Detection and Prevention of Insider Threats in Database
Driven Web Services

Tzvi Chumash and Danfeng Ydo
{t zvi ka, danf eng}@s. rut gers. edu

Rutgers University, Computer Science Department
110 Frelinghuysen Road, Piscataway, NJ 08854, USA

Abstract. In this paper, we take the first step to address the gap bettheen
security needs in outsourced hosting services and thegpianeprovided in the
current practice. We consider both insider and outsideckstin the third-party
web hosting scenarios. We pres&#feWsa modular solution that is inserted
between server side scripts and databases in order to pEavemetect website
hijacking and unauthorized access to stored data. To atiiewequired security,
SafeWSitilizes a combination of lightweight cryptographic intégand encryp-
tion tools, software engineering techniques, and secddtg management prin-
ciples. We also describe our implementationSaffeWSand its evaluation. The
performance analysis of our prototype shows the overhdgeatliinced by security
verification is small SafeWswill allow business owners to significantly reduce
the security risks and vulnerabilities of outsourcing thseinsitive customer data
to third-party providers.

1 Introduction

As e-commerce becomes more common on the Internet, an &ingeaumber of
small businesses (e.g., online stores) use hosting pmvidepen their doors to
online customers. These small businesses put their trusrious hosting ser-
vice providers for the benefits of higher availability, fagbsite access, round-
the-clock support and a very low cost [6]. As a result, cugtodata, which may
contain sensitive information (such as Social Security lers or credit card in-
formation), is either stored by these third-party provigler can be accessed from
their servers.

In what follows, we will use the following terminology to disguish the enti-
ties that concern uservice providerefers to an organization and its employees
which are in the business of leasing web service resowdels-serverefers to a
machine and software running on it that is owned by a servioeiger?. A web-
server provides website content to an end-us&bsite contentefers to HTML
pages, scripts and any data in a database that is storedred $Brthe scripts on
a given website. Arnd-usertor acustomelis a person that is interested in web-
site content for a given website, this person may disclossitbée information to

*This work has been supported in part by NSF grant CNS-083ah8&he Rutgers Univer-
sity Computing Coordination Counsil Pervasive Computinigjdtive Grant

1software refers to the entire non-hardware environmentigea, including the operating
system, web-server software (such as Apache) and PHPrieterp

Tzvi Chumash, Danfeng Yao

this website. Awebsite owners the person (or organization) that is in charge of
website content and has interest in keeping end-user irfttomsafe. Web site
owners lease web-servers from service providers in ordentsoheir web site.

A website owner may purchase a (low cost) certificate to autitegte their estab-
lishment [5, 7]. When customers fill out HTML forms with theiensitive infor-
mation on SSL protected websites, they are led to believewtia the padded
lock icon and an authenticated signed certificate, the dettthey are about
to hand over is safe. However, SSL only protectsehd-to-endsecurity of the
data from the customer’s computer to the web-server [5Sledtrs no indication
of the kind of protection that the data gets once it entergdtihmeain of the ser-
vice provider. As we will explain next, many website ownegygitally store the
database credentials in clear-text. This information eaedsily used to login to
the website owners’ databases and either retrieve or altsita/e information of
customers.

Many websites are driven by database systems, as datalvasgglaly used to
store customer data and product information and play aa&racid central role
in modern e-commerce. Using a combination of server-sidpts¢ and database
connections is a widely used approach in providing dynaroigtent to online
users and in retrieving and storing customer data on dagababese scripts of-
fer website owners a versatile interpreted language thatizate complex web
environments, with libraries offering connectivity to nyasther services such as
databases. However, there has not been any framework pobwiithin the web-
server environment to allow for safe execution of servde sicripts. Server-side
scripts are called by web server modules, which are indibjeend-user requests.
Due to the interpretive nature of server-side scripts, aitld thie tools available
today, it is impossible to obscure or hide sensitive progdatails from users
with administrative access to the web-server machine hEuriore, aside from
being completely readable, these server-side scripts eattéred by privileged
users without the owner’s consent or knowledge.

Storing database passwordshesar-textin server-side scripts is thae factoprac-
tice for IT professionals world-wide. In an outsourcedisegttthis approach im-
plies that it is extremely easy for malicious employees atg@rvice provider
organization to access the passwords of business ownetbahtheir customer
data. Security breaches at providers, caused by outsidgsaties, may also ex-
pose hosted sensitive information. However, neither teearch nor the indus-
trial community have been giving enough attention to pritgcsensitive data
from being used by unauthorized parties and untrustedcgeprioviders in the
outsourced setting.

Server-side script creators have been aware of the cleiereglential issues [19,
4], but have been concentrating on the ability of an end-tsesee them, in
case the web-server software is badly configured or comgemniThe service
providers and their web servers have been assumed trusywibrérefore no pro-
tection against insider threats with respect to serves-sittipts has been pro-
vided. The existing solution to protect against credemtistlosure to end-users
is to create an external script containing the clear-teedlentials, placing it out-
side of the document root, and including it by the called@chivhile this naive
hiding strategy might protect against poor web-servemgo® configuration, a
tampered version of a web server, as well as people with adoethe server's

2such as PHP, ASP, PERL, Python, etc.

Insider Threats in DB Driven Web Services

operating system, can read that file. Another approach isdode the creden-
tials inside the web server configuration file [19], but thgsia does not protect
against insider threats.

Our Contributions In this paper, we take the first step to address the gap between
the security needs in outsourced hosting services and thegtion provided in
the current practice. We consider both insider and outsttecks in the third-
party web hosting scenarios. We describe the threats andityeaulnerabilities
that exist in today’s web environments. And finally we presgafew3, a sys-
tem with a relatively low overhead to mitigate the threatgofential security
breaches at service provide&afeWSs a novel and modular solution that pre-
vents and detects website hijacking and unauthorized stoetored data.

To achieve the required security, our solution utilizesmloimation of lightweight
cryptographic integrity and encryption tools, softwarayieeering techniques,
and security data management principles. Our solution igemrin C/C++ and
contains a component that resides between server-sigessarid database sys-
tems, as well as components that reside off the serviceg®eoy server. We eval-
uatedSafeWSsvith PHP scripts and the performance analysis shows théneadr
introduced bySafeWSs small.

SafeWSllows business owners to significantly reduce the sectisitg and vul-
nerabilities of outsourcing their sensitive customer dattnird-party providers.
By deploying our solution, website owners can provide tloestomers with a
robust and secure storage of their sensitive personahiaftion.

The main goal of this work is to improve the protection of outsed sensitive
data on untrusted web serverdle believe that low-budgeted database driven
websites that use shared-hosting have the greatest rislkn&rthorized disclo-
sure of information, and therefore desigreafeWSor their needs. Our frame-
work enables website owners (e.g., small business owrees)tomatically ver-
ify the integrity of service providers and their web servésst importantly, we
efficiently and effectively prevent sensitive credenti@s., database locations,
names, usernames and passwords, from being stored asesteat-the service
provider side. The highlights of our solution are shown faelo

— Guarantees that only authorized webpages from the webrsEmmeaccess a
database that stores end users or product information.

— Effectively hides database access credentials from welisadministrators
who can read any file on the system.

— Ensures the integrity of outsourced websites by detectivtyraonitoring
suspicious environments and activities; provides welwsiteer with notifi-
cations of suspicious activities.

SafeWslemonstrates a general security design principle for ontsal computa-
tion that is a contribution beyond the specific server-sagsproblem studied.
Our work can improve the security of any kind of databaseedriweb server
system in a third-party service provider setting.

Scope of our work We decided to concentrate our work in the layer between
server-side scripts and databases as that is the interseuliere the end-user,
the owner and the service provider meet. It allows us to yehé authenticity

of owner-built scripts and the healthiness of the serviaiger environment,
while also protecting end-user data from being maliciouslkyd. At this layer we
can also notify the owner of any foul play, thus minimizing thossible impact

3SafeWs stands for Safe Web Script

4 Tzvi Chumash, Danfeng Yao

of an attack. Authorization and access control, if impletadmwithin server side
scripts, can also benefit fro®afeWSas long as a database connection is used,
though SafeWds not meant to be an access control system. We also concen-
trated our efforts on preventing data theft and corruptrather than handling
denial of service attacks. Lastly, we decided to evaluatesgstem on a platform
(LAMP#), that is widely used in the third-party hosting settingpjsen-source
and easily implemented, but due to the generality of ourgiesive believe our
system to be valid for any server-side scripting langu&pfWSan also im-
prove the security of non-scripting programs such as cadfiinary server-side
programs).

Organization of the paper The rest of the paper is organized as follows. Our ad-
versarial model, security definitions, and assumptionslaseribed in Section 2.
The architecture and protocols are presented in SectiouBs€urity analysis

is discussed in Section 4. Performance evaluatiddadéW s described in Sec-
tion 5. Related work is given in Section 6. Finally, we deserfuture work and
conclude in Section 7.

2 Definitions and Trust Models

In this section, we give the necessary definitions, trustehatlversary model,
and security definitions used in our solution. First, let ugfly recapture our
definitions on the types of entities introduced in Section 1.
— Service providerefers to an organization and its employees which are in the
business of leasing web service resources.
— Web-serverefers to a machine and software running on it that is owned by
a service provider.
— An end-useror acustomeris a person that is interested in website content
for a given website.
— A website owners the person (or organization) that is in charge of website
content and has interest in keeping end-user informatifen sa
In reality, website owners typically want to provide a ceffective solution to
their customers. Most of them are unaware of or unable to cehngnd the se-
curity requirements and guarantees in the outsourcing@mwvients of service
providers. A large number of website owners do not write eeside scripts for
data manipulation themselves. Instead, those functianpravided as part of the
outsourcing service.
Similarly, website customers are usually completely umrawaf the business
outsourcing agreements between website owners and s@nadeilers. Conse-
quently, the end-users assume that their sensitive infiwma only released to
the website owner, and no one efse
Trust Relationships Our trust model is simple and intuitive. The main interac-
tions are between the website owner and the service provwdesite owners
are not malicious. Web servers are not trusted by the websiters, and there-
fore, our solution is used by a website owner to verify thegnty of the out-
sourced environment. Website users trust that the websiterois ensuring the
outsourced web server is not compromised.

4Linux, Apache, MySQL and PHP
SFor server authentication, users can rely on their web bepwslications, such as the lock
icon, an https address and a valid certificate.

Insider Threats in DB Driven Web Services

Adversarial Model in SafeWsS Instead of assuming abstract adversaries, we
strive to give a concrete and comprehensive categorizafitypes of attackers,
from both inside or outside the service provider organimatiSuch a practical
analysis is both crucial and fundamental to the securityroppsed solutions.
Because of the specific application scenario studied, welaleeto describe a
concrete adversarial model.

We divided the security threats on a hosted web server iffiereint levels based
on the position and experience of the possible attackerléMeé would want to
believe most people would not violate the trust put in thenthgjr employer, all
it takes is one person with a different set of motives. Evérgmylevel is assumed
to encompass the abilities of the previous level. Thus, acedvacker may do
anything that an administrator could do.

We believe that some of these security threats can be redwycetbking them
more difficult to accomplish, as well as providing our owneidir of recognizing
an attack when it happens, and notifying the owners.

— Nosy AdministratorAny server administrator with super-user access can
scan the directory tree for clear-text server-side scripsfiupon finding
those files, this person can then read the database crdgeatid learn the
names of the columns and tables where sensitive informatistored. This
person can then decide to enter the provided database dndtltiwe infor-
mation stored there. While this person might be acting owuoiosity, the
outcome is that an unauthorized person was able to viewtstetiae

— Disgruntled Employed\ disgruntled employee, or specifically a disgrun-
tled employee with system access, may maliciously obtdgmimation from
hosted client websites in the same way the Nosy Administratuld, but
for different reasons. This person can actually cause fineharm by dis-
closing information to outsiders, or using it for personaiing

— Novice Hackeiln addition to all the threats defined above, a novice hacker
may attempt to hijack a website by changing the server-sidptdiles that
obtain web-user information, or by adding new script filesigvice hacker
may also try to replace the web-server executable with acioab one.

— Advanced HackeAn advanced hacker may analyze traffic in and out of
the system, change the kernel, scan the memory, and revggseer any
program.

Definitions of Security We formalize our security goals in three requirements,
namely,secrecy of database credentigisovenance authentication for database
accessandintegrity of outsourced environments

The secrecy of database credentidgdsdefined as that the credentials (e.g., pass-
words) required to access the website owner’s databasetodsslconfidential
and cannot be learned by privileged users on the servicédarsmachine, who
can readany fileon the system. We give the web server administrators signifi-
cant amount of power, which is necessary in this outsourcedasio. This re-
quirement implies that the website owner’s database nedus maintained by a
different provider from the web server provider. In praetisuch a separation of
duties principle (i.e., separating web server providemfiatabase provider) is
in general desirable to constrain and balance providendlgges.

Provenance authorization for database accissdefined as that only authorized
webpages on the web server can access a database that stbusgieor product
information. Theprovenance of a database requésthe webpage that initiates

6 Tzvi Chumash, Danfeng Yao

the database connection. This requirement means that dhenance informa-
tion associated with a database request must be recordeditsd, and verified
before a request can be satisfied.

Integrity of outsourced environmenits defined as that any tampering with the
web and computing environments, including parametersyaoé, and libraries,
should be detected and the website owners’ notified.

Security AssumptionsThe owner of a website can obtain the SHA-1 hashes of
non-hacked Apache executable and modules running on thergbr before the
server is compromised. The owner of a website has a sepacsieompromised
machine where he can store private keys, authenticatersgdeescript files, pe-
riodically activate configuration scripts and comp8afeWSThe machine run-
ning SafeWSnay be compromised aft&afeWSs already in place. The service
provider may, from time to time, upgrade the software on teb server. Itis up
to the owner to keep up with these changes and reconfigai®/VN&ccordingly
(as automatically identifying whether a change of a librargxecutable is done
maliciously or not is outside our scope). If multiple scrippes which require
database access include each other, it is up to the ownestwesaach of them
calls SafeWsas we do not want to introduce the overhead of nested souese fil
and pre-compilation to our run-time environment. Embeddionnection strings
in compiled code is an approach that can provide added $gcasiopposed to
just placing them in clear-text scripts, as some work needi®tdone to decom-
pile and evaluate the data. This is common practice for ampded (non-script)
DB accessing CGlon a web server, but it is not flexible, nor secure enough.
Recompilation is needed whenever credentials changegasnthronment is not
authenticated and the credentials are revealed after moengéation.

3 Architecture

Intuitively, our solution provides the website owner a wayewaluate, assess,
and authenticate the working environments of a web servstetidoy a third-
party service provider. With our solution in place, a websitvner (or his trusted
technologically savvy agent) stores and encrypts part@géturity information
used for authentication on the third-party web server. tfaxmal conditions are
detected, our solution has the ability to automaticallyifpand alert the web-
site owner and users to the well-being of the third-partweserNext, we will
give detailed descriptions on the architecture, companemtd procedures of our
solution.

The design of our solution is divided into two parts. The fiyatt includes all ac-
tions needed during run-time to ensure only authorized attteaticated scripts
may access the database, and other attempts would caueatiotis to be sent
to the owner of the site. The second part is an offline prodegiappens mostly
outside the server to ensure proper configuration of theisalfl.

6Common Gateway Interface
"The results of this process are the inputs for the run-timduteoand so may reside on the
web-server.

Insider Threats in DB Driven Web Services 7

Hosting Server Hosting Server

Web
Server
(apache)

v

Server
Script

Web
Server
(apache)

¥

Server
Script

RTM
4
ot J] et - i H
SafeDB

Database
owner \yebsite Website @ Owner \ebsite Website

User User User User

|

Website
| Database |

(a) Standard Deployment (b) Our Deployment

Fig. 1. Schematic drawings of the architecture of database-dhested website in standard de-
ployment and with our solution.

3.1 Security of Database Credentials

A big security vulnerability in outsourced environmentshs existence of clear-
text database credentials and connection strings insidersside script files. Ex-
isting common practice is to place this information in amoticript file that re-
sides outside of the document root and is included duringima [19, 4]. While
this simple approach might protect the included file from arfyoconfigured
web-server, it does nothing to prevent a user (or a supgrosethe machine
from reading it.

To solve the clear-text database credential problem, opiroagh is to hide the
database credentials by encrypting them, and storing thenséparate database,
which we callSafeDB Because our solution includes accesSéabeDB we need
to protect ourselves from having that access informatieel§r available. We
achieve this in two steps. First, we compile the module tbe¢sses the database
and derive its database access password from a signed Stdshlofithe mod-
ule’s own executable. Second, this module checks if it wasguan authorized
script file on a trusted web-server.

Note that the location of this database may vary. Locatitaclly with the web
server may reduce the system’s security, as a superuseranagct to and alter
SafeDB Locating it off the web server improves the security gutees, while a
distributed deployment may reduce the reliability and ifitsitof the service. We
further evaluate and analyze the performance in Section 5.

3.2 Key Generation and Solution Setup

During compile time, two sets of 2048-bit RSA keys are geteetfor theSigner
moduleand Run-Time ModuléRTM), which are described in the next section.
The keys are placed in header files included by $ignerand RTM, respec-
tively. The SHA-1 hashes of a valid web-server executabteratated modules
are compiled into th®TMas well as the owner’s e-mail address. Once the pack-
age is compiled, one can begin incorporating our solutitmtime website’s script

8 Tzvi Chumash, Danfeng Yao

files. A part of an unchanged script file (PHP) is shown in bigtl, where the IP
address, database user, database password and the namdaittase are all in
clear-text. To demonstrate the ease of using our solutiershew how to convert
the legacy code in Listing 1 to safer code in Listing 2.

Listing 1.1. PHP Script connecting to a Database.

<?php

$db = mysql.connect(192.168.0.100, 'myusr’, 'PWord’);
mysql-selectdb (’'my_store.db’);

>

Listing 1.2. PHP Script connecting to a database using SafeWsS. With Safegvsitive
database information is not exposed.

<?php
$info = safeexec (’'/home/ul/bin/rtm’, 'tagfll ’);
list ($db_host, $dhname, $dhuser, $dhpass) =

split(’:’, $info, 4);
mysql-connect ($dbhost, $dhuser, $dhpass);
mysql.selectdb ($dhname);

>

3.3 Run-Time Module and Signer Module

The Run-Time Module RTM) is the most crucial component in our solution.
It is called within an authorized script file usirsgfeexec()(described below).
WhenRTMIloads, it calculates the SHA-1 hashes of its own execut#isescript
file that called it, as well as the executable of the web sefiver., the calling
process) and its relevant modules. When execuRig\l is supplied with aag
parameter. This piece of information allows one script guest many different
sets of Database credentials fr&@fM RTMthen checks that it was called by a
valid web server by comparing SHA-1 hashes.

RTMthen attempts to acceSafeDB If the module was tampered with, it will
not be able to derive the correct database password fromHiAelShash of its
own executable.

Insider Threats in DB Driven Web Services

Upon connecting to the databa&TMlooks for a record that matches the SHA-
1 hash of the script filename (that callBd M) with the suppliedag. Using its
private keyRTMdecrypts one of the fields and verifies the signature oSibeer
module, which is described next. If the hash of the scripti§ileerified, then it
is authentic, and the database connection parameters hasnaledentials are
returned to the calling script file.

The Signermodule contains its own private key, as well as RiEMs public
key. This module resides on the website owner's machinegiwisi assumed to
be safe. Whenever a new script file is ready to be put on theiteelbtse owner
converts it to be compatible witBafeWS

The website owner uses ti&gnerto sign the SHA-1 hash of a script file that
will be installed on the server, and encrypts the result it RTMs public key.
TheSigneralso associates a tag with that script file and with the sateafentials
given by the owner.

The output of theSigneris acryptographic SQL fileéhat includes the following
information: a SHA-1 hash of the script full path name witk tag, credentials
and database connection parameters encrypted with thee fkelyl of theRTM
and the SHA-1 hash of the script file signed using $igneis private key and
encrypted by theRTMs public key. This SQL file is transferred to the server
containing theSafeWSlatabase and is executed there.

3.4 PHP Limitation and safe_exec()

As we chose to evaluate our prototype with PHP scripts, wadauiserious se-
curity limitation that affects PHP security and the segudf PHP-based web
hosting in general. In existing PHP execution environmeihis impossible to
learn or verify the provenance (i.e., origin) of the caller.

PHP offers the following methods to execute non-PHP prograrec() passthru()
proc_open() popen() shellLexec()andsystem()The process that is executed as a
result of these calls does not know where the call originétedfrom which PHP
file). Moreover, the parameters of the web-server sessmnatrprovided either.
While it is possible to useroc_open()and pass environment variables to a new
process, this would undermine the information integrisyaghacker might try to
pass bogus parameters to bypass our protection. This elmitation may or
may not affect other scripting languages.

To solve these problems, we had to add another modi8af@W$s architecture.
We created a new run-time PHP module cabafke exec() The main advantage
of safeexec()is that it is able to pass web-session information as welladime
environment information, including the calling PHP filetdrthe process that it
executessafeexec()is integrated with our solution througRTM This module
needs to be installed on the service provider’s machineaaded to the list of
filesRTMauthenticates. A similar module may be needed for othepting lan-
guages which do not pass credible execution and web envewotimformation to
executed binaries. CGl (Common Gateway Interface) binariecuted directly
by Apache do receive the required information, and thus eas fi througrexe-
cle().

10

Tzvi Chumash, Danfeng Yao

3.5 SafeWsS Run-Time Protocol

OnceSafeWSs deployed and configured, it will be invoked by the web-serv
when a participating script file is process&@hfeWS protocol is illustrated in
Figure 2 and is described as follows.

Owner’s End-User
Machine . i
Run-Time Machine
e-Mail Chart Web Form
Submission
* I
TO] 1* T8
Notify Check Self Web
owner ag‘:r\y;b Server
4 5 2 17
A Y 2 Y A
Server
RTM .
Script
kg
1
BTN K ¥ s
Connect to
Decrypt SafeDB DB
and Return and verify Access
Credentials .
[Server Script]

Hosted Webserver

Fig. 2. SafeWs architecture and run-time information flow.

— End-users submit an HTML form on their browser in Step 1, gigither
HTTP GET or HTTP POST.

— In Step 2, the hosted web-server executes the script thaldsmthe data.
The web-server then passes the information from the endtogkee script,
through either environment variables or as the scriptsdaed input. After
initial processing, the script needs to set the databaggection parameters,
in order to process the end-user’s request.

— The script calliRTMusingsafeexedn Step 3. Please refer to Listing 1.2 for
an example of such a call.

— OnceSafeWS RTMmodule is started, it computes the SHA-1 hash of its
caller's executable file (e.@pach@ in Step 4 and 5. It computes its own
SHA-1 hash, which is then signed wiTMs private key to produce the
password foSafeDB

— In Step 6 and 7RTMattempts to accesSafeDBwith the credentials it was
compiled with, as well as the password that it compuRHM computes the
SHA-1 hash of the caller PHP script, as well as a digest of thigts lo-
cation and tag. The digest is used as a key to find the roBaieDBthat
corresponds to the calling script. Upon selecting the egleinformation
from SafeDB RTMattempts to verify the signed SHA-1 hash of the script.

Insider Threats in DB Driven Web Services 11

Namely,RTM (1) verifies the web-server executable and modules, (2) con-
nects toSafeDB (3) locates the correct record for the script, and (4) \esifi
the signature on its hash.

— Any failure in the above verification procedures resultRirMnotifying the
website owner of the security concern, as well as not ratgrtiie requested
information to the calling script. This failure in turn waltause the script’s
subsequent connection to the database to fail, as showepeShrough 11.

— In Step 12, upon a successful verification of the location aumthenticity
of the calling scriptRTM decrypts the remainder &afeDBs record using
its private key and obtains the address of the website’ddataserver, as
well as the database name, username and password requigedess it.
This information is then returned to the calling script ie®13 and 14. The
script then parses the data and connects to the websitelsada in Step 15
and 16, and can then complete its task.

In Figure 2, for the sake of description simplicity, we sh8afeDBand the pro-

tected website’s database all on the same local host as theemeer. In practice,
as we mentioned in Section 2, the database systems shotedatlg reside and
be maintained at a different location from the local hostetb werver, in order
to reduce the security risk. Our protocol description anglémentation can be
directly used to accommodate such a distributed deployofeédafe WS

3.6 Protecting against advanced hackers

As we stated in Section 2, advanced hackers may reverseeemginy program.
This means tha®TMwould be vulnerable to attacks. If attackers reverse eegine
RTMthey could find the keys stored in it as well as the connectidorimation

to SafeDB However, due to the hurdles we built inBafe\WSthis process might
take a considerable amount of time. FilRITM would have to be decompiled,
the code (which may or may not resemble the original code) imeisinalyzed.
The database credentials are made by using the SHA-1 hasie BTtM exe-
cutable file signed by the private key storedRmM The attacker would need to
build a program to use the extracted keys and obtain and b&y$HA-1 hash
of RTM In addition, the attackers must refrain from running orusisg RTM
as the owners would be notified. Since we assume Rid#l may be hacked,
we can add another layer of security. By having a periodial(fuch as a cron
job) that would generate new keys, recompile bRffM and Signer change the
database credentials and distribute the R&WMto the server, we can reduce the
probability of a successful attack. This periodical scvipuld run on the trusted
owner’s machine, and would perform its duties eviry 1 seconds wher¥ is
the minimum number of seconds that an advanced hacker wakddtd obtain
the SafeDBcredentials.

3.7 RTM design aspects

RTMis executed each time a script with database access is rine byetb server.
Although this is sub-optimal performance wise, the segwa#ipects were more
important. By lettingRTM be resident in memory, we could implement caching
of database credentials, as well as avoid re-examining gtessrver executable
and its modules (provided we can guarantee that the prosdbke same). This

12 Tzvi Chumash, Danfeng Yao

would improve the performance &afeWSonsiderably, however, there are a
couple of caveats to this approach which made us choosehibeagsign. First,
the system is designed for shared hosting environmentshwidrmally do not
allow their customers (website owners) to have residenics running on the
machine. Second, the lack of a direct execution relatignisetween a script and
RTMwould reduce the knowledge the system giRd3Mabout the caller, as well
as complicate callinRTMinside the scripts.

4 Discussion

In this section, we analyze the security properties andudspractical consider-
ations associated with deployirfBafeWSSafeWSsatisfies the security require-
ments that are defined in Section 2 including the secrecytabdae credentials,
provenance authentication for database access, andiinteigoutsourced envi-
ronments, which are explained in detail next.

SafeW$uarantees that only authorized webpages from the webrsameccess
a database that stores end user or product information prbjrty is achieved
by storing the properties and environments of authorizedpages inSafeDB
which can only be accessed BTM with the proper privately generated pass-
word. These operations correspond to Step 6 and 7 in Figuhe &ddition,
our basic script run-time modukeafeexec()ensures that only authentic infor-
mation about script environments is passe®iM for the verification purpose,
and spoofing attacks (e.g., lying about an IP address oiidmjatan be identified.
SafeWffectively hides database access credentials from webrsgministra-
tors who are allowed to read any file on the system. As statdiéreia Section 3,
while usingSafeWSthe website owner should separate the customer data from
the running environment, i.e., scripts and data shouldleesn different servers.
Sensitive data should be kept encrypted in a database, andethypting web
server should be different than the encrypting one. Witk f@dparation of du-
ties, even if attackers obtained the database credenti@savthe sensitive data
is stored, they will not have a way to decrypt the encryptestamer data.
SafeWSnsures the integrity of outsourced websites by detectidgronitoring
suspicious environments and activities and provides welosiners with notifi-
cations of suspicious activities. The verification is readi mainly by our Run-
Time Module inSafeWSRTMIeveragesafeexec()s ability to pass web-session
information as well as run-time environment informatiomoithe process that
it executes. In theSafeWSun-time protocol,RTM checks the integrity of the
web-server executable and verifies the signature on thedfalsh invoked script
against the correct record 8afeDBthat can only be accessed By M

Typically when server-side scripts are first developedy thie changed often
due to programming errors or inappropriate specificati@g. most of such
scripts reach stable states and are rarely changed afterviltmerefore, updates
in SafeW&aused by script changes do not cause much communicaticcoand
putation overheads. We give a more thorough evaluation &guligsion on the
performance oBafeW3n Section 5.

Note that in-memory code mutation or memory scanning arestgb attacks that
may find the private key or clear-text passwords [12]. OurentiSafeWSlesign
can withstand advanced reverse engineering attacks agimdwith the help
of a periodically running script, as described in Seciofit Blowever, we believe

Insider Threats in DB Driven Web Services 13

that these types of attacks would take significant effortee ® the fact that the
Signermodule is safely located on the website owner’s private rimecteven if

the RTMs private key is recovered, the attacker will not be ableigm sitered

or new script files without the owner’s key, and thus will behle to hijack the
website without being detected.

5 Evaluation

Our goals were to see whetteafeWSvas a viable solution for small and medium
third-party hosted web-sites. We decided to check the itnpadoth end-users
and web server machines. As end-users today expect fasingspimes, we
wanted to achive sub-second end-to-end times and low sienpaict.

5.1 Experiment Setup

We used two servers for testirgafeWSOur web server machine is an Intel
dual core (2*1.6Ghz) with 1MB cache and 2GB RAM. This machimes Linux
kernel version 2.6.23.17-88 SMP, Apache 2.2.8 and MySQL45.0ur client
emulator and remote database machine is an Intel dual ct?e8@&@hz), with
1MB cache and 2GB RAM running Linux version 2.6.27.9 SMP anglSRJL
5.0.67. We picked two common website procedures that mayvadiccess to
sensitive information. We wrote PHP scripts that store godhte a database with
this information. We measured the end-to-end performafichase functions,
then converted the PHP scripts to work wiafeWSand re-measured. Each of
the following experiments were conducted using both looal the web server
machine) as well as remote (on the client emulator machiatebdses.

Addition of Users We created a PHP script that processes an '"HTTP GET’
form which creates a new web-site user. There were sevee9igitinforma-
tion stored for each user: First name, Last name, Addresg, Zp code, e-mail
address and password. We then ran a program that producgahraralues for
these fields and ran a multi-threaded program that genevatgiohg amounts of
concurrent sessions. We measured each session from diarsho

Changing Website PasswordsWe created another PHP script that handles
changes to a website-user’s password. The fields provideel tve users e-mail
address, the old password, and the new password. Usingtieel sienerated data
from the previous procedure, we generated new passwordsaanolr session
generator with varying amounts of concurrent sessions agasored their end-
to-end performance.

5.2 Experiment Results

We were able to achieve a sustainable peak performance iof 2\#0 user addi-
tion and password changing requests per hour. Although #iessrver running
the RTM had a load average of 12, the average end-user expeneas under
0.5 seconds (from browser connection to the web server tngtitesponse was

14

Tzvi Chumash, Danfeng Yao

0.9 0.9
0.8 0.8

0.7 0.7

0.6 0.6
M Normal 2

@ Normal 5

O Normal 10
@ safePHP 2
B safePHP 5
O safePHP 10

B Normal 2
M Normal 5
O Normal 10
M safePHP 2
M safePHP 5 e
O safePHP 10 02

0.5 0.5

0.4 0.4

seconds
seconds

0.3
0.2

0.1 0.1

0 0

1 1121314151617181091 1 1121314151617181091
samples samples

(a) Addition of Users (b) Changing Website Passwords

Fig. 3.Concurrency vs. Response Times with and without SafeW Snialoiefers to non-SafeWs
measurements, numbers refer to concurrent sessions

fully available). Using slightly less concurrency (5 sittauleous requests at all
times) we achieved a sustainable average of 0.3 secondssendesponse time
and a server load average of 1.4. This translates to 57,8@ses per hour or
as much as 1.38 million requests per day (for uniform distrdm of visits). Our
measurements showed no significant performance differbeteeen local vs.
remote database use. We believe this is due to us using ameashithe same
LAN, as well as a reduction in resource consumption. Althotige performance
overhead ofSafeWSs significantly over the average running time of the scripts
that do not us&afeWgrefer to Figure 3), the end-to-end performance is stilksub
second, and can be improved further by optimizing the welresemd database
server software.

6 Related Work

With the increasing development of IT outsourcing, a sutisthamount of re-
search work has been done on how to verify outsourced datecangutation [2,
3,10, 9,11, 15-17]. Merkle hash trees have been used extgn$or authenti-
cation of data elements [14]. Aggregate signatures arénanapproach for data
authentication, where each data tuple is signed by the datard17]. Most re-
cently, the privacy issue in verifying queries was first &sded by in [18] which
gave an elegant solution using hashing for proving the cetapkss of selection
queries without revealing neighboring entries.

Database-as-a-service (DAS) model [11, 16, 10, 16] is aartigtion of the com-
puting model involving trusted clients, who store theiradat an untrusted server
that is administrated by a service provider. The challend2AS is to make it im-
possible for the service provider to correctly interpret data. The data is owned
by clients. The clients only have limited computational pownd storage, and
they rely on the server for the mass computational power mmdge. Hacigumus,
lyer, and Mehrotra [11] addressed the execution of aggeegaeries over en-
crypted data using homomaorphic encryption scheme. MyRletud Tsudik [16]

Insider Threats in DB Driven Web Services 15

proposed an alternative approach where the data owneropnpttes and en-
crypts the aggregate results and stores them at the sereniegr. This approach
avoids the use of homomorphic encryption, which was founlae a security
flaw when used for DAS [16]. Our model is different from DASdas suitable
for a more general security setting, as the data does notbaviginate from the
client.

Efforts to discern the trustworthiness of a server (and mes@ases alert web
users to untrusted servers) utilizing hardware such asritdd Platform Mod-
ule (TPM) [8] and using commitments and attestations [12y1 their combi-
nations [20] have been made. However, these solutions d@rotect against
obtaining database credentials from a text file, and alsairegpecialized hard-
ware and kernel modification on the web-server side, as welbéware on the
client side, and trusted authorities to provide verifioatim comparisonSafeWs
is easy to adopt and more efficient.

7 Conclusions and Future Work

Outsourced information is as safe as the security provigeithd server storing
it. In order to improve the security of outsourced websites presente®afeWs
in this paperSafeWSs a protocol encompassing a distributed architecture that
provides a robust layer of security between web serversgidpts and databases,
while notifying site owners of anomalous run-time behawte gave the security
models and definitions associated wiafeWsdn the outsourced web service
scenario. We implementeflafeWSsystem in C/C++ and performed extensive
experimental evaluation on the performance and robuswofee system. Our
results showed that the security overhead introducesiaig\W s low at the web
server side even when the number of users is large.

For future work, we plan to leverage the infrastructure mtest by SafeWSo
extend the protection to cross-site scripting (XSS). Owenising approach is to
add the identifiers of allowed referer pages into 8afeWSlatabase, the same
way as we retrieve, store, and verify this information frdm tveb server. We
also plan to further improve the performance and robustobtse SafeWSm-
plementation.

8 Dedication

The authors would like to dedicate this paper in memory ofiBarTilkidjieva.
A dear friend and a bright third-year Ph.D. student at the Quter Science de-
partment in Rutgers. She passed away January 22nd, 2009 ikadmays be
missed.

References

1. William A. Arbaugh, David J. Farber, and Jonathan M. Smitsecure and
reliable bootstrap architecture. In Proceedings of the 1997 IEEE Sympo-
sium on Security and Privacpages 65—71. IEEE Computer Society, 1997.

16

Tzvi Chumash, Danfeng Yao

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Elisa Bertino, Beng Chin Ooi, Yanjiang Yang, and RoberDieng. Privacy
and ownership preserving of outsourced medical dataProteedings of
the 21st International Conference on Data Engineering (E}Dpages 521
—532, 2005.

. P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine. Anttbehird-party

data publicationJournal of Computer Securityt1(3), 2003.

. Pax Dickinson. Top 7 PHP Security Blunders, Dec 2005.

http://www.sitepoint.com/ article/php-security-blerd/.

. T. Dierks and E. Rescorla. The Transport Layer SecuritySjT

Protocol Version 1.2. RFC 5246 (Proposed Standard), Aug8.200
http://www.ietf.org/rfc/rfc5246.txt.

. |. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. Gridises for dis-

tributed system integratiorComputer 35(6):37-46, 2002.

. GoDaddy.com. Why You Need An SSL Certificate.
https://www.godaddy.com/ gdshop/pdf/SSLMarketing@Bddaddy.pdf.
. Trusted Computing Group. TCG 1.2 specifications.

https://www.trustedcomputinggroup.org/.

. H. Hacigumus, B. lyer, C. Li, and S. Mehrotra. Execut®@L over en-

crypted data in the database-service provider modé?rdseedings of ACM
SIGMOD Conference on Management of Datages 216 —227. ACM Press,
June 2002.

H. Hacigumus, B. lyer, and S. Mehrotra. Providing Hate as a service.
In Proceedings of International Conference on Data EnginegifICDE),
March 2002.

H. Hacigimus, B. lyer, and S. Mehrotra. Efficient extenuof aggregation
queries over encrypted databases.Ptnceedings of International Confer-
ence on Database Systems for Advanced Applications (DASES@4.

J. Alex Halderman, Seth D. Schoen, Nadia Heninger, &illiClarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jaéqpelbaum,
and Edward W. Felten. Lest we remember: Cold boot attacksioryption
keys. In Paul C. van Oorschot, edittfSENIX Security Symposiumpages
45-60. USENIX Association, 2008.

Butler Lampson, Michael Burrows, and Edward Wobber.h&atication in
distributed systems: Theory and practic®CM Transactions on Computer
Systemsl10:265-310, 1992.

R. Merkle. Protocols for public key cryptosystems. Pimceedings of the
1980 Symposium on Security and Privaggiges 122-133. IEEE Computer
Society Press, 1980.

E. Mykletun, M. Narasimha, and G. Tsudik. Authenticatimd integrity in
outsourced databases. Bnoceedings of Symposium on Network and Dis-
tributed Systems Security (NDSBgbruary 2004.

E. Mykletun and G. Tsudik. Aggregation queries in thetase-as-a-service
model. InIFIP WG 11.3 Working Conference on Data and Applications
Security (DBSec¢)uly 2006.

M. Narasimha and G. Tsudik. Authentication of outsodrdatabases us-
ing signature aggregation and chaining. liternational Conference on
Database Systems for Advanced Applications (DASFAgjI 2006.
HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kiae Tan. Ver-
ifying completeness of relational query results in datalighing. In Pro-
ceedings of the ACM SIGMOD International Conference on Meanzent of
Data (SIGMOD) pages 407-418, 2005.

Insider Threats in DB Driven Web Services

19. Chris Shiflett. Security corner: Shared hostimnp—architect 3(3), Mar

2004. http://shiflett.org/articles/shared-hosting.
20. Gang Xu, Cristian Borcea, and Liviu Iftode. Satem: Tedstervice code ex-
ecution across transactiorReliable Distributed Systems, IEEE Symposium

on, 0:321-336, 2006.

17

