
activity ≥K),

then ∀k(exec(Tk)pol+C)i will give the min K failure resilient user task assignment cor-
responding to that solution. There can be more than one solution which have FRactivity
≥K ; in that case first we look for the solution with minimum average number of tasks
per user. If the average number of task per user is same for two solutions, then the
solution with minimum variance of number of tasks an user is doing is chosen (as it
minimizes the knowledge gained by users). If the chosen solution is the pth solution
then ∀k(exec(Tk)pol+C)p is the set which constitutes step (d) of Figure 2 and also the
set ∀k assigned(Tk), that is,

∀k assigned(Tk) = ∀k(exec(Tk)pol+C)p

3.2 Quadratic Programming Approach

The problem of achieving minK failure resilience while satisfying the security policy
and constraints is formulated in the form of a 0-1 quadratic programming problem. Let

T = {T1,T2,Tn} be a set of n tasks and U = {U1,U2,,Um} be a set of m users
which will be assigned to the tasks. Xi j(i = 1,2, ...,n; j = 1,2, ...,m) is used to denote
assignment of user j to task i. Xi j is 1 if user j is assigned to task i, and is 0 otherwise.

U1 U2 ... Um
T1 X11 X12 ... X1m
T2 X21 X22 ... X2m
...
Tn Xn1 Xn2 ... Xnm

We need to assign users to tasks by taking into account the capabilities of users, secu-
rity policy and Separation of duty constraints. As described in section 2, if a user does
not possess the capability to perform a task, then it can not be assigned to that task.
Therefore, Xi j is set to 0 if U j is not capable of performing task Ti i.e. Ti /∈ cap(U j). If
U j can not be assigned to Ti as per the security policy, then also Xi j is set to 0. We want
to achieve min K failure resilience while satisfying separation of duty constraints. The
separation of duty constraints are expressed in the form of inequality constraints.
If T1,T2 are in static SoD then T1 and T2 both can not be assigned to user Ui simultane-
ously. Therefore, X1i and X2i both can not be 1 at the same time i.e.

X1i +X2i ≤ 1 (1)

Similarly, if a set of p tasks T1,T2,,Tp is in static SoD, then no two of them can be
assigned simultaneously to user Ui, that is,

X1i +X2i + ...+Xpi ≤ 1

For operational SoD, if T1,T2 are critical tasks for user Ui, then Ui can not execute both
T1 and T2 at runtime, hence X1i and X2i can not be 1 at the same time, that is,

X1i +X2i ≤ 1 (2)

Similarly, if there is a set of q critical tasks T1,T2, ...,Tq, all of which can not be done by
user Ui simultaneously then at least one of (X ji) < j = 1,2, ..,u > should be 0, that is,

X1i +X2i + ...+Xqi ≤ q−1

To achieve min K failure resilience each task should be assigned to at least K users.
Therefore,

∀i

m

∑
j=0

Xi j ≥K +1 (3)

Knowledge gained by a user by executing the workflow is the weighted sum of
knowledge gained in doing its constituent tasks. Let wi 1 ≤ i ≤ n denote the weight
corresponding to each task (Ti 1≤ i≤ n) of a workflow then total knowledge gained by
user U j is:

n

∑
i=1

wi ∗Xi j

If v j 1 ≤ j ≤ m denote the weight of a user (U j 1 ≤ j ≤ m) (a user with higher weight
should be more knowledgeable then user with lower weight). Therefore, in order to
minimize the risk, any user should not have more knowledge in proportion to its weight.
Therefore we should minimize the weighted standard deviation and hence weighted
variance. Weighted average of knowledge gained by user

weightedavg = (
m

∑
j=1

v j ∗
n

∑
i=1

wi ∗Xi j)/
m

∑
j=1

v j

Variance, which is the objective function of QPP and is to be minimized, is given by

variance = (
m

∑
j=1

v j ∗
[(n

∑
i=1

Xi j
)−weightedavg

]2
)/

m

∑
j=1

v j (4)

The weights are subjective in nature and there is no known scientific standard which
can measure the knowledge of a task of an activity and the knowledge gained a user by
performing the activity. For simplicity we have assumed, all tasks and users are of equal
weight and hence ∀i=1,2,..,n wi = 1 and ∀ j=1,2..,m v j = 1

Therefore, this is a 0-1 quadratic programming problem(QPP) with linear con-
straints((1, 2 and 3) and convex quadratic objective function(4), which can be solved
using any of the available MIQP (mixed integer quadratic programming) solver.
After computing the values of ∀i, jXi j,if Xi j=1 then, user U j is assigned to task Ti i.e,
assigned(Ti) = ∀ j|Xi j 6=0U j. If K > Maximum achievable f ailure resilience then solu-
tion with Maximum Achievable failure resilience is obtained.(refer Algorithm2)
The users in the set assigned(Tk) will be given privileges to perform the task Tk. The

Algorithm2: User-Task assignment with QPP
1. K is expected failure resilience.
2. Form QPP with constraints 1 or 2 and 3 with objective function(4)
3. Solve QPP with MIQP solver
4. while solution is not feasible
5. modify constraint 3 replace K by K −1(K = K −1)
6. Solve modified QPP with MIQP solver
7. Solution is obtained with Failure resilience K .

Table 3. Algorithm for user-task assignment using QPP

assignment of privileges to users is either static (at activation time) or dynamic (at run-
time). In case of static assignment of privileges, all privileges are given to the users
at the very beginning and are retained forever. In case of dynamic assignment of priv-
ileges, privileges are given just before the task is to be executed. The privileges are
revoked after the task has executed.

Change of Assignment in dynamic scenario In case of dynamic scenario we get the
initial user-task assignment by solving the QPP. On failure of a user, this assignment

can be modified at runtime to get more failure resilience. Consider the workflow in
figure fig4,
There are four tasks T1,T2,T3 and T4. Suppose there are five users U1,U2,U3,U4 and U5.
All users can do all the tasks of the workflow as per security policy. Let us say
(T1,T2),(T2,T3) and (T3,T4) are sets of mutually exclusive tasks, so no user can do two
tasks in a set simultaneously. Also, let us assume that we need a failure resilience of 2.
In this case, the initial QPP is:

Fig. 4. Example workflow

minimize

variance = (
5

∑
j=1

[4

∑
i=1

Xi j−avg
]2)/5

where

avg = (
5

∑
j=1

4

∑
i=1

Xi j)/5

subject to constraints
SoD constraints
X11 +X21 ≤ 1; X12 +X22 ≤ 1; X13 +X23 ≤ 1; X14 +X24 ≤ 1; X15 +X25 ≤ 1
X21 +X31 ≤ 1; X22 +X32 ≤ 1; X23 +X33 ≤ 1; X24 +X34 ≤ 1; X25 +X35 ≤ 1
X31 +X41 ≤ 1; X32 +X42 ≤ 1; X33 +X43 ≤ 1; X34 +X44 ≤ 1; X35 +X45 ≤ 1
Failure resilience constraints
X11 +X12 +X13 +X14 +X15 ≥ 2; X21 +X22 +X23 +X24 +X25 ≥ 2
X31 +X32 +X33 +X34 +X35 ≥ 2; X41 +X42 +X43 +X44 +X45 ≥ 2
The solution to this QPP is :
assigned(T1) = (U5,U3);assigned(T2) = (U1,U4);assigned(T3) = (U3,U2)
assigned(T4) = (U4,U1)
This is the user-task assignment in case we take static user-task assignment and is the
initial assignment for the dynamic case. Now suppose user U5 has executed task T1 and
user U1 has executed task T2. If user U3 fails at this stage, then in static scenario user
U2 executes T3, assignment remains fixed and failure resilience at this stage is 1. On the
other hand, in case of dynamic scenario, a new QPP is formed as given below. The ob-
jective function remains the same as we still want to minimize the knowledge gain. The
constraints which were there still hold on as tasks are still mutually exclusive. There
will be some new constraints which are as follows:
∀iXi3 = 0 % As user U3 failed
X15 = 1;X21 = 1 % As U5 and U1 executed T1 and T2 respectively, so this
assignment can not be changed.
On solving the new QPP we get the assignment as:
assigned(T1) = (U5,U4);assigned(T2) = (U1,U2);assigned(T3) = (U4,U5)

assigned(T4) = (U1,U2)
Now U4 executes T3 and we can get a failure resilience of 2 even after the failure of a
user.
As shown in the example we can get a high failure resilience by changing the assign-
ment at runtime. To change the assignment at runtime, we use iterative quadratic pro-
gramming approach. We form a new QPP at each failure by introducing the constraints
arose due to failure of a user and also because of execution of tasks preceding the task
at which failure occurs(shown in the example).

The problem with the iterative quadratic programming approach is that the time
taken to solve QPP at runtime increases the time of execution of workflow. But, since
the number of unknown variables reduces in each iteration, it takes less time to solve
resulting QPP.

4 Results

We carried out our experiments on a 2.8 GHz processor with 512 MB of RAM. The
two approaches described in the paper are both NP hard but there are commercial tools
available for solving quadratic programming problems which can compute the solution
really fast. For solving MIQP, we used ILOG OPL-CPLEX Analyst Studio [7] which
provide the fastest possible execution times.

Test cases [8] are randomly generated. Table 5 shows the time taken by exhaustive
search approach and the quadratic programming approach. In time column for exhaus-
tive search approach, if the solution can not be generated within 1000 seconds then a ’-’
is kept. In time column for quadratic programming approach the value before/ indicates
the time taken to compute a feasible solution and value /after indicates the time taken
to compute the optimal solution. If optimal solution is not computed within 60 seconds
then a ’-’ is put. The ILOG CPLEX [9] finds a good feasible solution early but it takes
time to prove that solution is optimal. A good feasible solution is one which satisfies
all the constraints and the value of objective function for this solution is very close3 to
optimal value (minimum value of variance).

Table 4 shows the maximum achievable failure resilience for some of the instances
available at [8]. The maximum achievable failure resilience of an activity does not de-
pend on number of users, tasks and constraints. For same number of users, tasks and
constraints maximum achievable failure resilience will be different as it depends on
policy and type of constraints. Table 4 also contains average number of tasks, mini-
mum number of tasks and maximum number of tasks assigned to a user. The results
(in table 5) show that a feasible solution can always be computed in a small duration
using quadratic programming approach. However if more than one feasible solution is
generated(whenever a better solution, i.e close to optimal, is generated), then the time

3 The difference between the optimal value and the good value is less than 1%. As all the security
constraints are satisfied and min K failure resilience constraint is also satisfied, the solution is
secure and failure resilient. The 1% difference affects the knowledge gained by each user. The
optimal solution can always be computed but time required will be more. Thus, there is a trade
off between the knowledge gained by the users and time taken to compute the assignment.

Instance No. No. Total SoD max Avg no. min no.of max.no of
Name of of Const- Const- achievable of tasks tasks assigned tasks assigned

users tasks raints4 raints FR per user to a user to a user
50 5 2 1.mod 5 50 332 240 1 20 19 21

10 10 5 1.mod 10 10 61 35 4 5 5 5
15 10 5 1.mod 10 15 103 63 4 7.5 7 8
20 15 6 2.mod 15 20 239 162 5 8 8 8
30 15 6 3.mod 15 30 407 292 5 12 12 12
20 20 9 1.mod 20 20 340 238 8 9 9 9

10 30 14 1.mod 30 10 259 188 13 4.67 3 5
2 40 22 3.mod 40 2 60 46 21 1.1 0 2

10 40 17 1.mod 40 10 416 323 16 4.25 4 5
2 50 22 2.mod 50 2 125 106 21 0.88 0 2
5 50 22 5.mod 50 5 261 207 21 2.2 1 3

Table 4. Results: Failure resilience for some examples [8]

No. of No. of Total SoD Time(in sec) Time (in sec)
users tasks Constraints Constraints (Quadratic (Exhaustive

Programming) Search)
2 2 2 0 1.11/1.11 1
2 2 3 0 0.84/0.84 1
5 5 8 1 0.75/1.53 1.2
5 5 11 2 0.8/1.11 1.4

10 10 54 21 0.51/− 639
10 10 57 26 0.53/− 850
20 20 314 215 2.9/− −
20 20 329 228 4.0/− −

Table 5. Results: Comparison of time taken by the two approaches

for that new solution is recorded. Therefore, the time in the results is the time taken to
generate the optimal solution (if optimal solution is not possible within the maximum
time limits(60 sec) then closest to optimal solution is considered).
It is evident from the results that formulating the problem as a quadratic programming
problem is a better approach as it gives solutions quickly and also does not generate
redundant solutions. As time taken is less, the approach is practically applicable in dy-
namic environments.

5 Conclusion

Many of day to day activities are modeled using workflows. A workflow is a set of
tasks which can be executed by a set of users. The users which can execute many of the
sensitive and critical tasks of an activity/workflow can be software or humans. Failure
to accomplish these critical tasks may lead to delay in activity execution and potential
loss to the organization. On the other hand, allowing users to execute multiple critical

tasks will lead to potential security attacks through these users (insider attacks). There
needs to be a balance between failure resilience constraints and user-task assignments.
We have developed two approaches namely Exhaustive search and Quadratic Program-
ming approach for assigning users to tasks. We have shown that quadratic programming
approach is not only efficient but also gives quality results.

The main focus of this work is to provide failure resilience while satisfying security
policy and constraints. These concerns are addressed in this paper. We have considered
static and decremental resilience in this paper but plan to incorporate dynamic resilience
[3] in future. We have considered task based access control, therefore, we are finding
resilient user-task assignment. We are working on extending the current framework for
role based access control environments [10] where failure resilient user-role assignment
need to be identified.

References

1. Patrick C. K. Hung, Kamalakar Karlapalem, and James W. GrayIII, “A Study of Least
Privilege in CapBasED-AMS,” in International Conference on Cooperative Information
Systems, 1998, pp. 208–217.

2. Ninghui Li, Mahesh V. Tripunitara, and Qihua Wang, “Resiliency policies in access control,”
in ACM Conference on Computer and Communications Security, 2006, pp. 113–123.

3. Qihua Wang and Ninghui Li, “Satisfiability and resiliency in workflow systems,” in ES-
ORICS, 2007, pp. 90–105.

4. Roshan K. Thomas and Ravi S. Sandhu, “Task-Based Authorization Controls (TBAC):
A Family of Models for Active and Enterprise-Oriented Authorization Management,” in
Eleventh International Conference on Database Security, 1997, pp. 166–181.

5. Jon A. Solworth, “Approvability,” in ASIACCS ’06: ACM Symposium on Information, com-
puter and communications security, 2006, pp. 231–242.

6. HoonSang Jin, HyoJung Han, and Fabio Somenzi, “Efficient Conflict Analysis for Finding
All Satisfying Assignments of a Boolean Circuit,” in TACAS, 2005, pp. 287–300.

7. http://www.ilog.com/products/oplstudio/
8. http://students.iiit.ac.in/∼meghnal/inputs/
9. http://eaton.math.rpi.edu/cplex90html/pdf/usrcplex.pdf

10. Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman, “Role-Based
Access Control Models,” IEEE Computer, vol. 29, no. 2, pp. 38–47, 1996.

11. Kaijun Tan, Jason Crampton, and Carl A. Gunter, “The consistency of task-based authoriza-
tion constraints in workflow systems,” in CSFW, 2004, pp. 155–.

12. Aaron Helsinger, Karl Kleinmann, and Marshall Brinn, “Framework to Control Emergent
Survivability of Multi Agent Systems,” in AAMAS, 2004, pp. 28–35.

13. Guillermo Navarro, Joan Borrell, Jose A. Ortega-Ruiz, and Sergi Robles, “Access control
with safe role assignment for mobile agents,” in AAMAS, 2005, pp. 1235–1236.

14. Axel Kern and Claudia Walhorn, “Rule support for role-based access control,” in ACM
symposium on Access control models and technologies, 2005, pp. 130–138.

15. Jason Crampton, “A reference monitor for workflow systems with constrained task execu-
tion,” in SACMAT, 2005, pp. 38–47.

