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Abstract. To date, research in trust negotiation has focused mainly on
the theoretical aspects of the trust negotiation process, and the develop-
ment of proof of concept implementations. These theoretical works and
proofs of concept have been quite successful from a research perspec-
tive, and thus researchers must now begin to address the systems con-
straints that act as barriers to the deployment of these systems. To this
end, we present TrustBuilder2, a fully-configurable and extensible frame-
work for prototyping and evaluating trust negotiation systems. Trust-
Builder2 leverages a plug-in based architecture, extensible data type hi-
erarchy, and flexible communication protocol to provide a framework
within which numerous trust negotiation protocols and system config-
urations can be quantitatively analyzed. In this paper, we discuss the
design and implementation of TrustBuilder2, study its performance, ex-
amine the costs associated with flexible authorization systems, and lever-
age this knowledge to identify potential topics for future research, as well
as a novel method for attacking trust negotiation systems.

1 Introduction

Recent research in trust negotiation has been primarily of a theoretical nature,
focusing on a number of important issues including languages for expressing
resource access policies (e.g., [1,2,8,18]), protocols and strategies for conduct-
ing trust negotiations (e.g., [3,12,13,28]), and logics for reasoning about the
outcomes of these negotiations (e.g., [4,27]). These results provide a strong the-
oretical foundation upon which provably-secure authorization systems can be
designed, built, and verified. Some of the techniques discussed in the trust ne-
gotiation literature have also been shown to be viable solutions for real-world
systems through a series of implementations (such as those presented in [3,9, 11,
26]) that demonstrate the feasibility of using these theoretical advances. How-
ever, after several years of research, trust negotiation protocols have yet to make
their way into the mainstream.



Prior to deploying access control systems based on trust negotiation, the
systems and architectural properties of this technique must be more fully under-
stood. Existing trust negotiation implementations have been developed largely
as proofs of concept designed to illustrate the feasibility of the underlying theory
and have performed admirably in this capacity. Unfortunately, these proof-of-
concept implementations can be difficult to configure and use, and are generally
not easily extended or modified. As a result, exploring certain types of systems
research problems surrounding trust negotiation becomes difficult. For example:

— Is it possible to unify the myriad formulations of trust negotiation described
in the research literature under a common framework? Adopting such a
framework would make it possible to further deploy and experiment with
novel trust negotiation systems and components in a grassroots fashion.

— What are the performance bottlenecks of the trust negotiation process, as
opposed to those of a specific implementation? How can we quantify these
costs?

— How can we identify and measure the severity of attacks that are made
possible by various approaches to trust negotiation?

— When all other factors are held constant, what are the costs and benefits
of using one trust negotiation system component (e.g., negotiation strategy,
policy compliance checker, etc.) over another? To what extent do various
approaches limit or mitigate attacks?

In an effort to address these types of systems research challenges, we have
developed TrustBuilder2, a flexible and reconfigurable Java-based framework for
supporting trust negotiation research.* TrustBuilder2 supports a plug-in based
architecture to allow any system component to be modified or replaced by users
of the system without requiring modification or recompilation of the underlying
framework. TrustBuilder?2 is also agnostic with respect to the formats of creden-
tials and policies used during the negotiation. Support for new policy languages,
credential formats, or trust negotiation evidence types (e.g., trust tickets [3],
uncertified claims [3,4], or proof fragments [27]) can be incorporated by imple-
menting extensions to the TrustBuilder2 data type hierarchy. In this paper, we
discuss the design and implementation of TrustBuilder2, as well the results of
research carried out using this framework. Specifically, we make the following
contributions:

— TrustBuilder2 represents the first fully-configurable framework for trust ne-
gotiation. TrustBuilder2 leverages a plug-in based architecture, extensible
data type hierarchy, and flexible communication protocol to provide a frame-
work within which numerous trust negotiation protocols and system config-
urations can be quantitatively analyzed.

— Studies carried out using TrustBuilder2 have identified the primary per-
formance bottlenecks of the trust negotiation process. This has led to the

* TrustBuilder2 can be downloaded from http://dais.cs.uiuc.edu/tn.



identification of a novel class of denial of service attacks against trust ne-
gotiation systems that differs significantly from the attacks discussed in the
research literature.

— TrustBuilder2 demonstrates that adding a high degree of flexibility to ad-
vanced authorization frameworks does not necessarily need to incur high
overheads. In Section 6, we show that the time spent handling the indirec-
tion needed to support user plug-ins and other extensions amounts to less
than 0.2% of the total execution time.

The remainder of this paper is organized as follows. In Section 2, we ex-
amine previously-developed trust negotiation implementations and discuss the
features provided by these systems. In Section 3, we identify a number of useful
features that should be provided by frameworks designed to facilitate research
on the systems aspects of trust negotiation and the eventual deployment of au-
thorization systems based on trust negotiation; we then identify the subsets of
these desiderata that are addressed by existing trust negotiation implementa-
tions. Section 4 presents the architecture of the TrustBuilder2 framework for
trust negotiation. In Section 5, we explore the ways in which TrustBuilder2 can
be extended. Section 6 discusses a performance evaluation of the TrustBuilder2
framework and lessons learned through this process. In Section 7, we examine
how TrustBuilder2 addresses the desiderata presented in Section 3. We also dis-
cuss attacks on trust negotiation systems, potential research topics uncovered
by our performance evaluation, and describe how to obtain the TrustBuilder2
framework. We then present our conclusions in Section 8.

2 Background and Related Work

Trust negotiation [25] has been proposed as a potential solution to the recog-
nized problems associated with performing access control in open systems. In
trust negotiation, the access policy for a resource is written as a declarative
specification of the attributes that an authorized entity must possess to access
the resource. In these systems, digital credentials are issued by trusted parties to
certify user attributes. For example, a student might have a digital student ID
card issued by her university. These credentials are also considered resources, so
sensitive credentials can be protected by disclosure policies of their own. In this
way, an access request leads to a bilateral and iterative disclosure of credentials
and policies between the user and resource provider. Trust is established incre-
mentally, as more and more sensitive credentials are disclosed between the user
and resource provider.

Over the last several years, several implementations of trust negotiation sys-
tems have been described in the literature. The earliest such implementation was
the TrustBuilder architecture for trust negotiation [26]. TrustBuilder is a Java
implementation that supports the use of X.509 certificates to encode attributes
and XML to represent policies written using the IBM Trust Policy Language
(TPL) [8]. The IBM Trust Establishment (TE) compliance checker is used to de-
termine whether a certain set of credentials satisfies a given policy. TrustBuilder



has been embedded into an implementation of TLS [9] and several other pro-
tocols to demonstrate the applicability of trust negotiation in existing systems.
Unfortunately, TrustBuilder supports the use of only one credential format, one
policy language, and one trust negotiation strategy.

Trust-X [3] is an XML-based framework for supporting trust negotiations in
peer-to-peer systems. In Trust-X, each user creates an X-profile that stores X-
TNL certificates describing their attributes along with uncertified declarations
containing information about the user (e.g., preferences, phone numbers, or other
such information). To the best of our knowledge, Trust-X does not support
credential formats other than X-TNL certificates nor policies specified in any
language other than X’-TNL. To allow users to optimize various aspects of the
trust negotiation process, Trust-X supports a variety of interchangeable trust
negotiation strategies. Another particularly innovative feature of the Trust-X
framework is its support for trust tickets. Trust tickets are receipts that attest
to the fact that a user recently completed some negotiation with another party.
These trust tickets can then be presented within some limited lifetime (typically
24-48 hours) to bypass redundant portions of future negotiations with the same
party.

In [11], Koshutanski and Massacci describe a trust negotiation framework
designed for web services. This framework facilitates the composition of access
policies across the constituent pieces of a workflow, the discovery of credentials
needed to satisfy these policies, the management of the distributed access control
process, and the logic to determine what missing credentials must be located and
provided to satisfy a given policy. The use of X.509 and SAML credentials is
supported by the framework, as is the use of the negotiation strategies described
in [11] and [13]. Policies are represented using a Datalog-based language. To the
best of our knowledge, the use of other credential formats, negotiation strategies,
or policy languages is not supported.

In [7], De Coi and Olmedilla describe a flexible and expressive trust nego-
tiation implementation. The authors examined the PEERTRUST [20] and PRO-
TUNE [5] systems in an effort to derive a set of common requirements that should
be supported by any trust negotiation implementation, and then implemented a
framework embodying these requirements. Their system supports PEERTRUST
and PROTUNE inference engines, and allows users to add support for other in-
ference engines. Furthermore, users can specify trust negotiation strategies as
action selection algorithms within their framework. Credentials are expressed
as signed logical statements and are loaded from a credential repository that is
accessed by their implementation. To the best of our knowledge, the use of other
credential formats is not supported.

While not specifically an implementation of a trust negotiation framework,
Cassandra [1] is a policy language for distributed access control that supports
the specification of policies with a tunable level of expressiveness. The features of
Cassandra are such that it can encode a certain, fixed, trust negotiation strategy.
A prototype system that uses the Cassandra language has been implemented in
OCaml to facilitate research on the features of this policy language.



3 System Requirements

Prior to designing the TrustBuilder2 framework for trust negotiation, we first
sought to identify the types of features that should be provided by such a frame-
work. To this end, we studied potential uses of trust negotiation in the realms
of client/server interactions on the World Wide Web, grid computing, and de-
centralized information sharing in critical infrastructures. Although space limi-
tations prohibit a full treatment of these use cases,® the requirements identified
merit discussion since they directed the design of TrustBuilder2. The first set
of requirements that we identified relate to the general functionality afforded by
the core components of the trust negotiation system.

Arbitrary Policy Languages. In many cases, resource providers will wish to
be accessible to as many potential clients as possible. To facilitate this, these
entities should be able to parse access policies written in a variety of formats
(e.g., Cassandra [1], X-TNL [2], TPL [8], RT [18], and XACML [19]). It
should possible to add support for new policy languages to deployed systems
easily.

Arbitrary Credential Formats. To further enable interactions with a max-
imal set of users, the system should support the use of multiple credential
formats such as X.509 certificates [10] and SAML assertions [6]. It should also
be possible to add support for new credential formats to deployed systems
easily.

Interchangeable Negotiation Strategies. Trust negotiation is by nature a
strategy-driven process. Entities should be able to choose negotiation strate-
gies that direct the execution of a trust negotiation session to meet their
particular goals (e.g., maximizing privacy or minimizing latency). One can
imagine many situations in which the goals of the participants in a negotia-
tion might be conflicting. The use of families of interoperable strategies that
allow negotiation participants to choose different, yet compatible, strategies
(e.g., as in [28]) should be supported. It should be possible to add support
for new negotiation strategies to deployed systems.

Flexible Policy and Credential Stores. Clients are likely to utilize several
computing devices—such as desktop computers, laptops, PDAs, and smart
phones—during the course of their daily activities. It is therefore important
that a trust negotiation architecture support interactions with a variety of
flexible policy and credential stores (e.g., [21,24]) that will enable users to
effectively manage their digital identities across multiple devices.

While these basic flexibility requirements are important, they do not address
all aspects of the negotiation process. In particular, we must also consider the
ability to add more advanced features that might increase the efficiency, under-
standability, or functionality of the trust negotiation process.

Strategy-Driven External Interactions. Negotiation participants should have
the ability to interact with a wide range of external entities that can help

® The complete details of our use case analysis can be found in [14].



solve difficult problems which may arise during the negotiation. Examples of
such interactions might include the calculation of reputations or credential
chain discovery. These interactions should be strategy-driven to allow par-
ticipants to control the amount of time and resources spent pursuing these
interactions.

Advanced Logging Capabilities. The architecture should include a logging
service that can record information regarding any aspect of the negotiation
process. Since a high degree of logging is not always needed, the logging
subsystem should support the recording of logs at various granularities.

Tunable Human Involvement. In some instances, humans may wish to be
involved directly in the negotiation process. For example, users may want
to specify an “ask me” release policy for a sensitive credential, see a visual
representation of the negotiation process for policy evaluation purposes, or
be involved in the decision-making process when the negotiation comes to
a point where there are multiple execution paths that could be followed
rather than relying on a predefined strategy. The framework should support
extensions that can add a human “in the loop” if such features are requested.

Selective Feature Activation. To enable more efficient or more secure trust
negotiation sessions, the features enabled by the framework should be fully
configurable. For instance, disabling support for visualization features and
external interactions might increase the performance of the system, while
disabling third-party plug-ins might increase overall system security and
trustworthiness.

Feature Ordering. To enhance the performance of the system and its robust-
ness against attack, entities should have the ability to choose the order in
which certain functionalities are invoked. For instance, it should be possible
for a negotiation strategy to choose the time at which credentials are vali-
dated. That is, there may be benefits to delaying credential validation until
it is determined that they belong to a minimal satisfying set for some policy,
rather than validating them as they are received.

The diversity of use cases that we considered leads us to believe that it repre-
sents a useful set of features to support when designing a general-purpose trust
negotiation framework. However, the requirements presented above cannot be
considered complete, as it is impossible to consider every possible trust negotia-
tion use case. To acknowledge and partially address this gap, we introduce one
further requirement that helps ensure additional features can be easily added to
the framework.

Extensibility. The framework must support the addition of new functional-
ity after deployment without requiring modifications to the existing code
base. Example features may include (but are not limited to) the inclusion
of new local data processing rules, the enforcement of obligations, and the
incorporation of new data types into the negotiation process.

Table 1 identifies the subsets of these requirements addressed by each of the
trust negotiation frameworks discussed in Section 2. As shown, no existing trust
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negotiation framework provides even partial support for more than half of the
identified features; this is not surprising, given that these implementations were
not meant to be general-purpose frameworks.

4 The TrustBuilder2 Framework

In this section, we describe the design of TrustBuilder2, a Java-based framework
for trust negotiation. The primary goal in designing TrustBuilder2 was not to
implement one particular trust negotiation protocol, but rather to provide a
framework that satisfies the requirements set forth in Section 3, within which
any number of trust negotiation techniques can be implemented and evaluated.
This led to unique challenges in designing the communication protocol used by
negotiation participants, the data type hierarchy used by TrustBuilder2, and the
software architecture of the system. In this section, we describe the above facets
of the TrustBuilder2 framework.

4.1 Communication Protocol and Data Types

One of the first challenges faced when designing TrustBuilder2 was defining a
communication protocol that could be interpreted by the framework without con-
straining the trust negotiation protocols that could be supported. For example,
we did not want to mandate that only credentials and policies are exchanged
during a trust negotiation session, as that would prevent the implementation
of protocols such as Trust-X [3] and PeerAccess [27] within the TrustBuilder2
framework, since these protocols also exchange digitally-signed trust tickets and
proof-fragments, respectively. To this end, TrustBuilder2 uses a very simple com-
munication protocol combined with an extensible data type hierarchy to enable
the implementation of a wide range of trust negotiation protocols.

Data type hierarchy. At a high level, a trust negotiation session is an exchange
of messages containing credentials, policies, uncertified claims, and other infor-
mation between two parties. In order to support the widest possible range of
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Fig. 1. Class hierarchy for several important TrustBrick subclasses.

trust negotiation protocols, the core components of the TrustBuilder2 frame-
work (described in Section 4.2) rely heavily on the use of an extensible data
type hierarchy. All types of information that might be exchanged between nego-
tiating parties are represented as subclasses of the TrustBrick class, which forms
the basic building block of the trust negotiation process. In this way, users can
extend the data types supported by TrustBuilder2 without modifying each com-
ponent in the system; components can simply ignore TrustBricks that they do
not know how to process, leaving them for other system components to handle.
Entities then exchange TrustMessage objects containing one or more of these
TrustBricks.

Figure 1 shows the relationships between several important subclasses of
TrustBrick. The InitBrick, NegotiationTarget, and StatusBrick classes are used to
provide high-level information regarding a negotiation: InitBricks are used to
establish the parameters of a trust negotiation, a NegotiationTarget is used to
indicate the particular resource that the initiator of a trust negotiation wishes
to access, and a StatusBrick may be included in the last message of the negoti-
ation to indicate whether or not the negotiation succeeded in establishing trust
between the participants. Any item exchanged during a trust negotiation that
could possibly be protected by a release policy is a subclass of ResourceBrick.
This ensures that TrustBuilder2 can properly enforce disclosure requirements on
data items without necessarily understanding the data item itself.

The AbstractCredentialBrick and AbstractPolicyBrick classes are used to rep-
resent attribute certificates and policies at an abstract level, which enables com-
ponents of TrustBuilder2 to handle credentials and policies of various formats
without needing to understand the intricacies of each format explicitly. The
X509CredentialBrick class is used to hold information about X.509 certificates,
while the RTCredentialBrick class holds information about RT credentials [18].
The UncertifiedCredentialBrick class provides TrustBuilder2 with the ability to
create “fake” credentials on-the-fly to facilitate the rigorous testing of system
components as they are developed. Lastly, the JessPolicyBrick class is used to
hold policies that can be interpreted by the CLOUSEAU compliance checker [15].



In Section 5, we illustrate the ways in which this extensible type hierarchy
facilitates the extension of the TrustBuilder2 framework to incorporate new fea-
tures, such as support for new policy languages or credential types. Readers
interested in more detail regarding TrustBrick or its subclasses should consult
the TrustBuilder2 programmer documentation included with the TrustBuilder2
distribution.

The communication protocol. As previously mentioned, the TrustBuilder2 com-
munication protocol is nothing more than an exchange of TrustMessage objects
containing one or more TrustBricks between the participants of the negotiation.
The first message sent by the initiator of the trust negotiation session contains
a single InitBrick object describing the TrustBuilder2 system configurations (i.e.,
strategy families, credential formats, and policy languages) that she supports,
along with other system parameters. If the responder supports a system config-
uration that is compatible with one of the system configurations proposed by
the initiator, he returns a TrustMessage containing another InitBrick describing
this system configuration. At this point, both parties can configure their Trust-
Builder2 framework to use this compatible system configuration during their
negotiation session. The initiator then responds with a TrustMessage containing
a NegotiationTarget that indicates the resource that she wishes to access. Be-
yond this, no constraints are imposed on the contents of these messages; future
TrustMessage objects exchanged by the participants are handled by the strategy
modules (described in the next section) supported by each of the participants,
rather than the core TrustBuilder2 framework. This allows TrustBuilder2 to
support a wide range of trust negotiation protocols without requiring protocol-
specific modifications be made to the framework itself.

4.2 Software Architecture

Figure 2 presents a high-level architecture diagram of the TrustBuilder2 run-
time system. Note that components enclosed in dashed boxes are not included
in the current version of TrustBuilder2; they are only meant to serve as example
components that could be developed by users as plug-ins and added to the Trust-
Builder2 data path. We now describe each of the major components identified
in this diagram and comment on the flow of data between components.

The external interface to the TrustBuilder2 runtime system is provided by
the TrustBuilder2 class. Trust negotiation sessions are conducted by making a
series of calls to methods exposed by this class. When a new trust negotiation
session is started, the TrustBuilder2 class creates and manages a Session object
that keeps track of all necessary state between rounds of the negotiation. For
example, after the exchange of InitBricks described in Section 4.1, the Session
object will contain a description of the TrustBuilder2 configuration to be used
for this session, including the strategy module to use, a list of supported policy
languages, and a list of supported credential formats. Any component in the
system can add its own internal state to a given Session object. This allows
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components to avoid maintaining this state locally and eases the development
of reentrant system components.

During the trust negotiation process, all incoming TrustMessages are pro-
cessed by the TrustBuilder2 object, which generates a response TrustMessage to
return to the remote participant. Prior to processing a remote TrustMessage it-
self or dispatching it to the StrategyModuleMediator, the TrustBuilder2 object
first passes all incoming messages to the IOManipulationModule. The IOManipu-
lationModule is the first class to process each incoming TrustMessage and the last
class to process each outgoing TrustMessage. This component is capable of load-
ing user-defined plug-ins that can examine and modify all TrustMessage objects
entering and leaving the TrustBuilder2 runtime system. The VisualizationModule
is an example plug-in to the IOManipulationModule that provides an interface
for writing and using custom logging and visualization components. The Trust-
Builder2 distribution includes two such components: the GuiVisualizer class is
a plug-in that uses the Swing API to graphically visualize every TrustMessage
processed by TrustBuilder2, while the BasicConsoleVizualizer is a plug-in that
provides a console logging facility.

The core of the TrustBuilder2 runtime system—that is, the interfaces to the
strategy modules, compliance checkers, credential and policy stores, and cre-
dential manipulation routines—is provided by a set of four mediator classes.
Each mediator class acts as a dispatcher providing access to any number of user-
specified trust negotiation system core components. The StrategyModuleMedia-
tor is responsible for managing the set of installed trust negotiation strategies.
Strategies encode the “brains” of a trust negotiation session; given an incom-
ing TrustMessage and the existing negotiation state, a strategy responsible for
interacting with the ComplianceCheckerMediator to analyze policies, the Creden-
tialChainMediator to construct and verify credential chains, and the QueryEngine-
Mediator to access local trust negotiation evidence or interact with external query
services. It then uses the information gleaned from this process to generate a re-
sponse TrustMessage that will be sent to the remote party. Each mediator class
provides hook points that allow user-developed plug-ins to intercept all calls into
the mediator class and all returns from the mediator class. This provides an
easy way for users to monitor or modify the flow of information through the
TrustBuilder2 framework.

For the sake of brevity, not every component of TrustBuilder2 was discussed
in this section. Readers desiring a more complete treatment of the components of
the TrustBuilder2 system should consult the programmer documentation avail-
able in the TrustBuilder2 distribution.

4.3 Default Configuration and Extensibility

By default, TrustBuilder2 includes support for a version of the TrustBuilderl-
Relevant strategy for trust negotiation described in [28] modified to further min-
imize information disclosure in the event that multiple satisfying sets are found
for a given policy during a negotiation. As described above, TrustBuilder2 sup-
ports the use of X.509 V3 credentials during interactions with remote parties but



can also use uncertified “test” credentials to exercise the functionality of new
plug-ins or components as they are being designed and developed. Plug-ins are
provided for the CredentialChainMediator that allow TrustBuilder2 to form a set
of credential chains from a collection of credentials of any format and to verify
the authenticity of the credential chains that were formed. TrustBuilder2 cur-
rently supports the CLOUSEAU compliance checker and can load a user’s policies,
credentials, and uncertified claims from repositories on the local file system.

5 Case Studies in Extensibility

In this section we discuss the extensibility of TrustBuilder2 at a high level, as
well as provide a more detailed treatment of two significant extensions added to
the framework after its initial development.

5.1 General Extensibility

As was our goal from the outset, almost every component of the TrustBuilder2
framework can either be extended or replaced by a user-defined plug-in. Because
the TrustBuilder2 framework was developed using Java, dynamic class loading
can be used to incorporate these user plug-ins at runtime without requiring any
modification to the TrustBuilder2 framework itself. Extensions to the primary
components of TrustBuilder2—that is, the IOManipulationModule, StrategyMod-
uleMediator, ComplianceCheckerMediator, CredentialChainMediator, and the
QueryEngineMediator—as well as plug-ins that interpose between these compo-
nents, can be added the system quite easily. Users simply write and compile
plug-ins conforming to the appropriate interfaces and instruct the TrustBuilder2
runtime system to incorporate these modules the next time that a TrustBuilder2
object is created. For instance, adding a new strategy to TrustBuilder2 involves
writing a class implementing StrategyModulelnterface and adding this class to
the list of strategy modules to be loaded by the StrategyModuleMediator.

We now discuss how the abstract type hierarchy used by TrustBuilder2 allows
support for new credential and policy formats—as well as new forms of negotia-
tion evidence—to be added to the the system without requiring modifications to
the underlying framework. As will be shown, this process is very straightforward
and allows support for novel trust negotiation features to be easily incorporated
into the TrustBuilder2 framework.

5.2 X.509 Credentials and Uncertified Claims

Initially, the TrustBuilder2 framework only included support for uncertified
“test” credentials, as encoded by the UncertifiedCredentialBrick class. These cre-
dentials can be easily created and modified and thus allow for rapid and efficient
testing of system components. However, to better study the properties of trust
negotiation systems that might be deployed in practice, support for more realis-
tic credential types was required. As a result, we added support for uncertified



claims encoding user data such as phone numbers or preferences (as in [3,4]), as
well as X.509 v3 certificates to the TrustBuilder2 framework.

Supporting uncertified claims required the following two extensions be made
to TrustBuilder2. First, the ClaimBrick data type was added as a subtype of the
ResourceBrick data type in the TrustBuilder2 type hierarchy (see Figure 1). Sub-
typing ResourceBrick in this way ensures that uncertified claims can be treated
as sensitive and optionally protected by release policies. Second, a loader plug-in
was written for the ProfileManager so that uncertified claims could be loaded
from the file system. In total, less than 300 lines of commented code had to be
written to support the addition of uncertified claims to TrustBuilder2.

Adding support for X.509 v3 certificates to TrustBuilder2 was accomplished
in a similar manner. Specifically, the X509CredentialBrick data type was added
as a subtype of the AbstractCredentialBrick type and another loader plug-in was
written for the ProfileManager so that X.509 certificates could be loaded from
the file system. The X509CredentialBrick data type wraps the functionality of
the X.509 data type supported by Java natively and provides additional meth-
ods that extract attribute information from a credential’s extension OID fields,
populate the data structures used by AbstractCredentialBrick objects, create and
verify proof of ownership challenges, and verify the issuer signatures. Since Trust-
Builder2’s default policy compliance checker, credential chain construction al-
gorithms, and credential chain verification algorithms operate on AbstractCre-
dentialBrick objects, no further modifications were needed for TrustBuilder2 to
support X.509 v3 certificates. Fewer than 1000 lines of commented code were
needed to implement the plug-ins required to include this support.

5.3 RT Credentials and Policies

To further extend the functionality of TrustBuilder2, we have also implemented
support for RTy and RT; credentials and policies [18]. Adding support for the
necessary credential types involved a process similar to that followed for sup-
porting X.509 credentials. That is, TrustBuilder2’s type hierarchy was extended
to include RT credentials, and a loader plug-in was written to read these creden-
tials from disk. However, since Java does not support RT credentials natively,
considerably more code had to be written than was the case for adding support
for X.509. In total, approximately 3500 lines of commented code were required
to add support for loading, parsing, and using these types of credentials within
the TrustBuilder2 framework.

In general, adding support for a new policy language to TrustBuilder2 would
require developing a new policy compliance checker that is capable of analyzing
the satisfaction of this new type of policy. Such a compliance checker would take
the form of a plug-in to the ComplianceCheckerMediator. However, this was not
the case for RTy and RT; policies. Recent results [15] show that these types of
policies can actually be compiled into a format that can be efficiently analyzed by
the CLOUSEAU compliance checker, which is already supported by TrustBuilder2.
Currently, policies must be compiled in an offline manner prior to being used



by TrustBuilder2, which limits the credential chain discovery functionality sup-
ported by RT. To overcome this barrier, we plan to implement a plug-in that
interposes between the StrategyModuleMediator and the ComplianceCheckerMe-
diator and compiles RT policies at runtime.

6 Performance Evaluation and System Profiling

We now discuss the results of a performance evaluation of the TrustBuilder2
framework. Our primary goals in this investigation were to evaluate the over-
heads associated with the flexible nature of TrustBuilder2 and to better under-
stand the bottlenecks involved in the trust negotiation process. We then discuss
a novel type of denial of service attack and several potential research directions
uncovered during this analysis.

6.1 The Scenario

Our scenario was designed to mimic a trust negotiation scenario that might take
place in one branch (Acme Springfield) of a national-scale corporation (Acme
Fabrication). In this scenario, an employee wants to access a file server con-
taining sensitive files related to “Project X.” The policy protecting the Project
X file repository states that an authorized entity must be either (i) a full-time
employee of Acme Springfield that has an Acme Fabrication issued sensitive
document training certification and works in department 2460-2469 or (ii) a
full-time employee of Acme Springfield that has an Acme Fabrication issued
sensitive document training certification, works in department 2400-2499 and
was granted an “access exception” for Project X by either Alice or Bob. This
policy was thought to be a reasonable example of a negotiation that one might
see in a large corporation as it is much simpler than managing a long access con-
trol list, but also includes provisions for the explicit white-listing of people who
are not authorized by the blanket policy. Furthermore, entities on the white-list
can easily be traced back to the employee authorizing them

The client in our scenario has a valid employee ID stating that he is a full-
time employee in department 2442 of Acme Springfield, a sensitive documents
training credential, and an access exception issued by Bob. Figure 3 illustrates
this example negotiation scenario graphically. The first two messages exchanged
during the negotiation contain configuration information used by TrustBuilder2
to establish the parameters for the negotiation session. The second message
sent by the client indicates his interest in accessing the file server associated
with Project X. The second message sent by the file server releases the policy
protecting this file server to the client. The client can satisfy this policy, but
is not willing to disclose his security clearance or access exception unless the
server can prove that it is operated by Acme Springfield. As such, the third
message sent by the client discloses the release policy protecting these credentials
and the credential chain ending with his employee ID. Note that supporting
credentials are not shown in Figure 3. At this point, the file server validates the
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Fig. 3. A simplified view of the trust negotiation used during our experiments.

proof-of-ownership associated with the employee’s employee ID and accepts this
credential. It also then discloses the credential chain that identifies the file service
as operated by Acme Springfield. The client verifies this credential chain and
the proof-of-ownership associated with the leaf credential in the chain and then
discloses his sensitive documents training credential and his access exception to
the file server. The file server verifies the proofs-of-ownership associated with
these credentials and then grants the client access to the service.

6.2 The Experiments

We used the above trust negotiation scenario to conduct two experiments. In
the first experiment, a client application made a TCP connection to a server
application and carried out the trust negotiation described by Figure 3 using an
ObjectOutputStream to write TrustMessages to the remote server and an Object-
InputStream to read response TrustMessages. When the negotiation succeeded,
the client would disconnect from the server. This entire process was repeated 100
times. The client and server applications were both executed from the system
command prompt using JDK 1.5.0_06. This experiment was designed to enable
us to study the average execution time of a trust negotiation session.

In the second experiment, we sought to profile the execution of the Trust-
Builder2 runtime system to gain a better understanding of the costs of the
various components of a trust negotiation. In this experiment, the server process
described above was started from the system command line using JDK 1.5.0_06.
The client application was loaded into the Eclipse development environment and
profiled using the Eclipse Test and Performance Tools Platform (TPTP) tracing
and profiling tools plug-in version 4.2.1.

In our experiments, the TrustBuilder2 objects used by the client and server
processes supported only the use of X.509 credentials encoded as



X509CredentialBrick objects. All X.509 credentials used during this scenario en-
coded RSA key pairs. Further, each credential was represented as a unique X.509
certificate with its own key pair. Both the client and server processes supported
the use of the CLOUSEAU compliance checker. The strategy used by both parties
was the variant of the TrustBuilderl-relevant strategy discussed in Section 4.3
that is implemented by the MaximumRelevantStrategy class included in the Trust-
Builder2 distribution. Credential chains were built using the SimpleChainBuilder
class and verified using the RootTolLeafVerifier class. The |IOManipulationModule
was disabled at both the client and server. The experiments described above
were run using a single machine, rather than two machines, as we were more
interested in the computational costs of the trust negotiation than the commu-
nication latencies imposed by routing packets through an Ethernet network. The
machine that we used had a 3.2 GHz Intel Pentium 4 processor, 1 GB of RAM,
and was running Gentoo Linux (kernel 2.6.12).

6.3 Results

After conducting the first experiment, we found that the average time to conduct
the aforementioned trust negotiation session using TrustBuilder2 was 434.73 ms
with a standard deviation of 97.56 ms. This is at least an order of magnitude
faster than a trust negotiation session carried out using the original TrustBuilder
framework, as a similar negotiation takes seconds on average within that frame-
work [16]. We did find that the first trust negotiation session took roughly three
times as long as an average negotiation (1350 ms) due to the cost of Java initially
loading the classes used by the TrustBuilder2 framework. We do not see this as
a problem, however, as it is likely that TrustBuilder2 objects will be used for
multiple negotiations and therefore this initial cost will quickly be amortized, as
it was in our experiments.

In our second experiment, we found that the majority of the time spent in one
of three tasks: using the compliance checker (= 49%), reading from and writing
to I/0 streams (=~ 15.5%), and signing proof-of-ownership challenges (~ 14.4%).
We also found that the overheads required to support plug-in loading and in-
terposition amount to less than 0.2% of the overall cost of the trust negotiation
process. This implies that the flexibility afforded by the TrustBuilder2 frame-
work does not, in and of itself, carry the steep overheads that we had originally
anticipated. Of course, loading inefficient or otherwise expensive plug-ins could
easily increase the cost of a trust negotiation.

7 Discussion

In this section, we revisit the requirements presented in Section 3 and discuss
the ways in which they are met by TrustBuilder2. We then discuss potential
implications of the performance results obtained in Section 6.



7.1 Requirements Redux

In Section 3, we introduced ten requirements that should be provided by frame-
works for exploring the systems aspects of trust negotiation. Section 5 illus-
trated the ways in which plug-in extensions to TrustBuilder2 can be used to
meet the arbitrary policy languages, arbitrary credential formats, interchange-
able negotiation strategies, flexible policy and credential stores, and extensibil-
ity requirements. The plug-in interface for defining strategy modules does not
place any constraints on how the strategy behaves, which enables user-defined
strategy modules to meet the tunable human involvement and feature ordering
requirements. The VisualizationModule plug-in to the IOManipulationModule en-
ables advanced logging and visualization features, thus meeting the advanced
logging capabilities requirement. Finer-grained logging can be accomplished by
placing calls to the logger at the mediator hook points described in Section 4.2.
The QueryModuleMediator can be used to allow the TrustBuilder2 framework to
interact with processes external to the negotiation at hand simply by developing
new query module plug-ins, thereby meeting the strategy-driven external inter-
actions requirement. Finally, each of the plug-ins to the TrustBuilder2 system
can be individually enabled or disabled, thereby meeting the selective feature
activation requirement.

7.2 Attacks and Future Research

One striking result from the performance evaluation presented in Section 6 is that
nearly half of a trust negotiation session is spent interacting with the compliance
checker. During our experiments, the client process spent, on average, 226 ms
interacting with the compliance checker during a single trust negotiation. The
complexity of the compliance checking process has also been observed in other,
independent trust negotiation implementations (e.g., see [23]). This suggests that
a novel and highly-effective denial of service attack against trust negotiation-
enabled services is to force the use of the remote party’s compliance checker. An
attacker can easily accomplish this by either placing release policies on every
credential that might possibly be released to the remote party, or by sending
spurious policies that the remote party thinks are protecting resources that could
advance the state of the negotiation. Such an attack involves little overhead for
the attacker, yet can consume arbitrary resources on the host being attacked.
This attack is quite different than the types of denial of service attacks on
trust negotiation discussed in the research literature. To date, attacks against
trust negotiation systems have focused on examining ways to exploit the creden-
tial chain construction and verification processes [17,22]. These attacks leverage
the disparity in cost between transmitting a credential chain and verifying that
the chain is correctly formed to consume resources on the target system. The
higher per-unit cost of policy compliance checking when compared to credential
verification implies that attacking the compliance checker used by a trust ne-
gotiation system can be at least as damaging as attacking its credential chain
verification process. Furthermore, malicious entities combining these two attacks



can slow the processes of analyzing both local and remote policies at the host
being attacked.

Analyzing the cost breakdown of example trust negotiation scenarios not
only led to the identification of this attack strategy, but also helped identify fu-
ture research directions aiming to better optimize trust negotiation systems. For
example, an earlier version of our performance analysis led us to explore alter-
nate formulations of the policy compliance checking problem that would allow
for more efficient policy analysis than existing theorem proving approaches. The
result was the CLOUSEAU compliance checker, which leverages an efficient pat-
tern matching approach to greatly outperform existing compliance checkers both
asymptotically and in practice [15]. However, the attacks described above occur
even when using this optimized compliance checker. An interesting direction of
future research could be the development of trust negotiation strategies that can
detect the above types of compliance checker abuses and either triage “unpro-
ductive” negotiations or seek to limit the use of the compliance checker without
compromising the completeness property of the trust negotiation protocol.

8 Conclusions

In this paper, we presented TrustBuilder2, a flexible framework for investigating
the systems aspects of trust negotiation. TrustBuilder2 supports the dynamic
loading of new trust negotiation system components—such as strategy mod-
ules, compliance checkers, policy and credential storage devices, and logging and
visualization modules—without modification to the underlying framework and
features an extensible type hierarchy that allows end-users to easily add support
for new credential formats and policy languages. By profiling the performance
of TrustBuilder2, we found that the system has a number of desirable properties
that make it ideal for researching the systems obstacles to deploying trust ne-
gotiation systems in practice. Furthermore, our performance evaluation enabled
us to uncover a novel class of attacks against trust negotiation systems and led
us to identify promising areas of future trust negotiation systems research.
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