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Abstract Computational trust and reputation models are used to aid the decision-
making process in complex dynamic environments, where we are unable to obtain
perfect information about the interaction partners. In this paper we present a com-
parison of our proposed hidden Markov trust model to the Beta reputation system.
The hidden Markov trust model takes the time between observations into account,
it also distinguishes between system states and uses methods previously applied to
intrusion detection for the prediction of which state an agent is in. We show that
the hidden Markov trust model performs better when it comes to the detection of
changes in behavior of agents, due to its larger richness in model features. This
means that our trust model may be more realistic in dynamic environments. How-
ever, the increased model complexity also leads to bigger challenges in estimating
parameter values for the model. We also show that the hidden Markov trust model
can be parameterized so that it responds similarly to the Beta reputation system.

1 Introduction

Trust is a fundamental part of social and commercial relationships, both in the real-
life and the virtual world. Complex dynamic environments, like the Internet, makes
it extremely hard to obtain perfect information about potential interaction partners.
In e-commerce and other electronic transactions and services, where the assets of
interaction partners might be at risk, trust mechanisms may facilitate the decision-
making process and lower the risk. Since trust management can be assumed to de-
crease risk, it can also be assumed that it will increase security and can be con-

Marie Elisabeth Gaup Moe, Bjarne Emil Helvik and Svein Johan Knapskog
Centre for Quantifiable Quality of Service in Communication Systems,
Norwegian University of Science and Technology,
O.S. Bragstads plass 2E, N-7491 Trondheim, Norway,
e-mail: {marieeli, bjarne, knapskog}@q2s.ntnu.no

1



2 M. Moe et al.

sidered as a soft security mechanism [15]. Soft security accepts the fact that it is
possible to circumvent the implemented security mechanisms, given enough time,
effort and money. Since we might have users with malicious intentions in a system,
the challenge is to detect them and find a way to monitor their behavior and possi-
bly influence their actions, in order to prevent them from causing any harm. Trust
management serves this purpose by evaluating the trustworthiness of users and of-
fering different service levels to users based on a trust policy. If services are denied
to untrusted users, an incentive for users not to misbehave, is created.

Computational trust and reputation models seek to quantify trust as a value de-
rived from previous direct experiences and/or second-hand information, such as rec-
ommendations, and suggest mathematical and logical expressions for how to com-
bine several opinions about trustworthiness into reputation values. Such models are
clearly needed in the virtual world where non-human agents are making trust-based
decisions. But also when the human end-user is making the decisions, such calcu-
lated trust values can be very useful as decision support. For this reason a number of
different trust models have been proposed. The modeling complexity varies, ranging
from very simple eBay-like models to more sophisticated models based on proba-
bility theory, e.g. the Bayesian trust and reputation models [12, 7, 2, 13, 6].

In this paper we will present a comparison of our previously proposed hidden
Markov trust model [11] to a binomial Bayesian reputation system [7]. The com-
parison is done with the help of simulations of trust scenarios. The objectives of
this paper is to discuss probabilistic measurement of trust, outline the models and
compare their performance in a dynamic environment where the (un)trusted objects
may change behavior. We show that the hidden Markov trust model performs better
when it comes to the detection of changes in behavior of agents, this means that our
trust model may be more realistic for dynamic environments. We also show that the
hidden Markov trust model can be parameterized so that it responds similarly to the
Bayesian reputation system.

The remainder of this paper is organized as follows. Section 2 discusses the chal-
lenges related to modeling dynamic trust and how the different models can be eval-
uated. Section 3 gives a brief introduction to Bayesian trust models, in particular
the Beta reputation system, Section 4 discusses the hidden Markov trust model, the
simulation results are presented in Section 5, and Section 6 discusses the simulation
results and concludes the paper.

2 The Dynamic Trust Modeling Problem

Since trust and reputation are active fields of ongoing research, numerous different
models for quantification and evaluation of trust have been proposed. A review on
some of these computational trust models can be found in [17]. However, there
seems to be no single agreed upon model that can be used for benchmarking and
comparison of the different trust and reputation algorithms.
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Reputation models used for electronic commerce are often based on very simple
mathematical formulas for combining opinions. One example is the reputation sys-
tem implemented in eBay, where a feedback score is calculated as a sum of ratings
that can be either positive, corresponding to a value of +1, negative with a value−1,
or neutral with 0 value. A survey of trust and reputation systems that are currently
used in online services can be found in [8].

In [4], several desirable qualities of reputation systems are listed. According to
the authors a reputation system should be efficient, robust against attacks, easily
understandable and verifiable. It should also be weighted toward current behavior,
meaning that it responds quickly to changes in behavior so that an entity which
has performed well consistently over a long time but then suddenly changes its
behavior will be detected and maybe no longer trusted. This feature is missing in
many trust and reputation models as trust is modeled as a static property, not taking
the time component into consideration. For some applications of reputation and
trust the time dependency and response to dynamic behavior are very important,
as the behavior of agents could be assumed to be highly dynamic. One example
of such an application is when trust metrics are used in ad hoc routing protocols
to counter malicious nodes, see for instance [9, 3, 2, 1]. The common approach is
that every node in the network monitors its neighbors and measures the frequency
of packet dropping, misrouting and other potentially malicious behavior, and keeps
a trustworthiness rating or reputation value recorded for all other nodes based on
these observations. The underlying routing protocol is then modified with a trust
component which selects routing paths and makes routing decisions based on the
reputation values.
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Fig. 1 The architecture of a reputation system using hidden Markov trust modeling
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The computational trust algorithm used to calculate the reputation value varies.
In [3], a simple eBay-like scheme is used, where reputation is a sum of recommenda-
tions of +1 whenever a packet reaches its destination, and−1 if a packet is dropped,
a node is considered untrusted if its reputation value falls below a certain threshold.
In [2] a more sophisticated scheme, based on a Bayesian reputation system, is used.
A trust-based ad hoc routing protocol based on hidden Markov modeling of trust
was proposed by the authors in [10]. The architecture of the trust component used
in this approach, presented as a more general decentralized reputation system, is
illustrated in Figure 1. Every agent in the system keeps and updates hidden Markov
models (HMMs), that are modeling the trust state of all the other agents. Before an
agent (trustor) initiates an interaction with another agent (trustee), it looks up the
trustworthiness value derived from the HMM belonging to the trustee. The trustor
then decides according to a policy whether or not to interact with the trustee. Af-
ter an interaction, the HMM belonging to the trustee is updated with a rating, good
g, or bad b, based on the outcome of the interaction. The HMMs are also updated
with observations in the form of ratings from other agents in the system, so called
second-hand opinions, which are either in the form of recommendations r, or warn-
ings w. In this study we do not include trust transitivity between different contexts,
for the simplicity of the comparison, so we assume that the HMMs are only updated
with observations related to the same context. We also do not consider chains of
recommendations.

With this paper we would like to compare our hidden Markov modeling of trust
to the Bayesian approach, in particular with regard to performance of the modeling
of the dynamic aspect of trust, since this is a very important feature for applica-
tions in dynamic networking environments. A quantitative approach to comparing
trust models can be found in [13]. In this paper it is proposed to use the informa-
tion theoretical measure relative entropy. However, this approach is only applicable
to probabilistic trust models that share the same fundamental assumptions about
the underlying probability distributions. In cases where a direct mathematical com-
parison of models is difficult, comparison by the help of simulations seems to be
the most viable approach. Different trust scenarios can be simulated in order to see
which trust and reputation system performs best with regard to reliability of the
calculated values under various hostile agent strategies.

3 Bayesian Trust Modeling

Bayesian trust models, for calculating reputation scores from ratings, are based on
the assumption that the behavior of an agent can be described according to a prob-
ability distribution. The trust value is a function of the expected value of the prob-
ability distribution, which gets updated with every new rating received according
to Bayes’ Theorem. Binomial Bayesian reputation systems, where ratings can be
expressed by two values, good or bad, are modeled with the Beta probability den-
sity function [12, 7, 2]. Multinomial Bayesian reputation systems, that allow for
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ratings with graded levels, are modeled with the Dirichlet probability density func-
tion [13, 6]. In this paper we will focus on the binomial case, and evaluate the
performance of our proposed trust model compared to the Beta reputation system
proposed by Jøsang et al. [7].

3.1 The Beta Reputation System

The Beta reputation system models the reputation formation for a trustor as a se-
quence of observations, where each observation is the outcome of the rating done
by a trustee, based on the outcome of an interaction. A reputation centre collects
ratings from all the agents, and updates each agent’s reputation score.

The underlying mathematical model of the Beta reputation system considers the
ratings as a sequence of trials with binomial outcomes, for each trial there is a prob-
ability p of getting a good rating (recommendation) and a probability (1− p) of
getting a bad rating (warning). The parameter p belonging to a trustor is initially
unknown, so due to lack of information it is assumed that it is drawn from a uniform
distribution on [0,1]. As ratings concerning this trustor start to arrive, there is more
information available and we can update the distribution of p. In accordance with
Bayesian inference we have a prior hypothesis X about the outcome of a trial, which
is updated a posteriori to the actual outcome Y in accordance with Bayes’ Theorem

P(X | Y ) =
P(X)P(Y | X)

P(Y )
. (1)

The Beta distribution

Beta(α,β ) =
Γ (α +β )
Γ (α)Γ (β )

pα−1(1− p)β−1 (2)

is a conjugate prior for binomial trials (Bernoulli process). This means that if we
assume that the prior X hypothesis is described by Beta(α,β ), and Y is a sequence
of ratings, out of which r is the number of good ratings (recommendations) and w is
the number of bad ratings (warnings), then the posterior P(X |Y ) is also described by
a Beta distribution Beta(α +r,β +w). The initial prior is given by Beta(1,1), which
corresponds to the uniform distribution on [0,1]. The reputation value is given as a
function of the expectation value of the Beta distribution E(p) = α/(α +β ), for the
posterior hypothesis the expectation is found by setting α = r + 1 and β = w + 1.
This results in a very simple calculation of the probability expectation value. Let
(rk,wk) denote the ratings received at iteration step k, we then get the following
recursion for deriving the Beta parameters:

αk = αk−1 + rk, βk = βk−1 +wk, α0 = β0 = 1. (3)

For finding the probability expectation value at iteration step k we get:
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E(pk) =
αk

αk +βk
. (4)

The probability expectation value given in Equation 4 gives a reputation rating in the
range [0,1], where the value 0.5 represents a neutral reputation value. To make the
reputation model more realistic, several modifications to the calculation of the rep-
utation value are introduced. These variations include discounting of ratings based
on the reputation of the agent providing the rating, forgetting old ratings by giving
old ratings less weight than more recent ratings, and weighting of ratings according
to the value of the rated transaction.

3.2 Evaluation of the Beta Model

The Beta reputation system without forgetting factor is efficient, easily understand-
able and verifiable, but it is not weighted toward current behavior. This is due to the
underlying Bayesian framework, which assumes that the behavior of agents can be
approximated by a fixed probability distribution. Since agents may change behavior
over time, this static modeling is not realistic. The forgetting factor 0 ≤ φ ≤ 1 was
introduced in [7] to overcome this problem. It is used to scale the parameters (α,β )
in every update of the Beta distribution, so that the we get

α
∗
k = α

∗
k−1φ + rk, β

∗
k = β

∗
k−1φ +wk, α

∗
0 = β

∗
0 = 1. (5)

A forgetting factor φ = 1 means that all ratings are weighted equally, and nothing
is forgotten, with φ = 0 only the last rating is remembered. In Figure 2 we can see
how the Beta model responds to a sequence with 20 good ratings followed by 20
bad ratings, with different forgetting factors.

Fig. 2 The Beta model with
different forgetting factors,
the observations are 20 good
ratings followed by 20 bad
ratings.
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As noted by the authors of [13], the forgetting factor is a form of exponential
decay on the parameters of the Beta model giving an effective bias towards newer
information, but it is unclear if this fading mechanism is really modeling dynamic
behavior of the agents. If agents were likely to change their behavior in such a
way that the probability p of getting good ratings slowly increases or decreases, this
fading of parameters seems like a good modeling approach. However, if we consider
a disruptive agent that follows a strategy where it behaves good for a certain amount
of time, building up a good reputation value, and then suddenly starts to misbehave
taking advantage of its reputation, this slowly adapting model might not be good
enough.

Another problem with the Beta model is the lack of time component. The reputa-
tion formation is only depending on the number of ratings, without taking the time
between ratings into account. If we assume that ratings are not received at regular
intervals, the claim that the forgetting factor takes care of adjusting the model to-
wards new information may not be valid anymore. A simple way of rectifying this
is by introducing a time stamp on the ratings, like suggested in [19].

4 The Hidden Markov Trust Model

The hidden Markov trust model takes the time between observations into account,
it also distinguishes between system states and uses methods previously applied to
intrusion prevention [5] for the prediction of which state an agent is in. The hidden
Markov trust model was originally proposed by the authors as a component in a
trust-based ad hoc routing protocol [10]. It was further developed with a parameter
learning component for multiagent environments [11].

4.1 Hidden Markov Modeling

A hidden Markov model (HMM) consists of a finite set of N hidden states S =
{s1, . . . ,sN} with an associated probability distribution. The state of the monitored
agent is described by a discrete time Markov chain xxxk = x1,x2, . . . where xk ∈ S is
the possibly hidden state of the agent at sampling instant k. PPPk = {pk

i j} is the set
of state transition probabilities, pk

i j = P(xk+1 = s j | xk = si), 1 ≤ i, j ≤ N, where xk
is the current state of the system. π = {πi} is the initial state distribution, where
πi = P(x1 = si), 1 ≤ i ≤ N. The output from the agent ratings is classified by the
set of observation symbols V = {v1, . . . ,vM}. Let yyyk = y1,y2 . . . denote the sequence
of observations, where yk ∈ V is the observation made at sampling instant k. The
HMM consists of two stochastic processes; the hidden process xxxk, and the observ-
able process yyyk that depends on xxxk. The relation between xxxk and yyyk is described by
the probability distribution matrix BBB = {b j(m)}, where b j(m) = P(yk = vm | xk = s j),
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for 1 ≤ j ≤ N, 1 ≤ m ≤M. See for instance [14] for a more extensive introduction
to HMMs.

In the hidden Markov trust model considered in this paper, we choose to use
two hidden states {trusted, untrusted}, and four observation symbols {g,b,r,w},
corresponding to the observations good, bad, recommendation and warning. The
reason for choosing two states is to make it easier to compare the model with the
binomial Bayesian model. A comparison of our model with more states and more
observation symbols to a multinomial Bayesian model would be an interesting topic
for our future work. An agent is in an untrusted state if it has been behaving in a
malicious way in previous interactions, it is in a trusted state if it has shown good
behavior. We model trust as a dynamic variable, changing with time. This allows
us to capture the behavioral characteristics of agents that are behaving good for a
certain time, but then suddenly start misbehaving. Since an agent’s behavior can be
changing with time it is not necessarily the case that an agent is in the same state
as it were at the last encounter. An agent can only do its best guessing about the
trustworthiness state of an other agent based on its own previous direct experiences,
which were either good or bad, and recommendations or warnings from other agents
in the system. This means that the system state is hidden, and hence we use the
HMM approach.

We consider a decentralized reputation system where each agent updates its own
trust value for the other agents based on its own direct experiences, and from feed-
back in the form of ratings communicated from other agents in the multiagent sys-
tem. We model the agent interaction as a stochastic process. This means that we
assume that there is a random time interval between each agent interaction and that
the behavior of an agent is only dependent on its current state. When using a Markov
model to model the state of an agent, we make the following assumptions; all infor-
mation about the agent is contained in the state, observations are independent given
the current state, and state occupation time is negatively exponentially distributed.

4.2 State Probability Distribution

From the HMM we can derive a prediction of the probability distribution over the
states, and we use the probability of being in the trusted state as reputation value.
Our modeling approach is different from the Beta model as we do not assume that
there is an underlying fixed probability p of getting a good rating. Instead we assume
that an agent is in one of the hidden states, and that the ratings are characterized by
different values of p dependent on the current state of an agent. The rating process is
similar to the monitoring process in an intrusion detection system, and the challenge
is to predict the current state of an agent and detect a possible state change.

We have not made any assumptions about time between observations, and there
is no direct relation between observations and state-changes. As a consequence the
system could have made zero, one or more transitions during the time between to
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successive observations. The time when observation number k is produced is de-
noted tk. Time between observation k−1 and observation k is denoted δk = tk−tk−1.

The transition rate matrix Λ = (λi j) is describing the dynamics of the system. To
simplify the notation we will use i and j instead of si and s j. The relation between
system states and the transition rates is given by

λi j =

limdt→0
P(xxx(t +dt) = j|xxx(t) = i)

dt
if i 6= j

∑
N
j 6=i, j=1−λi j if i = j

. (6)

Since observations are received at irregular intervals, the running transition prob-
abilities pk

i j = P(x(t +δk) = j|x(t) = i) depend on the time since last observation δk,
and have to be calculated each time an observation is received. The running transi-
tion probability matrix PPPk = (pk

i j) can be derived from Kolmogorov’s equations [16]
as follows

PPPk = eΛδk . (7)

There are several analytical and numerical methods for solving these ordinary dif-
ferential equations, in our case the state space is very small, so calculations are
inexpensive. Let γk = (γk(i)) denote the prediction of the state probability distri-
bution at time tk given all observations received until time tk, γk(i) = P(xk = i|yyyk)
where yyyk = y1, . . . ,yk. The algorithm for calculating γk is given in [5], it is an on-line
algorithm derived from the forward-backward procedure described in [14], and is
very efficient. It does not require the agents to keep any history of past observations
in memory.

4.3 Parameter Estimation

The parameters that need to be set in the HMM are the initial state distribution
π , the observation symbol probabilities BBB and the state transition rates Λ . In [11]
we describe a method for learning the model parameters by the combination of the
machine learning technique reinforcement learning [18] and the forward-backward
procedure, which finds the maximum likelihood parameter estimate from a training
sequence of observations. As this parameter learning technique is not the main focus
of this paper, we will assume that these parameters are available to the model and
perform the simulations with a few different representative values for the parame-
ters.

We will set the initial state distribution π to be uniform over the states, so we have
that π1 = 0.5 and π2 = 0.5, in order to get the same starting condition as the Beta
model. However, to overcome the problem of agents changing their identities and
re-entering the system frequently, it might be better to change the starting condition
so that a newcomer to the system is most likely not in a trusted state.

The state transition rates can be calculated from estimated expected state sojourn
times H = (h1,h2), the relation between transition probabilities and transition rates
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is given by
λi j =

pi j

hi
for i 6= j. (8)

The transition rate models the tendency of the agent to change its trustworthiness
over time, large state transition rates will lead to faster response to indications of
state changes in the model.

The observation symbol probabilities models the uncertainty of the observations.
If we for instance have the parameter b1(g) = 0.9, this means that we have a prob-
ability of 0.1 of getting a good observation even though the agent really is in an
untrusted state. In other words we have a certainty of 90% of getting correct obser-
vations. Figure 3 shows how the hidden Markov trust model responds to an input
of 20 good followed by 20 bad observations for different observation symbol prob-
abilities. The time between observations is fixed, and we have used the estimated
state sojourn times h1 = 100, and h2 = 100. We have used symmetric observation
probabilities in this example, i.e. if b1(g) = 0.9 we also have that b2(b) = 0.9.

Fig. 3 The hidden Markov
trust model with different
observation probabilities,
the input is 20 good direct
observations followed by 20
bad direct observations.

As we can see from Figure 3, the observation symbol probabilities influence the
response to state transitions in the model. This is natural, since if the observations
are unreliable, we would like to have more observations indicating a state change
before we believe that an actual state change has occurred. It would make sense to
assign a higher observation symbol probability to the first-hand observations {g,b}
than to the second-hand observations {r,w}. For the second-hand observations we
could choose to model each recommender separately, this means that we assign dif-
ferent observation symbol probabilities {r,w} to every recommender. If we have a
history of previous recommendations and warnings coming from a specific recom-
mender, we can learn the parameters from this sequence of observations.
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5 Simulation Results

In this section we will present some simulation results from our comparison study
of the hidden Markov trust model and the Beta reputation model. We describe a
selection of trust scenarios and compare the performance of the models in these
situations.

5.1 Simulation Assumptions and Parameters

When we do the comparison of the Beta model and the hidden Markov trust model
in the following, we will consider a decentralized version of the Beta reputation
system, where we let each agent calculate its own reputation value for the other
agents instead of calculating the reputation values in a reputation centre. We assume
that there is a trusted reliable communication protocol in place that allows agents to
obtain feedback from other agents in the form of ratings.

For the model parameters, we have used the Beta model with a forgetting factor
φ = 0.9, and the hidden Markov trust model with state sojourn times h1 = 100, h2 =
100 and observation symbol probabilities b1(g) = 0.8, b2(b) = 0.8. For the Beta
model, we can see from Figure 2 that a high value of φ gives the best response to
state changes as it gives the largest variation in the reputation value. Small values of
φ seems to give quicker response, but leads to a convergence of the reputation score
to a less extreme value. This means that the reputation value becomes more average
and does not clearly distinguish between states. Since we want to model these state
changes with our hidden Markov trust model, we have used the Beta model with a
high value of φ . For the hidden Markov trust model, we have used relatively high
observation probabilities following the same reasoning. In the last simulation we
have used other parameters for the hidden Markov trust model, because we want to
illustrate the flexibility of the model by showing how we can adjust the parameters
so that it responds similarly to the Beta model.

5.2 Response to State Changes

We have already seen from Figures 2 and 3 how the two models respond to a state
change, we have 20 good observations followed by 20 bad observations. In Figure 4
we see the difference between the models more clearly. Such an input set of obser-
vations could come from a trust scenario where an agent builds its reputation value
by behaving good for a certain amount of time, and then decides to take advantage
of its good reputation by suddenly changing its behavior. From Figure 4 we see that
the slope of our model is much steeper than the slope of the Beta model. The Beta
model has a lower reputation value for the first observation, but this is due to the
slower convergence of the Beta model to the good state. If we for instance had a
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Fig. 4 The hidden Markov
trust model compared to the
Beta model, the input is 20
good observations followed
by 20 bad observations.

threshold for detecting state changes at the reputation value 0.5, the hidden Markov
trust model would detect this already at the third bad observation while the Beta
model would detect it after six bad observations.

5.3 Time Component

The Beta model does not take the time component into consideration, it only models
the reputation value in terms of number of ratings. In the hidden Markov trust model
we include the time between observations in our model. To illustrate the advantage
of including the time aspect, we consider the following scenario. We assume that
an agent has been compromised, i.e. ’taken over’ by a malicious agent. The agent
then proceeds with a strategy of ’laying low’, meaning that is waits for a long time
without acting malicious, so that when it starts to show malicious behavior it can
take full advantage of the good reputation that the previous owner of the agent had
built up. From Figure 5 we can see an example of such a scenario, where we have
9 good observations, then one bad observation at time t = 10, then no observations
until time t = 35, followed by 5 bad observations. We can observe from the plot
that the hidden Markov trust model gives a steeper slope and continues the negative
trend over time, while the Beta model is just stretched at the x-axis.

5.4 Disruptive Behavior

We want to see how the models react to a disruptive agent that changes it strategy in
order to adapt to the rules of threshold-based intrusion detection. In particular, we
consider an agent that follows a pattern of misbehavior adapted to a detection rule of
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Fig. 5 The hidden Markov
trust model compared to the
Beta model, the input is 9
good observations, 1 bad
observation at time t = 10,
then no observations until
time t = 35 followed by 5 bad
observations.

’three strikes and you’re out’. In Figure 6 we have an example of this scenario, where

Fig. 6 The hidden Markov
trust model compared to
the Beta model, the input
is 10 good observations,
followed by a disruptive
behavior giving a pattern
of 2 bad observations, one
good observation, 2 bad
observations, and so on.

an agent is showing good behavior for 10 observations to build up its reputation, and
then proceeds with the disruptive behavior giving a pattern of 2 bad observations,
one good observation, 2 bad observations, and so on. We can see from the plot that
the Beta model picks up this behavior with a decreasing reputation value, but the
hidden Markov trust model detects the state change faster and converges to much
lower trustworthiness values.
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5.5 Model Flexibility

We have shown some examples where the hidden Markov trust model performs
better than the Beta model in detecting state changes. This is not very surprising as
the Beta model is not based on the assumption that agents can be in different states
when it comes to trustworthiness. The performance of both models is of course
dependent on the model parameters. The Beta model in the variant that we used in
our simulations has fewer parameters than the hidden Markov trust model, albeit we
have included the forgetting factor as a parameter in order to study the variant of the
Beta model which is most sensitive to dynamic behavior. We used the parameters
that seemed to give the most beneficial results for both models.

Now we want to illustrate the flexibility of the hidden Markov trust model, by ad-
justing its parameters so that it responds similarly to the Beta model. The results of
this adjustment can be seen in Figure 7. We have used the Beta model with a forget-

Fig. 7 The hidden Markov
trust model compared to the
Beta model, the parameters
of the models have been ad-
justed to make them respond
similarly, input is 20 good
observations followed by 20
bad observations, 20 good
observations and so on.

ting factor of φ = 0.7, and adjusted the parameters of our model to make it respond
close to the Beta model. For the hidden Markov trust model we have used the obser-
vation symbol probabilities b1(g) = 0.6, b1(b) = 0.4, b2(b) = 0.6 and b2(g) = 0.4.
We also adjusted the state sojourn times to h1 = 8 and h2 = 8. The hidden Markov
trust model with these parameters describes a situation where observations are very
uncertain and state transition rates are high. With such parameters we could say that
the state modeling aspect of our model has been suppressed.
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6 Discussion and Conclusion

We have seen from the simulated examples that the Beta model and the hidden
Markov trust model performs differently. We will now explain the fundamental dif-
ferences between the two models, and discuss the findings from the simulations in
this light. The hidden Markov model assumes an underlying state, observations are
uncertain and we have an uncertainty of which state an agent is in. The Beta model
does not assume that an agent is either good or bad, but rather seeks to pinpoint the
trustworthiness of an agent on a continuous scale from 0 to 1. The interpretations of
the observations in this model are deterministic. The difference between the models
can be seen as an analogy to the difference between fuzzy sets and probabilities.
In fuzzy logic an agent can be partially trusted, in the sense that he is 70% hon-
est and 30% dishonest. This is different from a situation where we are 70% certain
that an agent is 100% honest. This fundamental difference between the two mod-
els explains why the hidden Markov model performs better when it comes to the
detection of changes in behavior of the agents over time. While the hidden Markov
model recognizes a state transition, the Beta model is instead modeling an agent that
gradually becomes partially more dishonest. This difference is clearly demonstrated
in the simulation illustrated in Figure 6, where we consider an agent with a disrup-
tive strategy. Additionally, we have the effect of the different time constants in the
models. While the Beta model is relying on the ’lifetime’ of old observations, the
time constant in the hidden Markov trust model is associated with the underlying
state transition process.

The hidden Markov trust model has more parameters then the Beta model, thus it
can be more fine-tuned and adaptable to dynamic environments. However, this also
leads to challenges related to the parameter estimation. In [11] it is discussed how its
parameters can be learned using a combination of the machine learning technique
reinforcement learning [18] and the forward-backward procedure [14], which finds
the maximum likelihood parameter estimate. Both the Beta model and the hidden
Markov trust model can be further refined by introducing more dimensions or states.
The multinomial Bayesian models, which allow for graded ratings, introduce more
dimensions to the Bayesian modeling. It would have been interesting comparing a
multinomial Bayesian trust model to a hidden Markov trust model with more states
and more observation symbols. However, such a comparison would be challenging
due to the big number of parameters that would need to be managed in the simu-
lations. Including trust transitivity between different contexts is also an important
issue that should be addressed in future work.

We have presented a comparison of the hidden Markov trust model and the Beta
reputation system. Due to its larger richness in model features, the hidden Markov
trust model shows a better ability to deal with dynamic environments, where we
are unable to obtain perfect information and agents can be assumed to change their
behavior over time. However, the increased model complexity also leads to larger
challenges in finding representative parameters for the model. A disadvantage of
both models might be that they are not easily understandable to human users, since
they build on much more advanced mathematics than the simple eBay-like sys-
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tems. These models are therefore maybe better suited for applications in multiagent
systems, routing protocols and other distributed networking environments with non-
human interpreters of the trustworthiness calculations.
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