
A Relational Wrapper for RDF Reification

Sunitha Ramanujam1, Anubha Gupta1, Latifur Khan1, Steven Seida2, Bhavani
Thuraisingham1

1 The University of Texas at Dallas, Richardson TX 75080, U.S.A
2 Raytheon Company, Garland TX 75042, U.S.A

{sxr063200, axg089100, lkhan, bxt043000}@utdallas.edu, steven_b_seida@raytheon.com

Abstract. The importance of provenance information as a means to trust and
validate the authenticity of available data cannot be stressed enough in today’s web-
enabled world. The abundance of data now accessible due to the Internet explosion
brings with it the related issue of determining how much of it is trustworthy.
Provenance information, such as who is responsible for the data or how the data
came to be, assists in the process of verifying the authenticity of the data. Semantic
web technologies such as Resource Description Framework (RDF) include the
ability to record such provenance information through the process of reification.
RDF’s popularity has resulted in a demand for modeling and visualization tools. The
work presented in this paper, called R2D, attempts to address this demand by
innovatively integrating existing, stable technologies such as relational systems with
the newer web technologies such as RDF. The work in this paper extends our earlier
work by adding support for the RDF concept of reification. Reification enables the
association of a level of trust and confidence with RDF triples, thereby enabling the
ranking/validation of the authenticity of the triples. Details of the algorithmic
enhancements to the various components of R2D that were made to support RDF
reification are presented along with performance graphs for queries executed on a
database containing crime records data from a police department..

Keywords: Resource Description Framework, Data Provenance, Reification, Data
Interoperability.

1 Introduction

The extensive growth of the Internet and associated web technologies has catalyzed
research into the notion of a “Semantic Web”. This notion is envisioned to augment
human reasoning and data management abilities with automated access, extraction, and
interpretation of web information. Amongst the many methodologies and standards that
are being released periodically as part of the Semantic Web initiative is the Resource
Description Framework (RDF) [1], a domain-independent data model that enables

mailto:bxt043000%7D@utdallas.edu

interoperability between applications that exchange machine-comprehendible information
on the Internet. RDF records information in the form of triples, each consisting of a
subject, a predicate, and an object. The predicate is typically a verb and denotes the
relationship that exists between the subject and the object. RDF’s rapidly increasing
popularity as a web content data storage paradigm has necessitated research in the field of
visualization tools to inspect and manage data stored using this model. While efforts are
ongoing to develop new tools for this purpose, alternate research efforts are underway that
focus on integrating benefits and features available in existing methodologies with the
advantages offered by the newer web technologies.

R2D, the work presented in this paper, is one such alternative research effort the
objective of which is to salvage the time, effort, and resources expended in the
development of existing, stable, relational tools by reusing them for RDF data
visualization purposes. The advantages of relationalizing RDF stores using applications
such as R2D are manifold and include continued leveraging of the knowledge gained by
relational database domain experts, reduction of learning curves associated with mastery
of new tools, and availability of new technology to resource-constrained small and
medium-sized organizations unwilling to invest in expensive tools for fledgling
technologies such as RDF [2].

R2D enables the visualization, inspection, and examination of RDF stores using
traditional and mature relational tools. The gap between the two paradigms is bridged,
through R2D, using a JDBC wrapper that presents, at run-time, a virtual relational version
of the RDF store, thereby eliminating the necessity to duplicate and synchronize data.
This paper extends the work in [3] by incorporating support for the concept of RDF
reification at every stage of R2D’s deployment.

Reification is an important RDF concept that provides the ability to make assertions
about statements represented by RDF triples. With the increasing number of online
resources and sources of information that become available each day, the need to
authenticate the available sources becomes essential in order to be able to judge the
validity, reliability, and trustworthiness of the information [4]. This authentication is
facilitated by augmenting the sources with provenance information, i.e., information
describing the origin, derivation, history, custody, or context of a physical or electronic
object [5]. RDF Reification, a means of validating a statement/triple based on the trust
level of another statement [6], is the solution offered by the WWW consortium for users
of RDF stores to record provenance information. Thus, RDF reification is a key
component of any application requiring stringent records of the basis/foundation behind
every piece of information in the data store. In particular, reification plays a critical role in
security-intensive applications where it is imperative to maintain the privacy and
ownership of sensitive data. The provenance information captured using reification can be
used, in such applications, to monitor and control data access. The contributions of this
paper are as follows.

• We propose a mapping scheme for relationalization of RDF Stores. The mapping
algorithm extends the algorithm in [3] by including new constructs to handle and
process reification information

• Based on the created map file, we propose a transformation process that generates a
normalized, domain-specific virtual relational schema corresponding to the RDF store.
The transformation algorithm in [3] is extended to include tables and relationships for
reification data

• We extend the SQL-to-SPARQL translation algorithm in [3] by including the ability to
optionally retrieve reification data, when present, through joins
The organization of the paper is as follows. A brief overview of related research efforts

in the relational-to-rdf arena, in either direction, is provided in the following section. R2D
mapping preliminaries in terms of the high-level system architecture and mapping
constructs are given in section 3 while Section 4 presents detailed descriptions of the
various algorithms involved in the mapping process. Section 5 highlights the
implementation specifics of the proposed system with sample visualization screenshots
and performance graphs for a diverse range of queries on databases of various sizes.
Lastly, Section 6 concludes the paper

2 Related Work

With RDF being the current buzzword in the “Semantic Web” community, research
efforts are underway in various aspects of RDF such as RDF-ising relational and legacy
database systems, transforming traditional SQL queries into RDF query languages such as
RDQL and SPARQL, and optimizing performance of queries issued against RDF data
sources. However, the overall concept and objectives of R2D are unique since all research
efforts attempt to integrate relational database concepts and Semantic Web concepts from
a perspective that is opposite to that considered in our work. The only research with
objectives very closely aligned with R2D that we have been able to identify till date is
RDF2RDB [7] and differences between the two frameworks are tabulated in Table 1.

Table 1: Comparison between RDF2RDB and R2D

RDF2RDB R2D

Involves data replication resulting in resource
wastage and synchronization issues

No data replication/ synchronization issues since
relational schema is virtual

Requires presence of ontological information
(rdfs:class, rdf:property) for successful mapping

No ontological information required. Mapping
discovered through extensive examination of triple
patterns

Schema may have unnecessary tables and may not
be truly normalized

No unnecessary tables created for to 1:N or N:1
relationships

No details on blank nodes or reification data
handling

Meaningful transformations included for blank nodes
and reification nodes

No SQL-to-SPARQL transformation Since relational schema is only virtual, comprehensive

SQL-to-SPARQL transformation algorithm is
included

The D2RQ project [8], an extensively adopted open source project is another
significant player in the RDBMS-RDF mapping arena. The goals of D2RQ are the exact
reverse of our goals. They attempt to create a mapping from relational databases to RDF
Graphs, and transform RDF queries into corresponding SQL queries, thereby making
relational data accessible through RDF applications. Our goal, on the other hand, is to
enable RDF triples to be accessed through relational applications. RDF123 [9], an open
source translation tool, also uses a mapping concept in the spreadsheet domain where the
users define mappings between the spreadsheet semantics and RDF graphs for richer
translation.

Other efforts in the reverse direction include [10] where Perez and Conrad use
relational.OWL to extract the semantics of a relational database and automatically
transform them into a machine-readable and understandable RDF/OWL ontology. A few
contributions that actually consider the mapping process from the same perspective as our
research (i.e., from RDF to relational model) are the ones listed in [11]. However, all
models are very generic, involving non-application-specific tables such as resources,
literals, statements etc. that would make the determination of the problem domain
addressed by the model difficult without examining the actual data. Further, none of the
models discuss the concept of RDF reification and the relational transformation of the
same. In contrast, R2D details a mapping scheme for representing provenance information
in a relational format and enables the users to actually arrive at a complete Entity-
Relationship Diagram.

The query processing component of R2D which comprises the SQL-to-SPARQL
transformation process, once again, has no comparable counterpart while many efforts,
[12, 13, 14], are underway in the other direction, namely, SPARQL-to-SQL conversion.
Chebotko, et. al. [12] propose an algorithm to translate SPARQL queries with arbitrary
complex optional patterns to an equivalent SQL statement. Chen, et. al. [13] discuss a
methodology that supports integration of heterogeneous relational databases using the
RDF model. An SQL-based RDF Querying Scheme is presented in [14] where the RDF
querying capability is made a part of the SQL. The current research efforts presented
above indicate that no current solutions address the issue of enabling relational
applications to access RDF data without data replication. Hence, to the best of our
knowledge, R2D is unprecedented.

3 R2D Architecture and Preliminaries

Figure 1 illustrates the architecture of the proposed system along with the specific R2D
modules that are responsible for each function provided by R2D. R2D’s primary objective
is to present, through a JDBC interface, a relational equivalent of RDF triples stores to
visualization tools that are based on a relational model. It also provides an SQL Interface

that generates SPARQL versions of SQL queries and passes the same to the SPARQL
Query Engine layer for processing and RDF data retrieval.

Figure 1: R2D System Architecture and Modules

At the heart of the RDF-to-Relational transformation process is the R2D mapping
language – a declarative language that expresses the mappings between RDF Graph
constructs and relational database constructs. In order to better understand the constructs
comprising the R2D mapping language, let us consider the sample scenario in Figure 2.

Figure 2: Sample Scenario involving Crime Data

Every solid node with outgoing edges, such as OffenceURI, represent a
subject/resource. Edges, such as Address, Description, and Victim, represent predicates
and the solid nodes at the end of the edges, such as <Street>, <Description>, and
<Victim>, represent objects. Empty solid nodes, such as the nodes at which the Address
and ReportingOfficer predicates terminate, represent blank nodes.The nodes in dashed
lines represent reified nodes with the “s”, “p”, “o”, and “t” representing the “rdf:subject”,
rdf:predicate, “rdf:object”, and the “rdf:type” predicates of the reification quad. Other
predicates of the reification nodes (other than “s”, “p”, “o”, and “t” predicates) represent
non-quad predicates. The non-quad reification properties chosen in this example may not
represent actual provenance information. They were primarily chosen to illustrate proof of
concept. Elements of Figure 2 are used, wherever applicable, to facilitate better
comprehension of the mapping constructs which are discussed in the remainder of the
section. Table 2 lists the mappings between some key OWL/RDFS ontology
terminologies and RDF concepts to appropriate R2D constructs and their relational
equivalents.

Table 2: Notional Mapping between OWL/RDFS concepts, R2D constructs, and Relational
concepts

OWL/RDFS/RDF concepts R2D Mapping Constructs Relational Equivalent

rdfs:class r2d:TableMap Table

rdf:property r2d:ColumnBridge Column

rdfs:domain Table that the rdf:Property is a
column of

rdfs:range r2d:Datatype Datatype of the column

rdf:type predicate r2d:KeyField Values of the primary key column
of the table

Blank Node r2d:SimpleLiteralBlankNode Columns in parent table

r2d:ComplexLiteralBlankNode Columns in a new join table
(symbolizing N:M relationship)

r2d:{Simple/Complex}
resourceBlankNode

Depending on cardinality, either
columns in the parent table (1:N
relationship) or columns in a new
join table (N:M relationship)

Reification r2d:ReificationNode Columns in either the parent table
or in a new join table

The constructs listed in Table 2 above are described in more detail below along with
some of the R2D mapping constructs pertaining to regular resources and blank nodes that
are essential in order to effortlessly comprehend the work in this paper. A complete list of
mapping constructs can be found in [3].

r2d:TableMap: The r2d:TableMap construct refers to a table in a relational database. In
most cases, each rdfs:class object will map to a distinct r2d:TableMap, and, in the absence
of rdfs:class objects, the r2d:TableMaps are inferred from the instance data in the RDF

Store. Typically, every solid node with multiple predicates in an RDF graph maps into an
r2d:TableMap if a similar TableMap does not already exist.
Example: The RDF graph in Figure 2 results in the creation of a TableMap called
“Offence”.

r2d:ColumnBridge: r2d:ColumnBridges relate single-valued RDF Graph predicates to
relational database columns. Each rdf:Property object maps to a distinct column attached
to the table specified in the rdfs:domain predicate. In the absence of rdf:property/domain
information, they are discovered by exploration of the RDF Store data.
Example: The Description, Victim, and Date predicates in Figure 2 become
r2d:ColumnBridges belonging to the Offence r2d:TableMap.

r2d:SimpleLiteralBlankNode: r2d:SimpleLiteralBlankNodes help relate RDF Graph
blank nodes that consist purely of distinct simple literal objects to relational database
columns. Predicates off of an r2d:SimpleLiteralBlankNode become columns in the table
corresponding to the subject of the blank node.
Example: The object of the Address predicate in Figure 2 is an example of an
r2d:SimpleLiteralBlankNode which has distinct literal predicates of Street, Block, and
Apt, which are, in turn, translated into columns of the same names in the Offence
r2d:TableMap.

r2d:ComplexLiteralBlankNode: This construct refers to blank nodes in an RDF Graph
that have multiple object values for the same subject and predicate concept associated
with the blank node. An r2d:ComplexLiteralBlankNode results in the generation of a
separate r2d:TableMap with a foreign key relationship to the table representing the subject
resource of the blank node.
Example: The object of the ReportingOfficers predicate in Figure 2 is an example of an
r2d:ComplexLiteralBlankNode that has multiple object (Badge) values for the subject
(OffenceURI) and predicate (ReportingOfficers) concept associated with the blank node.
The relational transformation for ReportingOfficers involves the generation of an
r2d:TableMap of the same name. This ReportingOfficers r2d:TableMap includes as
columns a Type field that holds the values of the predicates off of the CLBN (in our
sample scenario, the Type field will hold a value of “Badge”), and a Value field that holds
the object values of the predicates off of the CLBM. Additionally, the r2d:TableMap also
includes, as foreign key, the Offence_PK column which references the primary key of the
Offence r2d:TableMap.

The concept of reification is supported using many of these previously defined
constructs along with a few new constructs that are described below.

r2d:ReificationNode: The r2d:ReificationNode construct is used to map blank nodes
associated with “reification quads”. Under certain scenarios an r2d:ReificationNode
results in the generated of a new “reification” r2d:TableMap. These scenarios are
discussed in detail in Section 4.2. The mapping constructs specific to
r2d:ReificationNodes are discussed next.

Example: The non-solid nodes corresponding to the Address-Street predicate, the Victim
predicate, and the ReportingOfficers-Badge predicate in Figure 2 are examples of
r2d:ReificationNodes named Address_Street_Reif, Victim_Reif, and
ReportingOfficers_Badge_Reif respectively.

r2d:BelongsToTableMap: This constructs connects an r2d:ReificationNode to the
r2d:TableMap corresponding to the resource associated with “rdf:subject” of the
r2d:ReificationNode. This information is recorded in the R2D Map File for use during
the SQL-to-SPARQL translation.
Example: OffenceURI is the value of the rdf:subject predicate of the Victim_Reif
r2d:ReificationNode. The r2d:TableMap corresponding to OffenceURI is Offence.
Hence, the r2d:BelongsToTableMap construct corresponding to Victim_Reif is set to a
value of Offence, thereby connecting the reification node to a relational table.

r2d:BelongsToBlankNode: This construct connects an r2d:ReificationNode to the r2d:
[Simple/Complex][Literal/Resource]BlankNode corresponding to the blank node
associated with the “rdf:subject” of the r2d:ReificationNode.
Example: The rdf:subject of the Address_Street_Reif reification node in Figure 2
consists of a blank node resource called Address, which is an
r2d:SimpleLiteralBlankNode. Hence, for this reification node the
r2d:BelongsToBlankNode construct is used to associate Address_Street_Reif to the
Address blank node.

NOTE: Since the rdf:subject of a reification node can either refer to a proper resource or
a blank node, the r2d:BelongsToTableMap and r2d:BelongsToBlankNode constructs are
mutually exclusive. These are primarily required to enable the generation of appropriate
SPARQL WHERE clauses during SQL-to-SPARQL translation.

r2d:ReifiedPredicate: This construct is used to record the predicate corresponding to the
“rdf:predicate” property of the reification quad mapped by the r2d:ReificationNode
construct. This information is, again, required for appropriate SPARQL query
generation.
Example: The complete URI of the Victim predicate of OffenceURI is recorded under
the Victim_Reif reification node using the r2d:ReifiedPredicate construct.

Predicates of r2d:ReificationNodes are mapped using the r2d:ColumnBridge construct
described earlier in this section. Some of the important mapping constructs specific to
r2d:ColumnBridges include:

r2d:BelongsToReificationNode: This construct connects an r2d:ColumnBridge to an
r2d:ReificationNode entity and is a mandatory component of r2d:ColumnBridges
belonging to reification nodes.
Example: The r2d:BelongsToReificationNode associated with the Victim_Gender
r2d:ColumnBridge is assigned a value of Victim_Reif, thereby linking the
Victim_Gender column with its reification node.

r2d:DataType: This construct specifies the datatype of the r2d:ColumnBridge to which it
is associated and comes into play when the structure of the virtual relational database
schema objects is examined.
Example: The Address_Block column bridge may have an r2d:DataType of Integer while
the Victim_Gender column bridge has an r2d:DataType of String.

r2d:Predicate: This construct is used to store the fully qualified property name of the
predicate which is associated with the reification r2d:ColumnBridge. This information is
used during the SQL-to-SPARQL translation to generate the SPARQL WHERE clauses
required to obtain the value of the r2d:ColumnBridge
Example: The complete URI of the Victim_Gender predicate of the Victim_Reif
reification node is recorded using the r2d:Predicate construct.

Figure 3 illustrates the relational schema that is inferred using the above mapping
constructs.

Figure 3: Equivalent Relational Schema for Sample Scenario involving Crime Data

The following sections describe how each of the above mentioned R2D constructs is
utilized to transform provenance information available in RDF stores through the
reification concept into their relational equivalents.

4 Reification within the R2D Framework

In order to bring to fruition R2D’s vision and objectives, various algorithms were
designed and developed to implement each component, highlighted in Figure 1, within the
R2D framework. The algorithmic details of each R2D module for translation of regular
resources and blank nodes are described in depth in [3] and are omitted from this paper
due to space constraints. The following sections discuss the algorithmic aspects
specifically associated with the presentation of a relational view of RDF reification data.

4.1 Mapping Reification Nodes – RDFMapFileGenerator

The RDFMapFileGenerator is the first component in the R2D transformation framework.
It is responsible for the generation of a map file containing the correlations between meta-
data gleaned from the input RDF store and their relational schema equivalent.

The reification data processing component of the RDFMapFileGenerator is quite
straightforward. Every blank node corresponding to a “reification quad” is mapped using
the r2d:ReificationNode construct. If the “rdf:subject” property of the “reification quad”
mapped by the r2d:Reification construct is a resource, the r2d:BelongsToTableMap
construct is used to associate the “reification quad” with the r2d:TableMap corresponding
to the resource. If the “rdf:subject” property is a blank node, the
r2d:BelongsToBlankNode construct is used to associate the “reification quad” to the r2d:
[Simple/Complex][Literal/Resource]BlankNode associated with the “rdf:subject” blank
node. Further, if the rdf:object property of the “reification quad” refers to another
resource, then r2d:RefersToTableMap construct is used to store this relationship. This
information is used in the case of 1:N relationships between two TableMap entities during
the SQL-to-SPARQL transformation. Column 1 of Table 3 is the mapping file excerpt for
the Victim_Reif and the Address_Street_Reif reification nodes from Figure 2.

Every non-quad predicate of the reification blank node is mapped using the
r2d:ColumnBridge construct and is associated with its reification node using the
r2d:BelongsToReificationNode construct. Furthermore, the datatype of the object
corresponding to the non-quad predicate is mapped using the r2d:Datatype construct and
the URI of the non-quad predicate itself is recorded using the r2d:Predicate construct, for
use during the SQL-to-SPARQL transformation. An excerpt from the mapping file that
includes information for the Victim_Gender and the Address_Street_Direction properties
of the corresponding reification nodes from Figure 2 is listed in Column 2 of Table 3.

Table 3: Mapping of Reification Nodes and their Predicates in the R2D Map File

Map File Excerpt for Reification Nodes Map File Excerpt for Predicates of Reification Nodes

map:Victim_Reif a r2d:ReificationNode;
r2d:belongsToTableMap map:Offence;
r2d:datatype xsd:String;
r2d:reifiedPredicate <http://Victim>;
.
map: Address_Street_Reif a

r2d:ReificationNode;
r2d:belongsToBlankNode map: Address;
r2d:datatype xsd:String;
r2d:reifiedPredicate <http://Address/Street>;
.

map: Victim_Gender a r2d:ColumnBridge;
r2d:belongsToReificationNode map: Victim_Reif;
r2d:datatype xsd:String;
r2d:predicate <http:// Reification/Gender>;
.
map: Address_Street_Direction a r2d:ColumnBridge;
r2d:belongsToReificationNode map:Address_Street_Reif;
r2d:datatype xsd:String;
r2d:predicate <http://Reification/StreetDirection>;
.

Complex reification nodes, such as ones that contain one or more blank node predicates,
are processed using the Depth-First-Search tree algorithm (similar to mixed blank nodes
processing [3]). Every blank node encountered during DFS is mapped using the
r2d:SimpleLiteralBlankNode construct. Every predicate of the blank node is mapped
using the r2d:ColumnBridge construct and is linked to it’s parent blank node using the
r2d:BelongsToBlankNode construct. Every complex reification node is mapped using the
r2d:ComplexReificationNode construct. Blank node objects belonging to an
r2d:ComplexReificationNode are connected to the r2d:ComplexReificationNode using the
r2d:BelongsToReificationNode construct.

4.2 Relationalizing Reification Data – DBSchemaGenerator

The second stage of the R2D transformation framework, the DBSchemaGenerator,
involves the actual virtual, normalized, relational schema generation for the input RDF
store based on information in the map file created in stage one. Details of the algorithm
pertaining to the relational transformation of reification data are discussed below.

Case (a) For every r2d:TableMap in the virtual relational schema corresponding to an
RDF store an additional r2d:TableMap (i.e., a virtual relational table) of type
“ReificationTable” is created in the schema if any of the following conditions hold:
a) An r2d:ColumnBridge corresponding to a predicate of a resource that maps to the

r2d:TableMap is reified
b) A r2d:MultiValuedColumnBridge (MVCB) that results in the addition of a column to

this r2d:TableMap is reified
c) A predicate corresponding to an r2d:SimpleLiteralBlankNode (SLBN) associated

with a resource that maps to the r2d:TableMap is reified
d) An r2d:ColumnBridge associated with a predicate of an r2d:SimpleLiteralBlankNode

(SLBN) object is reified.
This additional reification table houses the columns corresponding to every single-

valued property (other than the 4 properties comprising the quad) of the “reification
quads” arising from the 4 conditions described above. In order to better understand the
intricacies of the algorithm let us consider the scenario depicted in Figure 2.

The reification of the Victim predicate in Figure 2 is an example of condition (a) above
while reification of the Street predicate of the Address SLBN is an example of condition
(d). The relational transformation of these reification nodes results in the creation of a new
virtual relational table (called Offence_Reification) with the following columns
(corresponding to the predicates of the reification quads): Address_Street_Direction,
Victim_Gender, Victim_Race, and Victim_Age.

Case (b) In the case of reification of MultiValuedColumnBridges that result in the
creation of a new join table and reification of other kinds of blank nodes other than
SLBNs (more details on the various blank node types and their relational representations
can be found in [3]), no new reification table is created. Non-quad properties
corresponding to such reifications are added as columns to the existing r2d:TableMaps
resulting from relationalization of the MVCBs and blank nodes. Reification of the Badge
predicate of the ComplexLiteralBlankNode (CLBN) ReportingOfficers in Figure 2 is one
such example where an OfficerName column (corresponding to the non-quad predicate of
the reification node for Badge) is added to the Offence_ReportingOfficers TableMap that
results from the relational transformation of the ReportingOfficers CLBN.

Complex reification nodes are nodes where non-quad predicates include one or more
(nested) blank nodes. Due to the numerous types of such mixed combinations that are
possible, it would be nearly impossible to arrive at an accurate normalized representation
of the same. Hence, r2d:ComplexReificationNodes are processed by flattening their
relational equivalents. Depending on whether Case (a) or Case (b) is applicable to the

r2d:ComplexReificationNode, either a new or an existing table houses the reification
columns. Predicates of literal and resource objects that are at the leaf nodes of the tree
rooted at the r2d:ComplexReficationNode are translated into columns in that table.

4.3 Querying Reification Data – SQL-to-SPARQL Translation

The final stage of the R2D transformation framework involves the translation of SQL
statements issued against the virtual relational schema generated by stage 2 into
equivalent SPARQL queries that are executed against the actual RDF store. This is
achieved through the translation algorithm, which also ensures that triples retrieved from
the RDF store are returned to the relational visualization tool in the expected tabular
format. The translation algorithm presented here extends the earlier version [3] by
including the ability to translate queries issued against the virtual tables corresponding to
reification data.

The SQL-toSPARQL translation process transforms single or multiple table queries
with or without multiple where clauses (connected by AND, OR, or NOT operators) and
Group By clauses. Due to space constraints, only a high level description of the algorithm
is discussed below along with examples to illustrate the translation process.

In order to understand the intricacies of the translation algorithm, let us consider the
following SQL query based on the scenario depicted in Figure 2.
SELECT address_street, address_street_direction, address_block, victim_gender,
reportingOfficers_badge, reportingOfficers_name FROM Offence, Offence_Reification,
Offence_ReportingOfficers where Offence.Offence_pk = Offence_Reification.Offence_pk AND
Offence.Offence_pk = Offence_ReportingOfficers.Offence_pk WHERE address_block = ‘1100’;

The first step in the translation process involves the generation of the SPARQL
SELECT clause. For every field in the original SQL SELECT list, a variable is added to
the SPARQL SELECT list. The SPARQL SELECT list after fields processing is:
SPARQLSelect = SELECT ?address_street, ?address_street_direction, ?address_block, , ?
victim_gender, ?reportingOfficers_badge, ?reportingOfficers_badge_name

The processing of regular columns for generation of SPARQL WHERE and FILTER
clauses is described in [3]. The resulting SPARQL WHERE clause after processing of
regular, non-reification columns as detailed in [3] is as follows:
SPARQLWhere = WHERE {

?Offence <http://Offence/Address> ?Offence_Address .
?Offence_Address <http://Offence/Address/Street> ? address_street .
?Offence_Address <http://Offence/Address/Block> ? address_block .
?Offence <http://Offence/ReportingOfficers> ?Offence_ReportingOfficers .
?Offence_ReportingOfficers http://Offence/ReportingOfficers/Badge ?reportingOfficers_badge
FILTER (?address_block = ‘1100’) }

(a) For fields belonging to tables of type “ReificationTable” corresponding to non-
complex reification nodes, if the reification quad to which the field belongs reifies a

http://Offence/ReportingOfficers/Badge

resource (and not a blank node), clauses of the form [OPTIONAL] { ?reificationQuad
<rdf:subject> ?resourceTableMap . ?reificationQuad <rdf:predicate> ?
reificationQuad.r2d:ReifiedPredicate . ?reificationQuad <non-quadPredicate> ?
reificationColumn . ?reificationQuad <rdf:object> ?reifiedObjectField .} are added to the
SPARQL WHERE clause. The reification quad corresponding to the victim_gender
column is one such reification. The OPTIONAL keyword is optional and is only required
for queries involving outer joins. Also, if the field corresponding to the object being
reified is not part of the SPARQL WHERE clause, an appropriate selection clause is
added to the same. The SPARQL WHERE clauses resulting from the processing of the
victim_gender column are:

REIFClause1 = ?Offence <http://Offence/Victim> >offence_victim .

?Victim_Reif <rdf:subject> ?Offence . ?Victim_Reif <rdf:Predicate>
<http://Offence/Victim> . ?Victim_Reif <rdf:Object> ?offence_victim . ?Victim_Reif
<http://Offence/Victim/Gender> ?victim_gender.

Processing of reification columns belonging to
{Literal/Resource}MultiValuedColumnBridge ({L/R}MVCB) tables is similar to the
above case with an additional step to identify the parent table from which the
{L/R}MVCB table is derived through normalization.

In the case of RMVCB tables where the rdf:object of the reification quad is a resource
that maps to another r2d:TableMap (through the r2d:refersToTableMap construct), an
additional clause of the form
?subjectResourceTableMap <reificationQuad.r2d:ReifiedPredicate> ?
objectResourceTableMap . is added to the SPARQL WHERE clause.

(b) For fields belonging to tables of type “ReificationTable”, if the reification quad
to which the field belongs reifies a blank node, clauses of the form given below are added
to the SPARQL WHERE clause. Further, if the rdf:object of the reification quad is a
resource mapping to another r2d:TableMap then the following additional clause of the
form ?BlankNode <reificationQuad.r2d:ReifiedPredicate> ?objectResourceTableMap .
is appended to the SPARQL WHERE Clause.

?ParentTableofBlankNode <BlankNodePredicate> ?BlankNode . [OPTIONAL] {?
reificationQuad <rdf:subject> ?BlankNode . ?reificationQuad <rdf:predicate> ?
reificationQuad.r2d:ReifiedPredicate . {?reificationQuad <rdf:object> ?reifiedObjectField .?
reificationQuad <non-quadPredicate> ?reificationColumn}

The address_street_direction reification column belonging to the “Address” SLBN in
Figure 2 is an example such a reification and the addition to the SPARQL WHERE clause
after processing of the same is as given below.

REIFClause2 = ?Address_Street_Reif <rdf:subject> ?Offence_Address . ?Address_Street_Reif
<rdf:Predicate> <http://Offence/Address/Street> . ?Offence_Address <rdf:Object> ?
address_street . ?Address_Street_Reif <http://Offence/Address/Street/Direction> ?
address_street_direction .

http://Offence/Victim/

Reification columns belonging to CLBNs are processed in a manner very similar to the
previous scenario (Scenario (b)). The reification column ReportingOfficers_Badge_Name
belonging to the “ReportingOfficers” CLBN in Figure 2 falls in this category and the
SPARQL WHERE clauses for this reification are as follows.

REIFClause3 = ?ReportingOfficers_Reif <rdf:subject> ?Offence_ReportingOfficers . ?
ReportingOfficers_Reif <rdf:Predicate> <http://Offence/ReportingOfficers/Badge> . ?
ReportingOfficers_Reif <rdf:Object> ?reportingOfficers_badge . ?ReportingOfficers_Reif <http://
Offence/ReportingOfficers/Badge/Name> ?reportingOfficers_badge_name .

Reification columns belonging to r2d:TableMaps corresponding to all other kinds of
blank nodes are processed using either scenario (a) or (b) depending on the whether the
“rdf:subject” of the reification node is a resource or a blank node.

(c) For fields derived from complex reification nodes, the sequence of predicates
leading from the reification node to the (leaf) field are obtained by traversing the tree
structure stored during the map file generation process. A WHERE clause is added to the
SPARQL WHERE for each of the predicates in sequence.

After the translation procedures described above are applied to the given example SQL
statement, the final transformed SPARQL Query is:
SPARQL Statement = SPARQLSelect + SPARQLWhere + REIFClause1 + REIFClause2 +
REIFClause3

The transformed SPARQL Query is executed and the retrieved data is returned in
relational format seamlessly.

5 Experimental Results

The hardware used for our simulation exercises was a Windows machine with 4GB RAM
and 2 GHz Intel Dual Core processor. The software platforms and tools used include Jena
2.5.6 to manipulate the RDF triples data, MySQL 5.0 to house the RDF data in a
persistent manner, and DataVision v1.2.0, an open source relational tool,
[http://datavision.sourceforge.net/], to visualize, query, and generate reports based on the
RDF data. Lastly, BEA Workshop Studio 1.1 Development Environment along with Java
1.5 was used for the development of the algorithms and procedures detailed in Section 4.

5.1 Experimental Datasets

The dataset used in the experiments below is a subset of crime data downloaded from a
police department website. The data has triples pertaining to cities and zip codes where
crimes were committed, and details of committed crimes as illustrated in Figure 2. While
the DataVision screenshots include actual, valid crime data, the voluminous datasets used
in the query performance evaluations was artificially generated through a data loading

program. However, the structure of the simulated data was kept identical to that of the
actual crime dataset and, hence, the results obtained can be directly applied to actual
crime data of those volumes. For query performance experiments, Jena’s in-memory
model was used to load and query the data.

5.2 Simulation Results

The relational equivalent of the crime data was generated using the algorithms detailed in
Sections 4.1 and 4.2. The time taken by the map file generation process without any data
sampling incorporated for RDF stores of various sizes, with and without reification
information, was compared with time taken for the same process when two sampling
methods were applied and the results are illustrated in Figure 4. Reified versions of the
crime dataset were created by adding reification information to the Address
(Address_Type) and Victim (Gender, Race, Age) objects in Figure 2. This reification
information was created for 50% of the offence data in the data stores.

Figure 4: Map File Generation Times with/without Sampling for reified/un-reified data

The process is especially time-intensive for large databases without structural information
(which is the case with our experimental data set) but this is only to be expected since the
RDFMapFileGenerator has to explore every resource to ensure that no property is left
unprocessed. Furthermore, since even adding reification information for only 50% of the
triples in the RDF store resulted in a 25% increase in the size of the data store, the
increase in map file generation time for databases with reification information is also
predictable. However, the sampling techniques applied improved the performance of the
algorithm by a large factor.

Figure 5 is a screenshot of DataVision’s Report Designer along with an inset of the
database schema as seen by DataVision. The r2d:SimpleLiteralBlankNode associated with
Offence-Address is resolved into columns belonging to the Offence table, and the
r2d:ComplexLiteralBlankNode associated with Offence-ReportingOfficers is resolved into
a 1:N table of the same name. Reification columns are segregated into corresponding
reification tables. This schema is populated through the GetDatabaseMetaData Interface
in the Connection class of the JDBC API within which the two algorithms,

RDFMapFileGenerator and DBSchemaGenerator, are triggered. At this juncture, the
Statement, the Prepared Statement, and the ResultSet JDBC Interfaces are invoked, which
in turn trigger the SQL-to-SPARQL translation algorithm and return the obtained results
to DataVision in the expected tabular format.

Figure 5: DataVision Report Designer, Relational Schema, and Query Processing

An excerpt from the output returned to DataVision by the SQL-to-SPARQL translation
algorithm for the SQL statement in Figure 5 is shown in Figure 6. Selected fields from
this output were utilized by another independent application to plot the crime details on
Google maps as also illustrated in Figure 6.

Figure 6: Excerpt from Datavision’s output in report form and Google Maps plot form

In order to study the performance impact incurred by reification two versions of 4
queries were executed on simulated crime datasets of various sizes. The second version
was created by including one or more reification fields to the first version. Figure 7
displays the response times of each of the queries as the sizes of the databases vary. While
DataVision has options to specify aggregation and grouping functions, DataVision’s
support group has, for reasons that are not applicable to our academic test environment,
disabled the GROUP BY facility. For the purposes of our research, we have enabled the
functionality.

Figure 7: Response times for the chosen Queries

As was anticipated, reification adds overheads to query processing times as adding a
reification quad for a triple results in the addition of a minimum of 4 to 5 extra triples to
the data store. However, the time taken for SQL-to-SPARQL conversion is negligible and
nearly constant. Thus, R2D does not add overheads to the SPARQL query performance.

SQL queries issued against relational databases created by physically duplicating RDF
data may exhibit even better performance since refined performance optimization options
have been at the disposal of relational databases for many decades. However, this
improved performance comes at the expense of additional disk space due to duplication of
data, and additional system resources and human effort required to synchronize the data.
On the other hand, for possibly a small price in terms of response time, R2D offers an

avenue for users to continue to take advantage of readily available visualization tools
without having to “reinvent the wheel”.

6 Conclusion

Provenance Information plays a pivotal role in evaluating quality of data and determining
trust in the source of data. This paper extends the R2D framework in [3] by including the
ability to represent provenance information available in RDF stores, through the process
of reification, in a relational format accessible through traditional relational tools. A
JDBC interface aimed at accomplishing this goal through a mapping between RDF
reification constructs and their equivalent relational counterparts was presented. The
modus operandi of the proposed system was described along with in depth discussion on
the algorithms comprising the R2D framework. Graphs highlighting response times for
map file generation and query processing obtained using databases of various sizes, both
with and without reification data, were also included. Future directions for R2D include
providing support for the ability to relate an entity key field to multiple r2d:TableMaps
corresponding to resources belonging to different classes, and improving the
normalization process for mixed blank nodes and complex reification nodes.

7 References

1. W3C Recommendation (2004) RDF Primer, http://www.w3.org/TR/rdf-primer/
2. Hendler, J.: RDF Due Diligence. http://civicactions.com/blog/rdf_due_diligence

(2006)
3. Ramanujam, S., Gupta, A., Khan, L., Seida, S., Thuraisingham, B.: A Framework for

the Relational Transformation of RDF Data. UTD Technical Report UTDCS-40-08.
http://www.utdallas.edu/~sxr063200/Paper2.pdf (2008)

4. Da Silva Almendra, V., Schwabe, D.: Trust Policies for Semantic Web Repositories.
In: Second Semantic Web Policy Workshop, pp 17-31 (2006)

5. Buneman, P., Chapman, A., Cheney, J.: Provenance Management in Curated
Databases. In: Proceedings of the 2006 ACM SIGMOD International Conference on
Management of Data, pp 539-550 (2006)

6. Powers, S.: Practical RDF. O’Reilly Media (2003)
7. Teswanich, W., Chittayasothorn, S.: A Transformation of RDF Documents and

Schemas to Relational Databases. In: IEEE PacificRim Conferences on
Communications, Computers, and Signal Processin, pp 38-41 (2007)

8. Bizer, C., Cyganiak, R., Garbers, J., Maresch, O., Becker, C.: The D2RQ Platform.
http://www4.wiwiss.fu-berlin.de/bizer/d2rq/

http://www4.wiwiss.fu-berlin.de/bizer/d2rq/
http://www.utdallas.edu/~sxr063200/Paper2.pdf
http://civicactions.com/blog/rdf_due_diligence
http://www.w3.org/TR/rdf-primer/

9. Han, L., Finin, T., Parr, C., Sachs, J., and Joshi, A.: RDF123: From Spreadsheets to
RDF. In: International Semantic Web Conference, LNCS 5318, pp 451-466 (2008)

10. Perez de Laborda, C., Conrad, S.: Bringing Relational Data into the Semantic Web
using SPARQL and Relational OWL. In: 22nd International Conference on Data
Engineering Workshops, pp 55 (2006)

11. Melnik, S.: Storing RDF in a Relational Database. http://infolab.stanford.edu/~melnik/
rdf/db.html

12. Chebotko, A., Lu, S., Jamil, H. M., and Fotouhi, F.: Semantics Preserving SPARQL-
to-SQL Query Translation for Optional Graph Patterns. Technical Report TR-DB-
052006-CLJF. Wayne State University (2006)

13. Chen, H., Wu, Z., Wang, H., and Mao, Y.: RDF/RDFS-based Relational Database
Integration. In: 22nd International Conference on Data Engineering, pp 94-104, (2006)

14. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An Efficient SQL –based RDF
Querying Scheme. In: 31st International Conference on Very Large Databases, pp
1216-1227 (2005)

http://infolab.stanford.edu/~melnik/rdf/db.html
http://infolab.stanford.edu/~melnik/rdf/db.html

