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Košice, Slovakia

marian.novotny@upjs.sk

Abstract. In this paper we design an e-voting protocol for an academic
voting system which should be independent from other university ap-
plications. We briefly discuss security requirements for e-voting schemes
focusing on our proposed scheme. We design a receipt-free e-voting pro-
tocol which requires neither anonymous channel nor other physical as-
sumptions. We give a short survey on formal analysis of e-voting proto-
cols. Using the applied pi-calculus we model and analyze some security
properties of the proposed scheme.

1 Introduction

Voting is one of the most important and fundamental institutions of democratic
society. The process of informatisation brings the possibility of cheaper and more
comfortable alternative to classical voting – voting through the Internet. The
increase of the turnout using e-voting is generally disputable [9], but we believe
that it can be achieved in the domain of academic field, because of young and
more computer proficient participants.

On the other hand it is desirable to protect the privacy of voters and shield
them from the possibility of frauds. Design and analysis of e-voting protocols
have become a challenge in cryptography and security research field. Since design
of cryptographic protocols is notoriously error-prone, it is necessary to prove
security properties using formal methods.

There are many schemes [14, 15] which realize different kinds of demands for
e-voting. They use various cryptographic primitives [14] such as blind signature
[6], bit commitment, homomorphic encryption, mixnets, zero-knowledge proofs,
deniable encryption [5] etc. We may distinguish three main kinds of protocols in
literature according to the mechanism for providing the privacy of voters: blind
signature schemes [8, 12], homomorphic encryption schemes [14, 15] and schemes
based on mixing the votes [14]. A good survey on e-voting schemes can be found
in [14, 15].

This paper is organized as follows. The next section describes the academic
voting system and security requirements and phases of e-voting schemes. The
section following next introduces the proposed e-voting scheme. In section 4 we
give a short survey on formal analysis of e-voting protocols and analyze our



proposed scheme. The last section presents our conclusions and suggestions for
the future work.

2 Academic voting system

Nowadays academic institutions are using various applications such as univer-
sity information system, video-conference, portal of virtual collaboration etc.
The evolution of these systems and corresponding demands for them requires to
implement modules for providing various private voting services, e. g., election
to academic boards, balloting of commissions, anonymous questionnaires about
lectures, teachers or anonymous psychological questionnaires etc.

Our aim is to design and implement an academic voting system, which should
be independent from other university applications. These will be extended by
a module for managing of voting, such as creating and defining voting with
obligatory properties as the type of voting, the list of eligible voters and candi-
dates, in the case of questionnaires the questions and possible answers, the start
and the deadline for the vote-casting etc. We assume a pre-established Public
Key Infrastructure with registered conceivable voters with relevant certificates
of public keys. Each certificate must contain a part, which uniquely identifies
various potential voters such as students, teachers, foreign visitors etc.

The act of vote-casting or filling questionnaire will be accomplished by using
a Java Web Start application in order to have a program without installation
which can use a keystore of voter’s keys and secrets on his device. The source code
of the client-side software will be signed by the trusted registration authority and
verified by the user and the Java Virtual Machine during loading the application.
This way we assume that the client-side will be trusted.

In the beginning of realization of the academic voting system we do not
assume qualified certificates. It will be sufficient to obtain a certificate by the
e-voting client where a user creates a pair – a private key with corresponding
public key. By using the client application the user authenticates and authorizes
himself in a university application and sends the public key together with the
proof of knowledge of the corresponding private key. The university application
then issues the certificate of the public key for him.

Security requirements and phases of e-voting schemes. There exist sev-
eral possible types of voting [14]. According to the requirements for the academic
voting system we need to implement yes/no, 1-L, 1-L-K and special “write-in”
[14] for questionnaires.

The stages of voting can be seen on Fig. 1. After creating and defining voting,
the process of voting consists of six stages in general. We focus mainly on the
phases of registration, vote-casting, tallying and verification, which are realized
by the e-voting protocol.

A voting scheme is expected to satisfy certain security requirements, which
are summarized and compared in [15]. In the following we enumerate and briefly
describe these properties which are relevant for the academic voting system.
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Fig. 1. The stages of a voting scheme

– Eligibility. Only valid voters who meet certain pre-determined criteria are
eligible to vote.

– Privacy. In a secret ballot, a vote must not identify a voter and any trace-
ability between the voter and his vote must be removed.

– Verifiability. A voter should be able to verify whether his vote was correctly
recorded and accounted in the final vote tally. We distinguish between indi-
vidual and universal verifiability. In the latter case not only the voter but
anyone can verify that all valid votes were included and the tally process
was accurate.

– Dispute-freeness. A voting scheme must provide a mechanism to resolve all
disputes at any stage.

– Accuracy. A voting scheme must be error-free. Votes of invalid voters should
not be counted in the final tally.

– Fairness. No one should be able to compute a partial tally as the election
progresses.

– Robustness. A scheme has to be robust against active or passive attacks and
faults as well.

– Receipt-freeness. A voter should not be able to provide a receipt with which
he may be able to prove his vote to any other entity.

– Practicality. A voting scheme should not have assumptions and requirements
that may be difficult to implement for a real application.

3 The proposed scheme

In the protocol we assume neither anonymous nor other physical assumptions
such as untappable channel [14]. On the other hand our scheme requires a pre-



established public key infrastructure. In this way each eligible voter has a valid
certificate of a public key according to the private key for signing.

We use three servers – two registration and one tally as sketched in Fig.
2. Each registration server has a list of eligible voters for certain voting. We
doubled registration servers, because we consider blind signature schemes to
be problematic due to the possibility of creating votes of abstain voters by the
registration server. The problem can be caused if a voter has been registered and
then abstains. In this case the single registration server knows registered voters
and is able to create a “fake” vote which substitutes a vote of the abstain voter
in the final tally. We would like to avoid this problem by using two registration
servers for controlling themselves. Machines on which the registration servers will
be running should be mounted on different places under the control of different
authorities. Moreover they serve in the protocol also as a simple decryption
mixnet for providing anonymity of the communication in the vote-casting phase.

First we introduce a basic scheme which does not provide the receipt-freeness
property. Next we will extend it by using trapdoor bit commitment combined
with deniable encryption in order to provide the receipt-freeness property. In the
description of the scheme we use the following notations. For a participant X we
denote his public key for encryption (signing) PkE

X (PkS
X) and the corresponding

private key SkE
X (SkS

X). Encryption of a message m under the public key PkE
X

is denoted as EPkE
X

(m) and signing the message m by the participant X using
his private key SkS

X as SSkS
X

(m).

The scheme based on blind signature. For ensuring the privacy property,
i. e., removing any traceability between a voter and his vote we use a blind
signature scheme. The concept of the blind signature was introduced by D.
Chaum in [6]. This kind of signature solves the problem when a requester R
wants to sign a message m from an authority A without revealing any information
about m. The content of the message m for the signer A with the public key
PkS

A is blinded by the requester using the function Bl(m, r, PkS
A) with a random

parameter r. The signer A signs the blinded message as SSkS
A
(Bl(m, r, PkS

A))
and sends it to the requester. The requester retrieves the desired signature using
the unblind function Unbl(SSkS

A
(Bl(m, r, PkS

A)), r, PkS
A) = SSkS

A
(m).

Registration phase. First a voter Vi obtains public keys of all servers and a public
parameter of the tally server for the voting gt

T . The private parameter t of the
tally server can be shared by many authorities such as members of a voting
committee and gT ∈ G is a generator of a cyclic group G on which we can map
the set of asymmetric keys for the encryption of a vote. We assume that for the
group G is the CDH problem [11] hard. This way we would like to ensure the
scheme to be more robust in the sense of the fairness property.

The voter Vi chooses his vote votei, then he randomly chooses vi and com-
putes the asymmetric key Ki = (gt

T )vi for the decryption with the corresponding
key K−1

i for the encryption of the vote. For all public key encryptions includ-
ing the encryption of the vote we use an IND-CCA [11] probabilistic encryption
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Fig. 2. The servers and the communication in the protocol

scheme and for hashing a hash function H which fulfills appropriate security
requirements for hash functions [11].

The voter Vi prepares his ballot bi = EK−1
i

(votei), gvi

T and computes its hash
value hi1 = H(bi). Then he blinds this hash value as bli1 = BlPkS

RS1
(hi1 , ri1) by

a random parameter ri1 . The voter registers in RS1 server and signs the hash
value of his ballot by RS1 server in the following messages:

1. Vi −→ RS1 EPkE
RS1

(Vi, SSkS
V
(IDvoting, Vi, bli1))

2. RS1 −→ Vi SSkS
RS1

(bli1)

After receiving and encrypting the first message the registration server RS1

examines whether the voter Vi is on the voter’s list for the voting IDvoting and
checks the signature. If the check succeeds, it signs the blinded message bli1 and
sends it back to the voter in the second message. The voter unblinds this message
using the random parameter ri1 and obtains the signature of the hash value of
his ballot: SSkS

RS1
(hi1).

The voter Vi after successful registration in RS2 server will obtain a “to-
ken” for the vote-casting phase. First the voter prepares the message mi2 =
EPkE

RS2
(EPkE

T S
(bi, SSkS

RS1
(hi1))) and computes its hash value as hi2 = H(mi2).

Then he blinds it by a random parameter ri2 thus has bli2 = BlPkS
RS2

(hi2 , ri2).
The voter registers in RS2 server in the following messages:

1. Vi −→ RS2 EPkE
RS2

(Vi, SSkS
V
(IDvoting, bli2 , Vi))



2. RS2 −→ Vi SSkS
RS2

(bli2)

After receiving and encrypting the first message the registration server RS2

examines whether the voter Vi is on the voter’s list for the voting IDvoting and
checks the signature. If the check succeeds, it signs the blinded message bli2
and sends it back in the second message. The voter unblinds this message using
the random parameter ri2 and obtains SSkS

RS2
(hi2) which is the “token” for the

vote-casting phase.

Vote-casting phase. After the above mentioned registration the voter Vi can
abstain or take part in the voting by sending the following message until the
deadline of the voting:
Vi −→ RS1 (EPkE

RS1
(mi2 , SSkS

RS2
(hi2)))

The registration server RS1 decrypts the received message, then it examines the
validity of the signature of RS2 server on the hash value of the message mi2 and
finally it stores it in its local database together with the signature SSkS

RS2
(hi2).

Tallying phase. After the deadline of the voting, the registration server RS1

sends lexicographically ordered messages mi2 of all participated voters Vi with
corresponding signatures SSkS

RS2
(hi2) to the registration server RS2. It also pub-

lishes the list of signatures in order to avoid possible disputes. The server RS2

examines the validity of its signature for each message. If the check succeeds,
then it decrypts each message mi2 and sends them lexicographically ordered to
the tally server TS with its signature of the hash value of the complete list.
Furthermore it publishes the list of signatures of messages which were sent by
it.

1. RS1 −→ RS2 m2, SSkS
RS2

(hi2)
2. RS2 −→ TS EPkE

T S
(bi, SSkS

RS1
(hi1))

The tally server TS checks the signature of the RS2 server on the incoming list
and then decrypts each message from the list and checks the signature of the RS1

server on each ballot bi. It obtains the shared secret t from shareholders and then
for each ballot bi it computes the key Ki = (gvi

T )t for the decryption of the vote.
After decrypting it publishes t and the list SSkS

RS1
(hi1), (EK−1

i
(votei), gvi

T ), votei.

3.1 Informal analysis of the protocol

In this part we provide informal arguments about the security properties of the
proposed basic scheme. In section 4 we will define a formal model of the protocol
and specify and prove some security properties using the applied pi-calculus.

The protocol should provide the fairness property under the assumption that
all servers and shareholders of the parameter t do not cooperate in order to know
the partial tally. The ballot is encrypted three times under the public keys of all
servers. The servers can decrypt the message cooperatively in the vote-casting



phase and obtain the ballot. But for acquiring the vote from the ballot it is
required to know the secret parameter t which can be shared by many authorities
such as members of voting committee etc.

The privacy property is ensured by the blind signature scheme. During the
registration in the RS1 server, the trace between a voter and his ballot is re-
moved. The voter obtains the “token” for the vote-casting phase during the
registration in the RS2 server. In the vote-casting phase it is possible to de-
duce the communication link between the sender of the message and the vote
by cooperation of all servers. At this stage three serves serve as a small decryp-
tion mixnet. The message from the voter in the vote-casting phase is waiting
for processing in the RS1 server until the deadline of the voting. Hiding the
communication link can be achieved by a single honest server, which does not
cooperate with others.

The voter is authenticated in the registration servers using his signatures
of messages during registration. If he registers in the RS1 server and does not
register in the RS2 server, he is not able to send his vote in the vote-casting
phase. If he registers in RS2 and not in RS1 and he sends the message in the
vote-casting phase, the message is not correct and cannot be counted in the final
tally. If the voter has been registered in both servers, he can abstain from voting
if he does not send the message in the vote-casting phase. For creating a “fake”
vote of an abstain voter it is necessary that two registration servers cooperate. If
the voter correctly registers in both servers and sends the message in the vote-
casting phase and his vote is not published in the final tally, he can look at the
published lists of registration servers and find the problem. If it is necessary he
can resend his message with the “token” to the server RS1.

3.2 A Receipt-free version of the scheme

Instead of the ballot bi from the above mentioned basic scheme we redefine the
ballot and denote it as bRF

i in the receipt-free version scheme in order to send the
bit commitment of a vote and deniable encryption of the parameter for opening
the commitment. In this way the tally server can open the bit commitment in one
way only, but the voter can fake a coercer about his vote by faking the parameter
for opening the commitment. To ensure that the scheme is more robust in the
sense of the fairness property it is sufficient to encrypt just the bit commitment
under the key K−1

i defined above.

Trapdoor bit commitment. We use the trapdoor bit commitment scheme
from the paper [13]. Several parameters p, q, g are generated and published by
the voting system, where p, q are primes, q|p − 1, g ∈ Z?

p and q = order(g).
The voter Vi has own secret αi and computes Gi = gαi mod p. We define
the bit commitment BC(votei, ri) = gvoteiGri

i mod p where votei is the vote
of the voter Vi and ri is a random parameter. The voter is able to open the
bit commitment as an arbitrary vote votec1 by using his secret αi and from
1 we denote parameters which depends on a candidate c with the superscript c



the equation votei + αiri = votec + αir
c
i mod q he can compute rc

i such that
BC(votei, ri) = BC(votec, rc

i ).
We assume that the list of candidates (possible votes) is not very large and

the tally server for each candidate c can compute and store gvotec

. In this way it
is sufficient for opening to send BC(votei, ri), ri, Gi. The tally server computes
Gri

i = gα.ri mod p, then the inverse (Gri
i )−1 mod p. The value of gvotei computes

as gvotei = BC(votei, ri).(Gri
i )−1 = gvotei .Gri

i .(Gri
i )−1 mod p and in order to find

the vote votei compares gvotei with pre-computed values of gvotec

mod p for each
candidate c.

Deniable encryption. We use a public key sender deniable encryption
DEPkDE

X
(m, l) of a message m under a public key PkDE

X with an random pa-
rameter l. The public key sender deniable encryption scheme should fulfill the
following requirements [5]: only receiver possesses the decryption key and the
scheme should be semantically secure; with overwhelming probability the value
decrypted by the receiver contains no flipped bits; the sender should have an ef-
ficient faking algorithm φ such that for a given ciphertext s, which is encryption
of the message m with the random factor l (s = DE(m, l)) and a faking message
mf , he can compute l′ = φ(s, m, l, mf ), such that s = DE(mf , l′).

The receipt-free version of the protocol. The voter Vi in the receipt-free
version similar to the basic scheme of the protocol randomly chooses vi and
computes the asymmetric key Ki = (gt

T )vi for the decryption with correspond-
ing key K−1

i for the encryption of the bit commitment. He prepares the ballot
bRF
i = (EK−1

i
(BC(votei, ri)), gvi

T , Gi, DEPkDE
T S

(ri, li)). For each candidate c he
computes rc

i using his secret αi and the equation votei + αiri = votec + αir
c
i

mod q. This way the voter can open the bit commitment BC(votei, ri) as the vote
of the arbitrary candidate c using computed appropriate value of rc

i . For each pa-
rameter rc

i the voter is able to compute using the faking algorithm φ in the deni-
able encryption scheme the value lci = φ(DEPkDE

T S
(ri, li), ri, li, r

c
i ). In the time of

coercion he can show the suitable lci such that DEPkDE
T S

(rc
i , l

c
i ) = DEPkDE

T S
(ri, li)

and BC(votei, ri) = BC(votec, rc
i ) for each candidate c. In this way the voter is

able to fake the coercer about his vote.
The tally server TS in the tallying phase checks the signature of the RS1

server on the hash value of the ballot bRF
i . It obtains from shareholders the

shared secret t. For each ballot it computes the key Ki = (gvi

T )t for decryption
of EK−1

i
(BC(votei, ri)) and obtains the bit commitment BC(votei, ri). Then

it decrypts deniable encrypted ri and opens the bit commitment as mentioned
above.

On the other hand it is required that the voter or anyone else can verify
correctness of the final tally. This way we use the zero-knowledge proof from the
paper [12]. TS server publishes the list of bit commitments bci = BC(votei, ri)
with relevant signatures of the RS1 server. It also publishes the list of votes vote′i
in random order using the random permutation π such that vote′i = voteπ(i).



More precisely the tally server TS divides all votes into disjoint groups so that
each group contains at least one candidate if possible. For each group it publishes
the list of bit commitments bc1, . . . , bck and the list of votes vote′1, . . . , vote′k.
Using the non-interactive version of the zero-knowledge proof [12] it proves that
it knows the permutation π and the random parameters ri for opening the bit
commitments, such that bci = BC(votei, ri), vote′i = voteπ(i) without revealing
π, ri. The description how to calculate the proof can be found in [12].

Unfortunately the known public key sender deniable encryption schemes
rapidly lengthen a message. For our purposes we need to encrypt the param-
eter ri for opening the bit commitment. We can use a simple trick in which we
generate random short keys SKc

i for symmetric encryption of each parameter
rc
i of each candidate c. We use the public key deniable encryption only for the

“right” key SKi for encryption of the parameter ri which is used for opening the
vote votei. The tally server decrypts deniable encrypted symmetric key SKi and
try to decrypt all encrypted parameters. By using some redundancy for example
some bit pattern it can distinguish the “right” parameter ri and correctly open
the bit commitment as votei. On the other hand, in the time of coercion the
voter can show the suitable symmetric key SKc

i for decrypting ESKc
i
(rc) and

opening the bit commitment as the candidate c.

4 Formal analysis of the proposed scheme

In this section we briefly describe formal modeling of security protocols by the ap-
plied pi-calculus and give a short survey on formal analysis of e-voting protocols.
Next we will model our proposed scheme and analyze some security properties.

4.1 The applied pi-calculus

The applied pi-calculus is a language for describing concurrent processes and
their interactions. It is based on the pi-calculus, but is intended to be less pure
and therefore more convenient to use. The applied pi-calculus is similar to the
spi-calculus [2]. The key difference between them is in the way of handling of
cryptographic primitives. The spi-calculus has a fixed set of cryptographic prim-
itives, while the applied pi-calculus allows us to define less usual primitives by
means of an equational theory on terms.

We briefly describe the syntax and the operational semantics of the applied
pi-calculus from the paper [1]. Terms are defined by means of a signature Σ,
which is a set of function symbols with arities. The set of terms is built from
names, variables and function symbols from Σ applied to other terms. Terms and
function symbols are sorted and function symbol application must respect sort
and arities. Terms are equipped with an equational theory E, i.e., an equivalence
relation on terms that is closed under substitution of terms for variables and
under application of term contexts (terms with a hole [1]).

Plain processes are defined as follows. The null process 0 does nothing; νn.P
generates a fresh name n and then behaves as P ; if M = N then P else Q



behaves as P if E ` M = N and as Q otherwise; a(x).P receives a message
N from channel a and then behaves as P{N/x}; a〈N〉.P outputs the message
N on channel a and then behaves as P ; P |Q executes P and Q in parallel; !P
generates an unbounded number of copies of P . Active substitutions generalize
the let construction. The process νx.({N/x}) corresponds exactly to let x = N
in P . Moreover we use let with the pattern matching of tuples and denote it as
let (= x, y) = M . For successful substitution M must be a tuple and the first
part of M must be equal in the equational theory with the value of a variable x.

As for the pi-calculus, the operational semantics of the applied-pi calculus
is defined in terms of structural equivalence and internal reduction. Structural
equivalence captures rearrangements of parallel compositions and restrictions
and the equational rewriting of the terms in a process. Internal reduction de-
fines the semantics of process synchronization and conditionals. Observational
equivalence captures the equivalence of processes with respect to their dynamic
behavior. Two processes are observational equivalent if no context can distin-
guish them. The formal definitions of these relations can be found in [1].

4.2 Formal analysis of an e-voting protocol

E-voting protocols use unusual cryptographic primitives such as the blind signa-
ture, the trapdoor bit commitment etc. For formal modeling of these protocols
it is necessary to model properties of these primitives. In this way the applied
pi-calculus allows us to express unusual primitives as equations in the equational
theory on terms and therefore is appropriate for modeling this kind of protocols.

Seminal work on analysis of e-voting protocols was done by Delaune, Kremer,
Ryan in [10]. Authors of this paper modeled and analyzed FOO-scheme [8] using
the applied pi-calculus. They formulated the fairness property as an reachability
property in the sense that the vote of particular voter is not leaked to an attacker
before publishing the final tally. They expressed the eligibility property as an
reachability property in the sense that an attacker cannot trick system into
accepting his vote. They used the ProVerif tool [4] for an automatic analysis of
these properties. Privacy property was expressed as an observational equivalence
of two processes which differ in two voters which swapped their votes. This
property was proved manually by shoving that two processes are labeled-bisimilar
[1].

In the paper [7] authors defined the receipt-freeness property as an obser-
vational equivalence. Roughly speaking, the protocol following this definition
satisfies the receipt-freeness property if there exists a cheater process and the
coercer cannot tell the difference between a situation in which the cheater pro-
cess cooperates with him in order to cast the vote c and one in which the cheater
pretend to cooperate with him, but casts the vote a. For defining the coercion-
resistance property authors of [7] defined the adaptive simulation relation. They
also showed that in the sense of their definitions the coercion-resistance implies
the receipt-freeness and this implies the privacy property. Unfortunately these
specifications of security properties cannot be proved automatically by using the
ProVerif tool.



In the recent paper [3] Backes et al. presented a general technique for model-
ing remote e-voting protocols in the applied pi-calculus and automatical verifica-
tion of their security properties. They formalized three fundamental properties
of electronic voting protocols: inalterability (votes are not modified), eligibility
(only eligible voters can vote), and nonreusability (every voter can vote only
once). This formalization of these properties is by means of correspondence as-
sertions. The main idea is to impose a causality relation among certain protocol
events in execution traces. Such formulated properties can be analyzed automat-
ically using ProVerif. The authors also formulated the coercion-resistance and
the receipt-freeness properties using observational equivalences. This property
can be verified automatically by ProVerif for biprocesses [3]. But it still requires
non-negligible human effort to transform process specification into biprocesses.

Equational theory of the proposed scheme. In the following we describe
the formal model of the receipt-free version of the scheme. The equational theory
on terms in the formal model is built from the function symbols and equations
from Table 1.

Function Meaning Equations

H/1 hash function
pk/1 public key according to private key
g/0, exp/2 group exponentiation exp(exp(g, a), b) = exp(exp(g, b), a)
idvoter/1, getpk/1 identification of the voter getpk(idvoter(k)) = k
PE/3, PD/2 probabilistic encryption (decryption) PD(y, PE(pk(y), x, r)) = x
DE/3, DD/2 deniable encryption (decryption) DD(y, DE(pk(y), x, r)) = x
TBC/3, OTBC/2 trapdoor bit commitment OTBC(TBC(m, r, s), r) = m
S/2, checkS/3 signature and its checking checkS(S(m, sk), pk(sk), m) = true
getm/2 getting message from signature getm(S(m, sk), pk(sk)) = m
bl/3, unbl/3 blinding (unblinding) unbl(pk(sk), S(bl(pk(sk), m, b), sk), b) =

S(m, sk)

Table 1. Function symbols with arities and corresponding equations

Modeling and analysis of the protocol. For the communication between
processes we use a public channel c, which is under the complete control of
an attacker. We assume that all voters are honest and eligible for voting. The
process voter uniquely generates his private key, then he computes his id which
binds his public key and registers this id in the process manager using the
private channel pm

voter. The manager sends the id of the legitimate voter to
the exactly one copy of processes of registration servers RSS

1 , RSS
2 using their

private channels pm
RS1

, pm
RS2

. They can obtain from the received id the public
key of the eligible voter for checking his signature in the registration phase.
The manager also sends the id of the eligible voter to the public channel c. The
process voter chooses his vote non-deterministically by using the process vchoser
and the private channel pvote. The possible votes va, vb, vc are free names which



vchooser , pvote〈va〉 | pvote〈vb〉 | pvote〈vc〉

manager , pm
voter(id) . pm

RS1
〈id〉 . pm

RS2
〈id〉 . c〈id〉

RSS
1 , pm

RS1
(id) . c(m1) . let (= id, m2) = PD(SkE

RS1
, m1) in

let PkV = getpk(id) in let (= id, m3) = getm(m2, PkV ) in

if checkS(m2, PkV , (id, m3)) = true then c〈S(m3, SkS
RS1

)〉

RSS
2 , pm

RS2
(id) . c(m1) . let (= id, m2) = PD(SkE

RS2
, m1) in

let PkV = getpk(id) in let (m3, = id) = getm(m2, PkV ) in

if checkS(m2, PkV , (m3, id)) = true then c〈S(m3, SkS
RS2

)〉

voter , νSkS
V . let id = idvoter(pk(SkS

V )) in pm
voter〈id〉 . pvote(vote) .

νv . να . νrtbc . νrDE . νrbl1 . νrbl2 . νr1 . νr2 . νr3 . νr4 . νr5 . νr6 .
let K = exp(gt, v) in let gv = exp(g, v) in

let b = (PE(pk(K), TBC(vote, rtbc, α), r1), gv, DE(PkDE
T S , rtbc, rDE)) in

let h1 = H(b) in let bl1 = bl(PkS
RS1

, h1, rbl1) in

c〈PE(PkE
RS1

, (id, S((id, bl1), SkS
V )), r2)〉 . c(m1) .

let bS = unbl(PkS
RS1

, m1, rbl1) in if checkS(bS , PkS
RS1

, h1) = true then

let m2 = PE(PkE
RS2

, PE(PkE
T S , (b, bS), r3), r4) in let h2 = H(m2) in

let bl2 = bl(PkS
RS2

, h2, rbl2) in c〈PE(PkE
RS2

, (id, S((bl2, id), SkS
V )), r5)〉 . c(m3) .

let mS
2 = unbl(PkS

RS2
, m3, rbl2) in if checkS(mS

2 , PkS
RS2

, h2) = true then

c〈PE(PkE
RS1

, (m2, mS
2 ), r6)〉

RSM
1 , c(m) . let (m1, m2) = PD(SkE

RS1
, m) in

if checkS(m2, PkS
RS2

, H(m1)) = true then c〈(m1, m2)〉

RSM
2 , c((m1, m2)) . if checkS(m2, PkS

RS2
, H(m1)) = true then

let m3 = PD(SkE
RS2

, m1) in c〈m3〉

TS , c(m) . let ((m1, m2, m3), m4) = PD(SkE
T S , m) in

if checkS(m4, PkS
RS1

, H((m1, m2, m3)) = true then let r = DD(SkDE
T S , m3) in

let K = exp(m2, t) in let bc = PD(K, m1) in let vote = OTBC(bc, r) in

V oting , νSkE
T S . νSkDE

T S . νSkE
RS1

. νSkS
RS1

. νSkE
RS2

. νSkS
RS2

. νt .

let (PkE
T S , PkDE

T S , PkE
RS1

, PkS
RS1

, PkE
RS2

, PkS
RS2

, gt) =

(pk(SkE
T S), pk(SkDE

T S ), pk(SkE
RS1

), pk(SkS
RS1

), pk(SkE
RS2

), pk(SkS
RS2

), exp(g, t)) in

c〈(PkE
T S , PkDE

T S , PkE
RS1

, PkS
RS1

, PkE
RS2

, PkS
RS2

, gt)〉 .

!voter | !vchooser | !manager | !RSS
1 | !RSS

2 | !RSM
1 | !RSM

2 | !TS

Table 2. The formal model of the protocol in the applied pi-calculus



are known to the attacker. The process voter generates all random parameters
including v for computing the asymmetric key K = exp(gt, v) for the decryption
of the bit commitment and then it follows the instructions of the scheme as
defined in the previous section. Two kinds of processes are running on each
registration server: the first for registration (RSS

1 , RSS
2 ) and the later for mixing

(RSM
1 , RSM

2 ). The whole process voting consists of creating the private keys
of servers and the secret parameter t, publishing corresponding public keys and
the public parameter gt to the public channel c and parallel composition of
unbounded copies of all defined processes.

We formulate the eligibly property as an causality relation among protocol
events in execution traces of the protocol. We added to the specification of
the process TS the event ENDV OTE(X, Y ) after accepting of a vote X in a
ballot Y . Into the process voter we added the event BEGINV OTE(X,Y, Z) for
marking the event of starting of voting of a voter Z, which is intended to vote
X in a ballot Y . Using the ProVerif tool we proved reachability of the event
ENDV OTE(X, Y ) and also we proved the assertions ENDV OTE(X, Y ) ⇒
BEGINV OTE(X, Y, Z) for unbounded number of copies of processes in the
formal model of the protocol from Table 2. This assertion means that for all
execution traces it holds that an occurrence of the event ENDV OTE(X,Y )
implies that an event in which an honest voter Z begun the vote-casting the
vote X in the ballot Y has occurred in the particular trace before.

In order to maintain simplicity we do not distinguish between phases of the
protocol. But this possibility is supported by ProVerif tool. In this way we can
divide processes into phases and simply formulate the fairness property as an
secrecy property of leaking the ballot and the vote before the tallying phase.

5 Conclusions

In our work we designed the concept of the academic voting system, which
is independent from university applications. For this system we proposed the
receipt-free e-voting scheme which requires neither anonymous channel nor other
physical assumptions and is based on the blind signature. This scheme was pri-
marily designed for the academic voting system, but can be implemented for
other e-voting applications as well.

In contrast to other blind signature schemes we originally doubled registra-
tion servers thus avoiding problems with a corrupted registration server. More-
over we use registration servers in the vote-casting phase for providing anonymity
of the communication. This way we improved the FOO-scheme [8] and we do not
need to assume an anonymous channel. In the receipt-free version we originally
combined the trapdoor bit commitment with deniable encryption. This way we
improved the Okamoto scheme [13], which requires an untappable channel for
sending the parameter for opening the bit commitment and moreover we save
one message for sending it.

For better understanding of the requirements of the protocol we defined the
formal model of the scheme using the applied pi-calculus and specified and ana-



lyzed some security properties using ProVerif tool. In the future work we would
like to prove privacy-type properties of the proposed scheme. After this analysis
we are planning to design and implement the academic voting system which will
provide the universal interface for other university applications and enable them
to use voting services without the need to implement individual voting systems.
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