
Detection and Prevention of Insider Threats in Database
Driven Web Services

Tzvi Chumash and Danfeng Yao∗

{tzvika,danfeng}@cs.rutgers.edu

Rutgers University, Computer Science Department
110 Frelinghuysen Road, Piscataway, NJ 08854, USA

Abstract. In this paper, we take the first step to address the gap betweenthe
security needs in outsourced hosting services and the protection provided in the
current practice. We consider both insider and outsider attacks in the third-party
web hosting scenarios. We presentSafeWS, a modular solution that is inserted
between server side scripts and databases in order to prevent and detect website
hijacking and unauthorized access to stored data. To achieve the required security,
SafeWSutilizes a combination of lightweight cryptographic integrity and encryp-
tion tools, software engineering techniques, and securitydata management prin-
ciples. We also describe our implementation ofSafeWSand its evaluation. The
performance analysis of our prototype shows the overhead introduced by security
verification is small.SafeWSwill allow business owners to significantly reduce
the security risks and vulnerabilities of outsourcing their sensitive customer data
to third-party providers.

1 Introduction

As e-commerce becomes more common on the Internet, an increasing number of
small businesses (e.g., online stores) use hosting providers to open their doors to
online customers. These small businesses put their trust invarious hosting ser-
vice providers for the benefits of higher availability, fastwebsite access, round-
the-clock support and a very low cost [6]. As a result, customer data, which may
contain sensitive information (such as Social Security numbers or credit card in-
formation), is either stored by these third-party providers, or can be accessed from
their servers.
In what follows, we will use the following terminology to distinguish the enti-
ties that concern us.Service providerrefers to an organization and its employees
which are in the business of leasing web service resources.Web-serverrefers to a
machine and software running on it that is owned by a service provider1. A web-
server provides website content to an end-user.Website contentrefers to HTML
pages, scripts and any data in a database that is stored or served by the scripts on
a given website. Anend-useror acustomeris a person that is interested in web-
site content for a given website, this person may disclose sensitive information to

∗This work has been supported in part by NSF grant CNS-0831186and the Rutgers Univer-
sity Computing Coordination Counsil Pervasive Computing Initiative Grant

1Software refers to the entire non-hardware environment provided, including the operating
system, web-server software (such as Apache) and PHP interpreter.

2 Tzvi Chumash, Danfeng Yao

this website. Awebsite owneris the person (or organization) that is in charge of
website content and has interest in keeping end-user information safe. Web site
owners lease web-servers from service providers in order torun their web site.
A website owner may purchase a (low cost) certificate to authenticate their estab-
lishment [5, 7]. When customers fill out HTML forms with theirsensitive infor-
mation on SSL protected websites, they are led to believe that with the padded
lock icon and an authenticated signed certificate, the data that they are about
to hand over is safe. However, SSL only protects theend-to-endsecurity of the
data from the customer’s computer to the web-server [5], it bears no indication
of the kind of protection that the data gets once it enters thedomain of the ser-
vice provider. As we will explain next, many website owners typically store the
database credentials in clear-text. This information can be easily used to login to
the website owners’ databases and either retrieve or alter sensitive information of
customers.
Many websites are driven by database systems, as databases are widely used to
store customer data and product information and play a crucial and central role
in modern e-commerce. Using a combination of server-side scripts2 and database
connections is a widely used approach in providing dynamic content to online
users and in retrieving and storing customer data on databases. These scripts of-
fer website owners a versatile interpreted language that can create complex web
environments, with libraries offering connectivity to many other services such as
databases. However, there has not been any framework provided within the web-
server environment to allow for safe execution of server-side scripts. Server-side
scripts are called by web server modules, which are initiated by end-user requests.
Due to the interpretive nature of server-side scripts, and with the tools available
today, it is impossible to obscure or hide sensitive programdetails from users
with administrative access to the web-server machine. Furthermore, aside from
being completely readable, these server-side scripts can be altered by privileged
users without the owner’s consent or knowledge.
Storing database passwords asclear-textin server-side scripts is thede factoprac-
tice for IT professionals world-wide. In an outsourced setting, this approach im-
plies that it is extremely easy for malicious employees at the service provider
organization to access the passwords of business owners andthus their customer
data. Security breaches at providers, caused by outside adversaries, may also ex-
pose hosted sensitive information. However, neither the research nor the indus-
trial community have been giving enough attention to protecting sensitive data
from being used by unauthorized parties and untrusted service providers in the
outsourced setting.
Server-side script creators have been aware of the clear-text credential issues [19,
4], but have been concentrating on the ability of an end-userto see them, in
case the web-server software is badly configured or compromised. The service
providers and their web servers have been assumed trustworthy, therefore no pro-
tection against insider threats with respect to server-side scripts has been pro-
vided. The existing solution to protect against credentialdisclosure to end-users
is to create an external script containing the clear-text credentials, placing it out-
side of the document root, and including it by the called script. While this naive
hiding strategy might protect against poor web-server software configuration, a
tampered version of a web server, as well as people with access to the server’s

2Such as PHP, ASP, PERL, Python, etc.

Insider Threats in DB Driven Web Services 3

operating system, can read that file. Another approach is to include the creden-
tials inside the web server configuration file [19], but this again does not protect
against insider threats.
Our Contributions In this paper, we take the first step to address the gap between
the security needs in outsourced hosting services and the protection provided in
the current practice. We consider both insider and outsiderattacks in the third-
party web hosting scenarios. We describe the threats and security vulnerabilities
that exist in today’s web environments. And finally we present SafeWS3, a sys-
tem with a relatively low overhead to mitigate the threats ofpotential security
breaches at service providers.SafeWSis a novel and modular solution that pre-
vents and detects website hijacking and unauthorized access to stored data.
To achieve the required security, our solution utilizes a combination of lightweight
cryptographic integrity and encryption tools, software engineering techniques,
and security data management principles. Our solution is written in C/C++ and
contains a component that resides between server-side scripts and database sys-
tems, as well as components that reside off the service-provider’s server. We eval-
uatedSafeWSwith PHP scripts and the performance analysis shows the overhead
introduced bySafeWSis small.
SafeWSallows business owners to significantly reduce the securityrisks and vul-
nerabilities of outsourcing their sensitive customer datato third-party providers.
By deploying our solution, website owners can provide theircustomers with a
robust and secure storage of their sensitive personal information.
The main goal of this work is to improve the protection of outsourced sensitive
data on untrusted web servers.We believe that low-budgeted database driven
websites that use shared-hosting have the greatest risk forunauthorized disclo-
sure of information, and therefore designedSafeWSfor their needs. Our frame-
work enables website owners (e.g., small business owners) to automatically ver-
ify the integrity of service providers and their web servers. Most importantly, we
efficiently and effectively prevent sensitive credentials, e.g., database locations,
names, usernames and passwords, from being stored as clear-text at the service
provider side. The highlights of our solution are shown below.

– Guarantees that only authorized webpages from the web server can access a
database that stores end users or product information.

– Effectively hides database access credentials from web server administrators
who can read any file on the system.

– Ensures the integrity of outsourced websites by detecting and monitoring
suspicious environments and activities; provides websiteowner with notifi-
cations of suspicious activities.

SafeWSdemonstrates a general security design principle for outsourced computa-
tion that is a contribution beyond the specific server-side script problem studied.
Our work can improve the security of any kind of database driven web server
system in a third-party service provider setting.
Scope of our work We decided to concentrate our work in the layer between
server-side scripts and databases as that is the intersection where the end-user,
the owner and the service provider meet. It allows us to verify the authenticity
of owner-built scripts and the healthiness of the service provider environment,
while also protecting end-user data from being maliciouslyused. At this layer we
can also notify the owner of any foul play, thus minimizing the possible impact

3SafeWS stands for Safe Web Script

4 Tzvi Chumash, Danfeng Yao

of an attack. Authorization and access control, if implemented within server side
scripts, can also benefit fromSafeWSas long as a database connection is used,
thoughSafeWSis not meant to be an access control system. We also concen-
trated our efforts on preventing data theft and corruption,rather than handling
denial of service attacks. Lastly, we decided to evaluate our system on a platform
(LAMP4), that is widely used in the third-party hosting setting, isopen-source
and easily implemented, but due to the generality of our design, we believe our
system to be valid for any server-side scripting language (SafeWScan also im-
prove the security of non-scripting programs such as compiled/binary server-side
programs).
Organization of the paperThe rest of the paper is organized as follows. Our ad-
versarial model, security definitions, and assumptions aredescribed in Section 2.
The architecture and protocols are presented in Section 3. Our security analysis
is discussed in Section 4. Performance evaluation ofSafeWSis described in Sec-
tion 5. Related work is given in Section 6. Finally, we describe future work and
conclude in Section 7.

2 Definitions and Trust Models

In this section, we give the necessary definitions, trust model, adversary model,
and security definitions used in our solution. First, let us briefly recapture our
definitions on the types of entities introduced in Section 1.

– Service providerrefers to an organization and its employees which are in the
business of leasing web service resources.

– Web-serverrefers to a machine and software running on it that is owned by
a service provider.

– An end-useror acustomeris a person that is interested in website content
for a given website.

– A website owneris the person (or organization) that is in charge of website
content and has interest in keeping end-user information safe.

In reality, website owners typically want to provide a cost-effective solution to
their customers. Most of them are unaware of or unable to comprehend the se-
curity requirements and guarantees in the outsourcing environments of service
providers. A large number of website owners do not write server side scripts for
data manipulation themselves. Instead, those functions are provided as part of the
outsourcing service.
Similarly, website customers are usually completely unaware of the business
outsourcing agreements between website owners and serviceproviders. Conse-
quently, the end-users assume that their sensitive information is only released to
the website owner, and no one else5.
Trust Relationships Our trust model is simple and intuitive. The main interac-
tions are between the website owner and the service provider. Website owners
are not malicious. Web servers are not trusted by the websiteowners, and there-
fore, our solution is used by a website owner to verify the integrity of the out-
sourced environment. Website users trust that the website owner is ensuring the
outsourced web server is not compromised.

4Linux, Apache, MySQL and PHP
5For server authentication, users can rely on their web browser indications, such as the lock

icon, an https address and a valid certificate.

Insider Threats in DB Driven Web Services 5

Adversarial Model in SafeWS Instead of assuming abstract adversaries, we
strive to give a concrete and comprehensive categorizationof types of attackers,
from both inside or outside the service provider organization. Such a practical
analysis is both crucial and fundamental to the security of proposed solutions.
Because of the specific application scenario studied, we areable to describe a
concrete adversarial model.
We divided the security threats on a hosted web server into different levels based
on the position and experience of the possible attacker. While we would want to
believe most people would not violate the trust put in them bytheir employer, all
it takes is one person with a different set of motives. Every given level is assumed
to encompass the abilities of the previous level. Thus, a novice hacker may do
anything that an administrator could do.
We believe that some of these security threats can be reducedby making them
more difficult to accomplish, as well as providing our own threat of recognizing
an attack when it happens, and notifying the owners.

– Nosy AdministratorAny server administrator with super-user access can
scan the directory tree for clear-text server-side script files. Upon finding
those files, this person can then read the database credentials, and learn the
names of the columns and tables where sensitive informationis stored. This
person can then decide to enter the provided database and look at the infor-
mation stored there. While this person might be acting out ofcuriosity, the
outcome is that an unauthorized person was able to view secret data.

– Disgruntled EmployeeA disgruntled employee, or specifically a disgrun-
tled employee with system access, may maliciously obtain information from
hosted client websites in the same way the Nosy Administrator would, but
for different reasons. This person can actually cause financial harm by dis-
closing information to outsiders, or using it for personal gain.

– Novice HackerIn addition to all the threats defined above, a novice hacker
may attempt to hijack a website by changing the server-side script files that
obtain web-user information, or by adding new script files. Anovice hacker
may also try to replace the web-server executable with a malicious one.

– Advanced HackerAn advanced hacker may analyze traffic in and out of
the system, change the kernel, scan the memory, and reverse engineer any
program.

Definitions of Security We formalize our security goals in three requirements,
namely,secrecy of database credentials, provenance authentication for database
access, andintegrity of outsourced environments.
Thesecrecy of database credentialsis defined as that the credentials (e.g., pass-
words) required to access the website owner’s database needto be confidential
and cannot be learned by privileged users on the service provider’s machine, who
can readany fileon the system. We give the web server administrators signifi-
cant amount of power, which is necessary in this outsourced scenario. This re-
quirement implies that the website owner’s database needs to be maintained by a
different provider from the web server provider. In practice, such a separation of
duties principle (i.e., separating web server provider from database provider) is
in general desirable to constrain and balance providers’ privileges.
Provenance authorization for database accessis defined as that only authorized
webpages on the web server can access a database that stores end user or product
information. Theprovenance of a database requestis the webpage that initiates

6 Tzvi Chumash, Danfeng Yao

the database connection. This requirement means that the provenance informa-
tion associated with a database request must be recorded, submitted, and verified
before a request can be satisfied.
Integrity of outsourced environmentsis defined as that any tampering with the
web and computing environments, including parameters, software, and libraries,
should be detected and the website owners’ notified.
Security AssumptionsThe owner of a website can obtain the SHA-1 hashes of
non-hacked Apache executable and modules running on the web-server before the
server is compromised. The owner of a website has a separate,non-compromised
machine where he can store private keys, authenticate server-side script files, pe-
riodically activate configuration scripts and compileSafeWS. The machine run-
ning SafeWSmay be compromised afterSafeWSis already in place. The service
provider may, from time to time, upgrade the software on the web server. It is up
to the owner to keep up with these changes and reconfigureSafeWSaccordingly
(as automatically identifying whether a change of a libraryor executable is done
maliciously or not is outside our scope). If multiple scriptfiles which require
database access include each other, it is up to the owner to ensure each of them
callsSafeWSas we do not want to introduce the overhead of nested source files
and pre-compilation to our run-time environment. Embedding connection strings
in compiled code is an approach that can provide added security, as opposed to
just placing them in clear-text scripts, as some work needs to be done to decom-
pile and evaluate the data. This is common practice for any compiled (non-script)
DB accessing CGI6 on a web server, but it is not flexible, nor secure enough.
Recompilation is needed whenever credentials change, as the environment is not
authenticated and the credentials are revealed after one decompilation.

3 Architecture

Intuitively, our solution provides the website owner a way to evaluate, assess,
and authenticate the working environments of a web server hosted by a third-
party service provider. With our solution in place, a website owner (or his trusted
technologically savvy agent) stores and encrypts part of the security information
used for authentication on the third-party web server. If abnormal conditions are
detected, our solution has the ability to automatically notify and alert the web-
site owner and users to the well-being of the third-party server. Next, we will
give detailed descriptions on the architecture, components, and procedures of our
solution.
The design of our solution is divided into two parts. The firstpart includes all ac-
tions needed during run-time to ensure only authorized and authenticated scripts
may access the database, and other attempts would cause notifications to be sent
to the owner of the site. The second part is an offline process that happens mostly
outside the server to ensure proper configuration of the solution 7.

6Common Gateway Interface
7The results of this process are the inputs for the run-time module and so may reside on the

web-server.

Insider Threats in DB Driven Web Services 7

Internet

Server
Script

Web
Server

(apache)

Hosting Server

 Website
Database

Website
Owner Website

User
Website

User

...

(a) Standard Deployment

Internet

Server
Script

Web
Server

(apache)

Hosting Server

Website
Owner Website

User
Website

User

...

RTM

 SafeDB

Signer

 Website
Database

(b) Our Deployment

Fig. 1. Schematic drawings of the architecture of database-drivenhosted website in standard de-
ployment and with our solution.

3.1 Security of Database Credentials

A big security vulnerability in outsourced environments isthe existence of clear-
text database credentials and connection strings inside server-side script files. Ex-
isting common practice is to place this information in another script file that re-
sides outside of the document root and is included during run-time [19, 4]. While
this simple approach might protect the included file from a poorly configured
web-server, it does nothing to prevent a user (or a superuser) on the machine
from reading it.
To solve the clear-text database credential problem, our approach is to hide the
database credentials by encrypting them, and storing them in a separate database,
which we callSafeDB. Because our solution includes access toSafeDB, we need
to protect ourselves from having that access information freely available. We
achieve this in two steps. First, we compile the module that accesses the database
and derive its database access password from a signed SHA-1 hash of the mod-
ule’s own executable. Second, this module checks if it was run by an authorized
script file on a trusted web-server.
Note that the location of this database may vary. Locating itlocally with the web
server may reduce the system’s security, as a superuser may connect to and alter
SafeDB. Locating it off the web server improves the security guarantees, while a
distributed deployment may reduce the reliability and stability of the service. We
further evaluate and analyze the performance in Section 5.

3.2 Key Generation and Solution Setup

During compile time, two sets of 2048-bit RSA keys are generated for theSigner
moduleandRun-Time Module(RTM), which are described in the next section.
The keys are placed in header files included by theSignerand RTM, respec-
tively. The SHA-1 hashes of a valid web-server executable and related modules
are compiled into theRTMas well as the owner’s e-mail address. Once the pack-
age is compiled, one can begin incorporating our solution into the website’s script

8 Tzvi Chumash, Danfeng Yao

files. A part of an unchanged script file (PHP) is shown in Listing 1, where the IP
address, database user, database password and the name of the database are all in
clear-text. To demonstrate the ease of using our solution, we show how to convert
the legacy code in Listing 1 to safer code in Listing 2.

Listing 1.1. PHP Script connecting to a Database.�
<?php
. . .
$db = mysq l connect(1 9 2 . 1 6 8 . 0 . 1 0 0 , ’ myusr ’ , ’PWord ’) ;
m y s q l s e l e c t d b (’ my s to re db ’) ;
. . .

?>

� �

Listing 1.2.PHP Script connecting to a database using SafeWS. With SafeWS, sensitive
database information is not exposed.

<?php
. . .
$ i n f o = s a f e e x e c (’ / home / u1 / b i n / rtm ’ , ’ t a gf 1 1 ’) ;
l i s t ($db hos t , $dbname , $dbuse r , $db pass) =

s p l i t (’ : ’ , $ in fo , 4) ;
mysq l connec t ($dbhos t , $db use r , $db pass) ;
m y s q l s e l e c t d b ($db name) ;
. . .

?>

3.3 Run-Time Module and Signer Module

The Run-Time Module (RTM) is the most crucial component in our solution.
It is called within an authorized script file usingsafeexec()(described below).
WhenRTMloads, it calculates the SHA-1 hashes of its own executable,the script
file that called it, as well as the executable of the web server(i. e., the calling
process) and its relevant modules. When executing,RTM is supplied with atag
parameter. This piece of information allows one script to request many different
sets of Database credentials fromRTM. RTM then checks that it was called by a
valid web server by comparing SHA-1 hashes.
RTM then attempts to accessSafeDB. If the module was tampered with, it will
not be able to derive the correct database password from the SHA-1 hash of its
own executable.

Insider Threats in DB Driven Web Services 9

Upon connecting to the database,RTM looks for a record that matches the SHA-
1 hash of the script filename (that calledRTM) with the suppliedtag. Using its
private key,RTMdecrypts one of the fields and verifies the signature of theSigner
module, which is described next. If the hash of the script fileis verified, then it
is authentic, and the database connection parameters as well as credentials are
returned to the calling script file.

The Signermodule contains its own private key, as well as theRTM’s public
key. This module resides on the website owner’s machine, which is assumed to
be safe. Whenever a new script file is ready to be put on the website, the owner
converts it to be compatible withSafeWS.

The website owner uses theSignerto sign the SHA-1 hash of a script file that
will be installed on the server, and encrypts the result withtheRTM’s public key.
TheSigneralso associates a tag with that script file and with the set of credentials
given by the owner.

The output of theSigneris acryptographic SQL filethat includes the following
information: a SHA-1 hash of the script full path name with the tag, credentials
and database connection parameters encrypted with the public key of theRTM
and the SHA-1 hash of the script file signed using theSigner’s private key and
encrypted by theRTM’s public key. This SQL file is transferred to the server
containing theSafeWSdatabase and is executed there.

3.4 PHP Limitation and safe exec()

As we chose to evaluate our prototype with PHP scripts, we found a serious se-
curity limitation that affects PHP security and the security of PHP-based web
hosting in general. In existing PHP execution environments, it is impossible to
learn or verify the provenance (i.e., origin) of the caller.

PHP offers the following methods to execute non-PHP programs:exec(), passthru(),
proc open(), popen(), shell exec()andsystem(). The process that is executed as a
result of these calls does not know where the call originated(i.e. from which PHP
file). Moreover, the parameters of the web-server session are not provided either.
While it is possible to useproc open()and pass environment variables to a new
process, this would undermine the information integrity, as a hacker might try to
pass bogus parameters to bypass our protection. This security limitation may or
may not affect other scripting languages.

To solve these problems, we had to add another module toSafeWS’s architecture.
We created a new run-time PHP module calledsafeexec(). The main advantage
of safeexec()is that it is able to pass web-session information as well as run-time
environment information, including the calling PHP file, into the process that it
executes.safeexec()is integrated with our solution throughRTM. This module
needs to be installed on the service provider’s machine, andadded to the list of
filesRTMauthenticates. A similar module may be needed for other scripting lan-
guages which do not pass credible execution and web environment information to
executed binaries. CGI (Common Gateway Interface) binaries executed directly
by Apache do receive the required information, and thus can pass it throughexe-
cle().

10 Tzvi Chumash, Danfeng Yao

3.5 SafeWS Run-Time Protocol

OnceSafeWSis deployed and configured, it will be invoked by the web-server
when a participating script file is processed.SafeWS’s protocol is illustrated in
Figure 2 and is described as follows.

Web Form
Submission

End-User
 Machine

Hosted Webserver

Web
Server

Server
Script

RTM

1

2
3

DB
Access

4 5

6 7

8

Check Self
and Web
Server

Connect to
SafeDB

and verify
Server Script

Fault in
4-7

Notify
Owner

e-Mail

Owner’s
Machine

Yes

No

11

12
13

14

Decrypt
and Return
Credentials

9

10

15 16

17

18

Run-Time
Chart

Fig. 2. SafeWS architecture and run-time information flow.

– End-users submit an HTML form on their browser in Step 1, using either
HTTP GET or HTTP POST.

– In Step 2, the hosted web-server executes the script that handles the data.
The web-server then passes the information from the end-user to the script,
through either environment variables or as the script’s standard input. After
initial processing, the script needs to set the database connection parameters,
in order to process the end-user’s request.

– The script callsRTMusingsafeexecin Step 3. Please refer to Listing 1.2 for
an example of such a call.

– OnceSafeWS’s RTMmodule is started, it computes the SHA-1 hash of its
caller’s executable file (e.g.apache) in Step 4 and 5. It computes its own
SHA-1 hash, which is then signed withRTM’s private key to produce the
password forSafeDB.

– In Step 6 and 7,RTMattempts to accessSafeDBwith the credentials it was
compiled with, as well as the password that it computed.RTMcomputes the
SHA-1 hash of the caller PHP script, as well as a digest of the script’s lo-
cation and tag. The digest is used as a key to find the row inSafeDBthat
corresponds to the calling script. Upon selecting the relevant information
from SafeDB, RTMattempts to verify the signed SHA-1 hash of the script.

Insider Threats in DB Driven Web Services 11

Namely,RTM (1) verifies the web-server executable and modules, (2) con-
nects toSafeDB, (3) locates the correct record for the script, and (4) verifies
the signature on its hash.

– Any failure in the above verification procedures results inRTMnotifying the
website owner of the security concern, as well as not returning the requested
information to the calling script. This failure in turn would cause the script’s
subsequent connection to the database to fail, as shown in Step 9 through 11.

– In Step 12, upon a successful verification of the location andauthenticity
of the calling script,RTMdecrypts the remainder ofSafeDB’s record using
its private key and obtains the address of the website’s database server, as
well as the database name, username and password required toaccess it.
This information is then returned to the calling script in Step 13 and 14. The
script then parses the data and connects to the website’s database in Step 15
and 16, and can then complete its task.

In Figure 2, for the sake of description simplicity, we showSafeDBand the pro-
tected website’s database all on the same local host as the web server. In practice,
as we mentioned in Section 2, the database systems should preferably reside and
be maintained at a different location from the local hosted web server, in order
to reduce the security risk. Our protocol description and implementation can be
directly used to accommodate such a distributed deploymentof SafeWS.

3.6 Protecting against advanced hackers

As we stated in Section 2, advanced hackers may reverse engineer any program.
This means thatRTMwould be vulnerable to attacks. If attackers reverse engineer
RTM they could find the keys stored in it as well as the connection information
to SafeDB. However, due to the hurdles we built intoSafeWS, this process might
take a considerable amount of time. First,RTM would have to be decompiled,
the code (which may or may not resemble the original code) must be analyzed.
The database credentials are made by using the SHA-1 hash of the RTM exe-
cutable file signed by the private key stored inRTM. The attacker would need to
build a program to use the extracted keys and obtain and sign the SHA-1 hash
of RTM. In addition, the attackers must refrain from running or misusingRTM
as the owners would be notified. Since we assume thatRTM may be hacked,
we can add another layer of security. By having a periodical job (such as a cron
job) that would generate new keys, recompile bothRTMandSigner, change the
database credentials and distribute the newRTMto the server, we can reduce the
probability of a successful attack. This periodical scriptwould run on the trusted
owner’s machine, and would perform its duties everyX−1 seconds whereX is
the minimum number of seconds that an advanced hacker would take to obtain
theSafeDBcredentials.

3.7 RTM design aspects

RTMis executed each time a script with database access is run by the web server.
Although this is sub-optimal performance wise, the security aspects were more
important. By lettingRTMbe resident in memory, we could implement caching
of database credentials, as well as avoid re-examining the web server executable
and its modules (provided we can guarantee that the process is the same). This

12 Tzvi Chumash, Danfeng Yao

would improve the performance ofSafeWSconsiderably, however, there are a
couple of caveats to this approach which made us choose the other design. First,
the system is designed for shared hosting environments, which normally do not
allow their customers (website owners) to have resident services running on the
machine. Second, the lack of a direct execution relationship between a script and
RTMwould reduce the knowledge the system givesRTMabout the caller, as well
as complicate callingRTM inside the scripts.

4 Discussion

In this section, we analyze the security properties and discuss practical consider-
ations associated with deployingSafeWS. SafeWSsatisfies the security require-
ments that are defined in Section 2 including the secrecy of database credentials,
provenance authentication for database access, and integrity of outsourced envi-
ronments, which are explained in detail next.
SafeWSguarantees that only authorized webpages from the web server can access
a database that stores end user or product information. Thisproperty is achieved
by storing the properties and environments of authorized webpages inSafeDB,
which can only be accessed byRTM with the proper privately generated pass-
word. These operations correspond to Step 6 and 7 in Figure 2.In addition,
our basic script run-time modulesafeexec()ensures that only authentic infor-
mation about script environments is passed toRTM for the verification purpose,
and spoofing attacks (e.g., lying about an IP address or location) can be identified.
SafeWSeffectively hides database access credentials from web server administra-
tors who are allowed to read any file on the system. As stated earlier in Section 3,
while usingSafeWS, the website owner should separate the customer data from
the running environment, i.e., scripts and data should reside on different servers.
Sensitive data should be kept encrypted in a database, and the decrypting web
server should be different than the encrypting one. With this separation of du-
ties, even if attackers obtained the database credentials where the sensitive data
is stored, they will not have a way to decrypt the encrypted customer data.
SafeWSensures the integrity of outsourced websites by detecting and monitoring
suspicious environments and activities and provides website owners with notifi-
cations of suspicious activities. The verification is realized mainly by our Run-
Time Module inSafeWS. RTMleveragessafeexec()’s ability to pass web-session
information as well as run-time environment information into the process that
it executes. In theSafeWSrun-time protocol,RTM checks the integrity of the
web-server executable and verifies the signature on the hashof the invoked script
against the correct record inSafeDBthat can only be accessed byRTM.
Typically when server-side scripts are first developed, they are changed often
due to programming errors or inappropriate specifications.But most of such
scripts reach stable states and are rarely changed afterwards. Therefore, updates
in SafeWScaused by script changes do not cause much communication andcom-
putation overheads. We give a more thorough evaluation and discussion on the
performance ofSafeWSin Section 5.
Note that in-memory code mutation or memory scanning are types of attacks that
may find the private key or clear-text passwords [12]. Our currentSafeWSdesign
can withstand advanced reverse engineering attacks against RTM with the help
of a periodically running script, as described in Seciont 3.6. However, we believe

Insider Threats in DB Driven Web Services 13

that these types of attacks would take significant efforts. Due to the fact that the
Signermodule is safely located on the website owner’s private machine, even if
the RTM’s private key is recovered, the attacker will not be able to sign altered
or new script files without the owner’s key, and thus will be unable to hijack the
website without being detected.

5 Evaluation

Our goals were to see whetherSafeWSwas a viable solution for small and medium
third-party hosted web-sites. We decided to check the impact on both end-users
and web server machines. As end-users today expect fast response times, we
wanted to achive sub-second end-to-end times and low serverimpact.

5.1 Experiment Setup

We used two servers for testingSafeWS. Our web server machine is an Intel
dual core (2*1.6Ghz) with 1MB cache and 2GB RAM. This machineruns Linux
kernel version 2.6.23.17-88 SMP, Apache 2.2.8 and MySQL 5.0.45. Our client
emulator and remote database machine is an Intel dual core (2*2.8Ghz), with
1MB cache and 2GB RAM running Linux version 2.6.27.9 SMP and MySQL
5.0.67. We picked two common website procedures that may allow access to
sensitive information. We wrote PHP scripts that store and update a database with
this information. We measured the end-to-end performance of those functions,
then converted the PHP scripts to work withSafeWSand re-measured. Each of
the following experiments were conducted using both local (on the web server
machine) as well as remote (on the client emulator machine) databases.

Addition of Users We created a PHP script that processes an ’HTTP GET’
form which creates a new web-site user. There were seven pieces of informa-
tion stored for each user: First name, Last name, Address, City, Zip code, e-mail
address and password. We then ran a program that produced random values for
these fields and ran a multi-threaded program that generatedvarying amounts of
concurrent sessions. We measured each session from start tofinish.

Changing Website PasswordsWe created another PHP script that handles
changes to a website-user’s password. The fields provided were the users e-mail
address, the old password, and the new password. Using the stored generated data
from the previous procedure, we generated new passwords andran our session
generator with varying amounts of concurrent sessions and measured their end-
to-end performance.

5.2 Experiment Results

We were able to achieve a sustainable peak performance of over 72,000 user addi-
tion and password changing requests per hour. Although the web server running
the RTM had a load average of 12, the average end-user experience was under
0.5 seconds (from browser connection to the web server untilthe response was

14 Tzvi Chumash, Danfeng Yao

(a) Addition of Users (b) Changing Website Passwords

Fig. 3.Concurrency vs. Response Times with and without SafeWS. Normal refers to non-SafeWS
measurements, numbers refer to concurrent sessions

fully available). Using slightly less concurrency (5 simultaneous requests at all
times) we achieved a sustainable average of 0.3 seconds end-user response time
and a server load average of 1.4. This translates to 57,600 requests per hour or
as much as 1.38 million requests per day (for uniform distribution of visits). Our
measurements showed no significant performance differencebetween local vs.
remote database use. We believe this is due to us using a machine on the same
LAN, as well as a reduction in resource consumption. Although the performance
overhead ofSafeWSis significantly over the average running time of the scripts
that do not useSafeWS(refer to Figure 3), the end-to-end performance is still sub-
second, and can be improved further by optimizing the web server and database
server software.

6 Related Work

With the increasing development of IT outsourcing, a substantial amount of re-
search work has been done on how to verify outsourced data andcomputation [2,
3, 10, 9, 11, 15–17]. Merkle hash trees have been used extensively for authenti-
cation of data elements [14]. Aggregate signatures are another approach for data
authentication, where each data tuple is signed by the data owner [17]. Most re-
cently, the privacy issue in verifying queries was first addressed by in [18] which
gave an elegant solution using hashing for proving the completeness of selection
queries without revealing neighboring entries.
Database-as-a-service (DAS) model [11, 16, 10, 16] is an instantiation of the com-
puting model involving trusted clients, who store their data at an untrusted server
that is administrated by a service provider. The challenge in DAS is to make it im-
possible for the service provider to correctly interpret the data. The data is owned
by clients. The clients only have limited computational power and storage, and
they rely on the server for the mass computational power and storage. Hacigümüs,
Iyer, and Mehrotra [11] addressed the execution of aggregate queries over en-
crypted data using homomorphic encryption scheme. Mykletun and Tsudik [16]

Insider Threats in DB Driven Web Services 15

proposed an alternative approach where the data owner pre-computes and en-
crypts the aggregate results and stores them at the service provider. This approach
avoids the use of homomorphic encryption, which was found tohave a security
flaw when used for DAS [16]. Our model is different from DAS, and is suitable
for a more general security setting, as the data does not haveto originate from the
client.
Efforts to discern the trustworthiness of a server (and in some cases alert web
users to untrusted servers) utilizing hardware such as the Trusted Platform Mod-
ule (TPM) [8] and using commitments and attestations [13, 1]and their combi-
nations [20] have been made. However, these solutions do notprotect against
obtaining database credentials from a text file, and also require specialized hard-
ware and kernel modification on the web-server side, as well as software on the
client side, and trusted authorities to provide verification. In comparison,SafeWS
is easy to adopt and more efficient.

7 Conclusions and Future Work

Outsourced information is as safe as the security provided by the server storing
it. In order to improve the security of outsourced websites,we presentedSafeWS
in this paper.SafeWSis a protocol encompassing a distributed architecture that
provides a robust layer of security between web server-sidescripts and databases,
while notifying site owners of anomalous run-time behavior. We gave the security
models and definitions associated withSafeWSin the outsourced web service
scenario. We implementedSafeWSsystem in C/C++ and performed extensive
experimental evaluation on the performance and robustnessof the system. Our
results showed that the security overhead introduced bySafeWSis low at the web
server side even when the number of users is large.
For future work, we plan to leverage the infrastructure provided bySafeWSto
extend the protection to cross-site scripting (XSS). One promising approach is to
add the identifiers of allowed referer pages into theSafeWSdatabase, the same
way as we retrieve, store, and verify this information from the web server. We
also plan to further improve the performance and robustnessof the SafeWSim-
plementation.

8 Dedication

The authors would like to dedicate this paper in memory of Denitsa Tilkidjieva.
A dear friend and a bright third-year Ph.D. student at the Computer Science de-
partment in Rutgers. She passed away January 22nd, 2009 and will always be
missed.

References

1. William A. Arbaugh, David J. Farber, and Jonathan M. Smith. A secure and
reliable bootstrap architecture. InIn Proceedings of the 1997 IEEE Sympo-
sium on Security and Privacy, pages 65–71. IEEE Computer Society, 1997.

16 Tzvi Chumash, Danfeng Yao

2. Elisa Bertino, Beng Chin Ooi, Yanjiang Yang, and Robert H.Deng. Privacy
and ownership preserving of outsourced medical data. InProceedings of
the 21st International Conference on Data Engineering (ICDE), pages 521
– 532, 2005.

3. P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine. Authentic third-party
data publication.Journal of Computer Security, 11(3), 2003.

4. Pax Dickinson. Top 7 PHP Security Blunders, Dec 2005.
http://www.sitepoint.com/ article/php-security-blunders/.

5. T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246 (Proposed Standard), Aug 2008.
http://www.ietf.org/rfc/rfc5246.txt.

6. I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. Grid services for dis-
tributed system integration.Computer, 35(6):37–46, 2002.

7. GoDaddy.com. Why You Need An SSL Certificate.
https://www.godaddy.com/ gdshop/pdf/SSLMarketingGuideGodaddy.pdf.

8. Trusted Computing Group. TCG 1.2 specifications.
https://www.trustedcomputinggroup.org/.

9. H. Hacigümüs, B. Iyer, C. Li, and S. Mehrotra. ExecutingSQL over en-
crypted data in the database-service provider model. InProceedings of ACM
SIGMOD Conference on Management of Data, pages 216 – 227. ACM Press,
June 2002.

10. H. Hacigümüs, B. Iyer, and S. Mehrotra. Providing database as a service.
In Proceedings of International Conference on Data Engineering (ICDE),
March 2002.

11. H. Hacigümüs, B. Iyer, and S. Mehrotra. Efficient execution of aggregation
queries over encrypted databases. InProceedings of International Confer-
ence on Database Systems for Advanced Applications (DASFAA), 2004.

12. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, JacobAppelbaum,
and Edward W. Felten. Lest we remember: Cold boot attacks on encryption
keys. In Paul C. van Oorschot, editor,USENIX Security Symposium, pages
45–60. USENIX Association, 2008.

13. Butler Lampson, Michael Burrows, and Edward Wobber. Authentication in
distributed systems: Theory and practice.ACM Transactions on Computer
Systems, 10:265–310, 1992.

14. R. Merkle. Protocols for public key cryptosystems. InProceedings of the
1980 Symposium on Security and Privacy, pages 122–133. IEEE Computer
Society Press, 1980.

15. E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in
outsourced databases. InProceedings of Symposium on Network and Dis-
tributed Systems Security (NDSS), February 2004.

16. E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service
model. In IFIP WG 11.3 Working Conference on Data and Applications
Security (DBSec), July 2006.

17. M. Narasimha and G. Tsudik. Authentication of outsourced databases us-
ing signature aggregation and chaining. InInternational Conference on
Database Systems for Advanced Applications (DASFAA), April 2006.

18. HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-Lee Tan. Ver-
ifying completeness of relational query results in data publishing. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD), pages 407–418, 2005.

Insider Threats in DB Driven Web Services 17

19. Chris Shiflett. Security corner: Shared hosting.php—architect, 3(3), Mar
2004. http://shiflett.org/articles/shared-hosting.

20. Gang Xu, Cristian Borcea, and Liviu Iftode. Satem: Trusted service code ex-
ecution across transactions.Reliable Distributed Systems, IEEE Symposium
on, 0:321–336, 2006.

