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Abstract. E�ective defense against Internet threats requires data on
global real time network status. Internet sensor networks provide such
real time network data. However, an organization that participates in a
sensor network risks providing a covert channel to attackers if that orga-
nization's sensor can be identi�ed. While there is bene�t for every party
when any individual participates in such sensor deployments, there are
perverse incentives against individual participation. As a result, Inter-
net sensor networks currently provide limited data. Ensuring anonymity
of individual sensors can decrease the risk of participating in a sensor
network without limiting data provision.

Two contributions are made in this paper. The �rst is an anonymity
mechanism to defeat injection attacks. This defense mechanism is based
on economics rather than classic cryptographic protocols. The second
builds on the foundations created by the �rst. It is the a proposal for
randomized sampling of correlated sensory inputs to asymmetrically in-
crease the cost of sensor identi�cation for attackers without signi�cantly
reducing the quality of the published data.

1 Introduction

The problem of sensor anonymity is derived from a need to share data. Our solu-
tion is constructed upon a foundation of network protocol analysis, information
theory, and economics, rather than cryptographic assurances of anonymity. We
begin by describing Internet sensor networks, then provide a brief overview of
previous work on anonymity-enhancing network protocols. We also de�ne the
limitations of previous approaches and illustrate the advantages of the proposed
approach.

After this high level introduction, we focus on probe attacks for various classes
of sensor networks. This includes a high level description of how attackers use
probe networks to obtain covert channels.

The third major section details our proposed approach. We conclude that
in the daily operation of sensor networks, economic incentives, and information
theoretic defenses that increase the cost to attackers can create an e�ective
defense.



2 Incentives & Internet Security

That incentives are a critical issue in economics of information security has
been well-documented. In this section we brie�y address particular �ndings on
incentives and information sharing in economics of security that are applicable
to the question at hand. For a full bibliography on economics of security, please
see http://infosecon.net/workshop/bibliography.php.

At the individual level, incentives for investment in security are not adequate
for socially optimal investment in security.[32] There are negative externalities in
the economics of security, meaning that the cost of lack in investment in security
is borne not just by the party who can choose to invest but by all participants who
bear the cost of spam and botnets. In contrast, there are positive externalities to
participation in Internet sensor networks, since all recipients of the information
pro�t not just the participants.

Incentives for investments in security by �rms are particularly hindered by
a lack of information on the nature of the risks. Despite the number of surveys
on the issue of network exploits and system vulnerabilities, there exists con-
siderable gaps in public knowledge of information security. [21] There is even
some question about the ability of �rms to evaluation the cost of their own in-
trusions, as similar intrusions result in damage estimates that vary by orders of
magnitude. [12]

In terms of information sharing about risks, even at the individual level the
risks to security [4] and privacy [26] are not visible. At the organizational level
there are incentives to share information, particularly about breaches. However,
this incentive requires a closed set of participants who share some common-
ality, as is the case with an industry-speci�c ISAC. This information sharing
increases investment in security among participants. [11]. These incentives vary
by industry, with more concentrated industries and industries with high mar-
gin products generally having less incentive to share information and invest in
security. [9] In fact, public disclosure laws have encouraged not only informa-
tion sharing but also investment in security by companies operating under those
requirements. [16]

In summary, there is a very real need for information on the state of network
security. It is critical that both institutions and organizations have improved data
on the state of network vulnerability. Even with that information, investment
in security may arguably be inadequate. But without that information, it is not
possible for individuals or organizations to make fully informed risk decisions.
Sensor networks are speci�c application of economics of security, as these are
inherently information-sharing networks that produce a common value. Thus it
is feasible to consider the incentives and disincentives to participation in sensor
networks both from the perspective of an attacker (or malicious agent) and a
defender (or anonymous participant).



3 Internet Sensor Networks

Attacks can be roughly categorized into two groups according to their targeting
strategy: directed attacks and undirected attacks. Directed attacks or targets of
choice occur when attackers purposely mount an attack on a previously identi�ed
and selected organization. Undirected attacks or targets of opportunity occur
when attackers are searching for some class of resource in order to exploit it.
In undirected attacks, the location of such resource is of minor importance.
Organizations usually have very di�erent approaches to defending against these
two types of attacks; thus, being able to distinguish them is extremely useful.

Di�erentiating between directed and undirected attacks requires information
about the global state of the Internet as close as possible to real time. Data
on network status enables administrators to classify threats as directed or undi-
rected, and thus choose an appropriate defense. In addition, by indicating the
breadth of an attack, the victim can identify possible allies and collaborative
sources of information. Global data enables administrators to better respond to
abnormal behavior in their own systems. However, as each network administra-
tor can only know the status of the network under his/her control, data sharing
is required to produce a global view. Cooke et al.[29] show evidence that dis-
tributed data sharing is inadequate as di�erent address blocks observe di�erent
tra�c patterns. Thus, even a large aperture sensor is inadequate for knowledge
of the network state if it is located in a continuous address block. Widespread
sensor placement is required to have a representative sample of the global Inter-
net. It is not a surprise that multiple data aggregation services have emerged
to provide such global view.

Aggregation services collect, transform and publish some summary of the in-
formation locally gathered by the sensors. Sensors are individual sources of local
network status such as honeypots or IDS. Examples of such services/systems
include the Internet Storm Center (ISC or Dshield)[30], the Worminator[14],
Neti@home[27], myNetwatchman[17], CAIDA[8], the University of Michigan In-
ternet Motion Sensor[31], and the US Department of Homeland Security PRE-
DICT system[18]. All these aggregation services work in a similar manner: data
from sensors are collected, �ltered and published at a prede�ned rate1 The rates
vary between services from one hour to twenty-four hours. The scope of publi-
cation also varies, with Dshield publishing the least detailed data to the public
at large and the UM Internet Motion Sensor publishing detailed data only to its
members. These observations indicate the understanding of the existence of a
trade-o� between the value and the risk of data availability. There is a concern
that more public and detailed data may be more useful to attackers than to
defenders. E�ective anonymization of data sources can mitigate this trade-o�
between empowering defenders and enabling attackers.

1 Actually, the DHS's PREDICT system would work on base of NDA agreements. It
is still unclear of the need for a trust chain for researchers will be a limiter in the
use of the data.



The relationships between sensors, aggregation services and users of the ser-
vice are summarized in Figure 1.

Fig. 1. Data Flow For A Data Aggregation Service.

3.1 Previous Work

Maintaining source anonymity of widely published data has been a problem of
interest in politics for several centuries2. The problem of measuring the e�cacy
of anonymization methods has two recent theoretical and practical contributions
for measuring the e�cacy of anonimization are important to this work. The �rst
comes from Latanaya Sweeney [28,29], who not only reintroduced and analyzed
the problem of cross-data identi�cation, but also provided a solution for static
data sets called k-anonymity. The second contribution comes from Serjantov
and Danezis [25] who rede�ned the concept of `anonymity set' in a more precise
and information theoric manner. Serjantov and Danezis illustrated that several
methods presumed to yield a high anonymity set provided much less anonymity
than previously thought. While their work is based on mix networks their ideas
can be expanded to other anonymity producing methods.

In the network security arena, the �rst e�orts at providing methods for
anonymity came from Flegel et. al [3,7]. Their e�orts were directed at remov-
ing power from system administrators through anonymization of system logs.
Minshall[15]; Fan et.al[6]; and Pand and Paxon[19] provided partial solutions to
the problem of anonymization of IP addresses on captured packet traces. Slagel
et. al [25] focused on the problem of net�ow anonymization. Lakshmanan et.
al[13] propsoed a generic transformation widely applicable to communication

2 Examples of anonymously published political documents include the Federalist Pa-
pers, and the translations of `The Rights of Man and the Citizen', which were not
welcomed by colonial powers at the end of the 18th century.



headers. Lincoln et al. [20] proposed a structure to enable sharing searching of
IDS alerts in order to detect correlations. Unfortunately, with the exception of
the packet traces anonymization methods and the works of Lakshmanan et
al.[13] and Lincoln[20], the e�cacy of the proposed solutions or methodologies
have not been tested against data linking. In the case of packet traces, the
possibility of cross data linking is made explicit but never analyzed.

Bethencourt et al.[2], was the �rst researcher to illustrate the problems of
cross data linking in Internet sensors. The set of proposed solutions does not in-
clude measurements, nor does it provide theoretical bounds on the e�ectiveness
of their solutions. This paper complements their work by providing a theoretical
framework in which to address the problem of probe attacks as wel as giving
potential solutions to a system with the parameters as Dshield.

Clayton et al.[5] makes a good introduction on the fallacies of some data
anonymization systems. In particular, they conclude that: �... no operation con-
cerning a pseudonym should have an observable side e�ect that could leak the
identity of the user... �. Internet sensor networks, the domain of interest, are de-
signed to show side e�ects. Yet the identity of Internet sensors (the IP address),
should remain hidden.

Another area of interest is the privacy preserving data mining. In particular,
the work of Agrawal et al.[1], and Brickell and Shmantikov[26]. Their research
is targeted on e�ectively anonymizing the sensors from data miners by using
cryptographic or data perturbation techniques. We will explain what di�erenti-
ates our work from previous work in section 1.4. We will provide details of the
problem space, including the attacks models and trust assumptions, in section
3.2.

3.2 De�ning the Problem

Our model assumes that the adversary has very little control over the network
infrastructure, but does have complete control on many end points. We assume
that the aggregation service is trusted by all the sensors, in that the aggregation
service will not reveal the identity of the sensors. We assume that there is some
mechanism to ensure that the communication channel between the sensors and
the aggregation service is protected against tra�c analysis. We assume that the
aggregation service can uniquely identify any sensor with whom it has previously
interacted. We assume that full aggregated data are available to the attacker
(he/she belongs to the data sharing consortia), and that an attacker has control
over some, but not a signi�cant part of the sensors. We further assume that
the sending of probes has a very small yet non-zero cost to the attacker. The
problem that we are trying to solve is: Is there a way to make the probe sensor
identi�cation of a large portion of the sensors economically unfeasible? Can we
provide a high lower bound on this cost? Further, Can we measure how much
our data output changes when di�erent mitigation mechanisms are applied? This
last question will only be analyzed for a Dshield like system.

The assumption that an attacker is able to compromise multiple end points
but not as likely to compromise infrastructure nodes is simply the recognition



of botnets [23]. In our trust model, we trust the aggregation service, but do
not trust the other entities that are also receiving the data from the sensors.
This is consistent not only with botnets, but also with a grayhat adversary or
adversaries that are competitors in other arenas.

One of the interesting elements of this problem is that attackers use the in-
frastructure, i.e. the reports of the sensor networks, to attack the infrastructure,
the location and accuracy of the sensor network. This particular study focuses on
adversaries that cannot control or observe how the information passes through
the network, rather focuses on adversaries that take advantage of the implicit
feedback loop generated by the process of publishing the data.

The key di�erentiators of the sensor network anonymization probse are: (i)
the data are not static, data is periodically added to the output (ii) the data
provided by the aggregator are available to the attacker, and (iii) the defender
cannot distinguish 'a priori' probe data from bad injected data.

3.3 Comparison with Previous Approaches

With all the assumptions detailed above, it is reasonable to believe that this
problem can be solved by applying previously published anonymization tech-
niques. In this section we explain why some general techniques fail to address
our problem.

Data �ltering may seem like an obvious approach. The problem with data
�ltering is that abnormal network status data injected by attackers cannot be
distinguished from abnormal network data due to non-probing attackers.

Mix networks or onion routing cannot be used as a defense mechanism against
probe attacks (data injection) as these are designed to address a di�erent prob-
lem. Mix networks and onion routing provide unlikable communication channels
across untrustworthy communication intermediate peers that are trying to de-
termine who is communicating with whom. In our solution and model, this part
of the problem is assumed to be solved potentially by some implementation of
these mechanisms such as Tor[27]. Further, our problem statement di�ers from
anonymous communication problems in that our adversary has very limited con-
trol of the infrastructure, yet still controls many end points.

Sweeney's [28,29] emphasizes the use of k-anonymity only for static data
sets. The process of re-identi�cation of datasets is usually done with the use of
external data utilized for cross data linking. For data that increases over time
where the attacker has some control, another method can be used: the use of
probe response attacks. The possibility of such attacks in the Internet has
been known in the literature[19] but it was not until the work of Bethencourt
et. al. [2] that an algorithm and simulations were published. Bethencourt et al.
demonstrated the problem by showing how simulations allow easy discovery of
sensors of the ISC[30]. In this paper, we generalize the costs for such identi�ca-
tion procedures for any aggregation service in addition to providing guidance to
mitigation mechanisms. The procedure we introduce increases the cost for the
attacker while minimizing the distortion of the data released by the aggregation
service.



The proposal of Agrawal et al. [1] consists of adding a random variable to the
sensor data to e�ectively perturb the data output. If the random variable has a
very large variance, this method requires a large number of inputs to e�ectively
approach the original distribution. If the variance is small, the attacker need
only to generate data outside the variance to create a reliably detectable signal.

The work of Lincoln[20] includes several techniques for anonymization and
related defense mechanisms. The method they propose against probe response
attacks is the use of randomized delay alert correlation, with the time stamp �eld
scrubbed. This method cannot be reasonably used for our purposes, as data
sharing for operational use requires near real time latency. Further, strategic
(long term) use requires timestamps with at least a one day resolution.

The work of Brickell and Shmantikov[26] uses cryptographic techniques to
unlink data thus protecting individuals from releasing their identity to data
miners. However this work does not take into account the possibility that the
data being reported can be in�uenced by the party that is trying to identify the
identity of the data sources.

The approaches suggested by Bethencourt et al.[2], in particular the sampling
of data outputs, appears to be a good compromise. In particular, Bethencourt
uses economic incentives to prevent `marking' of packets. The problem with
this approach is that sampling is done on a per sensor level, after data have
been collected. This approach does not increase the signal to noise ratio for the
attacker. This approach does not work if we assume attackers with access to
large botnets, as the defense mechanism leaves the attack trivially parallelizable.

All of the previously suggested techniques address the problem after the data
have been aggregated. In economic terms, these post-collection sampling mecha-
nisms provide more advantage to the attackers than the defenders. Post collection
data transformation are more expensive for the aggregator than injection for the
attacker, thus creating a systematic asymmetry. The approach presented here
advantages the defenders by utilizing the ability to apply sampling at di�erent
dimensions and in di�erent levels at event recording time. Thus attackers must
synchronize their injected signals in all the possible �ltering dimensions. The
result is an economic disadvantage for the attacker, as described in more detail
in the following pages.

4 Probe Attacks and Internet Sensor Networks

Internet sensor networks are the data source for Internet status aggregation
services. Aggregation serves two functions: It centralizes data publishing, and
enables limited anonymization of the sensors. Sensor anonymization is a funda-
mental requirement for the contributors as well as the quality of the aggregate
data. An attacker who can identify the sensors will be able to: (i) hide attacks
(hide or slow worm spread), (ii) hide a directed attack to an organization, or
(iii) completely distort the quality of the exported data, thus making the data
sharing e�ort useless.



Anonymization is so important, that despite economic bene�ts to data sharing[10],
sharing detailed information security data is usually highly limited. Organiza-
tions that share internal data include the Honeynet Alliance [22] and the busi-
ness sector-based ISAC structure in the US. But even within those groups, data
are aggregated, �ltered and thus transformed before release. (The Honeynet
Alliance is a notable exception to this rule. Sensor anonymity is not an issue
in the Honenet Alliance as the lifespan of honeypots is usually limited to a few
intrusions). Many of the current data sources include sensors that are not eas-
ily relocated, such as Darknets. For others, the shared information is usually
reduced to summaries of data for example as with the REN-ISAC[24].

4.1 Probe Internet Sensor Attacks

Probe sensor attacks use the feedback channel implicitly provided by the data
compilation and aggregation. Since the publication phase cannot distinguish
�good� users from �bad� users, a malicious user can send tra�c into potential
sensors to try to observe the abnormal signals in the output of the data aggre-
gation. See Figure 2.

The most generalized statement of the problem from the attacker's perspec-
tive is: �Determine the parameters of an box with some controllable inputs and
some observable outputs�. However the sensor identi�cation problem di�ers from
most system identi�cation methods because our system has many inputs and
outputs, and is generally non-linear. The attacker's objective is to estimate the
sampling function used to collect the data from the Internet. The function's se-
cret parameters are the true location of the sensors, as the remaining parameters
must be published in order to make sense of the published data.

Fig. 2. Data Flow For Probe Response Attacks.



The costs associated with running sensor identi�cation attacks can be ex-
plained by running time and bandwidth costs. We will discuss two attack al-
gorithms: a brute force approach and an N-ary recursive approach. These are
analyzed in terms of their �running time�. This parameter is used to estimate
the cost for an attacker. The running time of an algorithm describes a bound
on the number of operations needed to complete the algorithm. The cost for
each algorithm is expressed in terms of the needed bandwidth required for its
operation.

Linear (Brute Force) Algorithm This algorithm essentially iterates through
each of the possible sensors to determine if it is a sensor or not. The algorithm
is expressed below:

1. For each possible location

2. Estimate the number of sensors in the current selected location

3. if number of sensors is zero

4. then discard location

5. else location is a sensor

The running time of this algorithm is: U*K. Where U is the size of the
search space and K is the number of iterations needed to determine whether a
sensor has been located. In this case, a partition of size one. The bandwidth
cost per iteration is P, where P is the number of packets required to generate
a readable signal in the aggregate data. The total cost for such algorithm is
calculated by multiplying the running time by the per iteration cost:

Total cost= running time * iteration cost= U*K*P.
This algorithm has a minimal cost, but also has a linear running time. A

linear running time is unfeasible for large sensor spaces, such as the Internet.

N-ary Search Algorithm Another way to approach sensor identi�cation
is to use a divide and conquer approach. In this algorithm (based on the one
published by Bethencourt et. al.[2]), the possible search space is partitioned
at each iteration. A partition can be discarded if it contains no sensors, or
the partition is of size one, meaning that the location of the sensor has been
discovered.

1. Make the set of non-empty partitions={all the search space}.

2. while the set of non-empty partitions is not empty do

3. Extract one of the element from the set of the non-empty partitions.

Name it x.

4. Partition x up to N partitions.

5. For each of the subpartitions of x do:

6. Estimate the number of elements in it.

7. if the number of elements in the subpartition is zero

8. then discard the subpartition.

9. else if size of subpartition is equal to one

10. then sensor has been located



11. else insert the subpartition into the set of

non-empty partitions

The maximum running time of the algorithm is O((log U)*S*K). Where:
U is the size of the search space; S is the number of sensors; and K in the
number of iterations needed to estimate the number of sensors in a partition.
The expected running time assuming a uniform distribution of the sensors is
also O((log U)*S*K). The change from a linear U dependency to a logarithmic
U dependency is due to the comparison in step 7. Once a portion of the search
space has been determined without interest, it can be safely disregarded. Thus
most of the research has evolved on making this comparison to zero unreliable[2].
The side e�ect of this algorithm's reduction in time is an increase in resources
needed. In particular, the cost of each iteration is the partition size times P.
As the maximum partition size is U/N, where N is the maximum number of
partitions, the cost per iteration is bounded by U/N*P.

The total cost is then: O(log U * S *K) * cost_per_iteration <= O(log U *
S *K * P * U/ N).

5 A Risk Based Approach

The previous analysis assumed is possible to detect a specialized signal injected
into the system, by injecting some special packets. While there is no proof that
this can be done with 100% certainty, it can be proved that retrieving a signal
over time can be done with arbitrary precision given some very lax conditions
(This proof is on the appendix). Given this fact, data aggregator designers must
optimize the expense, not the possibility of an attack. Like a work factor in
cryptography, solutions must have very large bounds. In our analysis, we have
assumed that the sensor location is �xed for the duration of the sensor attack.
This assumption approximates current practices and limits the usage of the
equations, but provides useful guidance for future deployments. This is also the
worst case scenario.

The previous equations show dependencies on:

� U: the size of the potential sensor identi�cations, ie. the a priory size of the
anonymity set;

� S: the number of sensors in the aggregation service (S);
� K: the number of iterations required to make a decision, or the number of
iterations required to reliably detect the attacker's signal.

� P. the number of packets required per iteration to generate a readable signal.
� N ( in the N-ary case), the number of partitions that we can make per
iteration or the number of orthogonal signals that we can inject into the
system (with the assumption that the costs are the same).

Only two parameters can be controlled by the aggregator service: K and P.
The design goal for data aggregator is to implement aggregation methodologies
that increase these two values for the attacker while having a smaller e�ect on
the overall aggregated data (This is in lieu of database perturbation methods).



Again the key is to measure how well each possible implementation a�ects both
the attacker and the defender.

5.1 P: Noise and Sensitivity

The P parameter is the minimum amount of e�ort required to insert a detectable
signal in the published data. This value is directly related to the sensitivity of
the system and the noise level of the system. For a linear system (such as
the D-shield), P needs to be chosen depending on the average value and the
deviation of the undisturbed output. P is also related to the resolution of the
output channel, the set of possible output values for each value in the dataset. In
general, increasing the size of P reduces the sensitivity of the output or increases
the signal to noise ratio.

P can also be thought as an economic disincentive value. Increasing P in-
creases the marginal costs for attackers as more resources are required to extract
the identity of any sensor. The precise value and e�ect on attackers depends not
only on P, but also on the problem speci�c costs per probe. In the case of sim-
ple network probes, this cost is almost negligible given the possibility of large
botnets[23]. For other types of monitors where more interaction is required, this
approach might yield the best results.

Another advantage of P is that it is easy for the aggregator to calculate. The
other parameter, K, is harder to estimate, thus, assumptions about its e�cacy
must be carefully detailed by both designers and deployers of Internet sensors.

5.2 K: Uncertainty and Entropy

The K parameter represents a measure of the amount of information that can
be extracted from the published data per each interaction. K is an information
theoric limit on the properties of the published data which depends on the in-
teraction of the aggregation service with the sensors. In particular, K for the
n-ary algorithm is the number of iterations needed to determine estimate with
arbitrary precision that there are no sensors present in a subset. Augmenting the
K parameter does not imply an increased cost in resources for the attacker but
an increased cost in time. An increase in K requires a longer running time that
cannot be compensated by more resources (compromised systems). For low inter-
action systems, where the number of sensors is su�ciently large, the immediate
way to generate an increased K is the use of sensor sampling at the aggregator
level. For systems which provide richer and more sensitive data, there is no clear
way to achieve anonymization while preserving the probabilistic properties of
the data. As there is more entropy in the data and this a large place for attackes
to put unique `tokens' in the data. Using sampling at the sensor level, the num-
ber of iterations required to determine the presence of a sensor with precision r
when the per sampling rate is p is given by: log(1− r)/ log(1− p) . Notice that
this value is independent on the how the markings are done or the independent
cost per probe.



Another possible way to increase the cost is not to directly increase P or
K, but to increase the communication e�ort needed to potentially scan a host.
If su�cient communication overhead is placed on the attacker then the �free�
bandwidth and cycles of the compromised machines stops being �free�. However
this is beyond the control of the aggregator.

It is important to emphasize that it is impossible to prevent the use of the
system output as a veri�cation oracle. The goal of the techniques and methods
proposed here is to signi�cantly increase the cost of using the system as a veri�-
cation oracle for multiple systems simultaneously. Con�rmation attacks are still
possible, but the use of the attacks to explore the address space is no longer
feasible.

5.3 An Example with Dshield

Previously discussed is the need to increase the values of P and K as much as
possible to make the cost or the time required for an attacker to be su�ciently
large. In this section we will discuss mechanisms for a well documented and
understood aggregator service: Dshield.

Dshield Operation Dshield collects data about unexpected connection at-
tempts to computers. Its sensors are end hosts' �rewall logs. These logs are given
voluntarily to Dshield by the internet community. Dshield aggregates such logs
and reports the number of connection attempts per port every hour. Dshield
also reports the number of hosts and the number of sensors that observed such
behavior. Dshield was the �rst aggregation service studied for probe attackers by
Bethencourt et al.[2] . That work described two types of defenses against probe
attacks: social and technical. Social methods include pricing the published data
and the use of private reports. But pricing the data would make the data less
useful and the use of private reports can only help if there no attackers are also
sensors.

Technical measures suggested include: per packet sampling, use of top lists
, scan prevention and Delayed reporting. However all of these methods have
inherent problems. Per packet sampling generates an increase in P, but does
not address the parallelization of the attack. Top lists changes the nature of
the reported data. Scan prevention such as the use of IPv6 address space would
make the system not useful. Delayed reporting is problematic as late data is of
no good for most uses and in fact probe attack e�ciency is reduced by only a
constant.

We believe that other methods can be more e�ective at providing the same
level of protection to the sensors. In particular the increase in K is not discussed
and might be one of the most powerful incentives to prevent such attacks.

Increasing P The easiest way to increase P is to use of per packet sampling.
By selecting a packet to be reported with probability p the attacker must select



its reliability measure r (probability of not detecting a sensor) and then he/she
needs to send at least log(1−r)/ log(1−p) packets per iteration per destination.

There are two problems with this approach: First while sampling augments
the amount of packets required to detect the signal, it also reduces the noise
level and thus some channels that where previously unusable due to noise be-
come available. Second this sampling technique does not over count the packets.
Therefore an attacker can use this information to determine an upper bound on
sensors in a partition. The attacker can end probing on a subpartition when that
bound is reached.

A potentially better method is the use of randomized sampling. At each
period each sensor selects a probability between p1 and p2 (with uniform dis-
tribution between these two values). By using this method three things happen.
First, the attacker must use the lowest probability to guarantee that his signal is
observed while the sensors average probability is (p1+p2)/2. Second, this intro-
duces some noise factor. Third, probes can be over counted, this overcounting
prevents the attacker from discarding any sub partitions when thresholds are
reached. The advantage is the information asymmetry of the method. There is
a di�erence between the guaranteed probability of selection and the expected
probability of selection. In other words, this method disturbs the data more
e�ectively for attackers than for defenders.

Other approaches include the use of buckets of de�ned sizes to group data or
limiting the resolution of the output signal. Resolution is deceased by limiting the
number of signi�cant digits of the output. However the e�ect of these methods
is similar to the simple per packet sampling.

Increasing K This section provides multiple mechanisms to increase K. Recall
K is the information theoric limit on the cost function. One way to potentially
increase K is also to use sampling, but at the sensor level. At each time interval,
the aggregation service will select the logs from some sensor to be added to the
aggregate list with some probability p. By using this sampling, an attacker signal
for each sensor would be lost at each interval with probability (1-p) no matter
what type of signal he/she introduced.

Another way to increase K is the use of data correlations. As Dshield is
designed to detect automated threats, we can use certain domain speci�c knowl-
edge about such threats. Data are uncorrelated in the source IP address. Data
are also uncorrelated in the time domain. With this in mind, assume that the
lower X bits of IP address space are uniformly distributed and use them to sam-
ple. By sampling on one of these bits, an attacker using only one compromised
machine has a 50% change of not being reported, independent of the number
of probes sent to the sensor. Time is the other possible correlation dimension
we can use . The time sampling mechanism could select randomly only even
seconds or only on the �rst half hour ( or every uneven packet ). This would
force the attacker to not only use more resources but also to spread them in a
more uniform distribution. This requires synchronization among all the systems
used by the attacker to launch the attack.



In general, the use of data correlations does not directly increase K, but
provides a large disincentive to try to determine the location of a sensor. The
probability of observing the output, given an attacker that can generate di�erent
packets that match each of our selection dimensions is given by: prandomselection +
(n− 1)/N

Where

� Prandomselection is the base probability of selecting any one random packet,
� n is the number of probes sent by the attacker that are in di�erent dimension
� N is the total number of possible selections.

Another option is to use a Markov chain to select whether a sensor reports
data back to the aggregate sensor. While this does not provide extra protection
it increases the complexity of the attack. The order of the running time remain
the same, but the attacker is forced to store more state. Speci�cally attackers
must interleave the sampling of data and cannot use depth �rst attacks. Markov
chains and data correlations are examples of the use of information asymmetry.

The requirement of state date makes the attack more expensive while not
changing the accuracy of the collected data.

Limitations of the methods All methods discussed in the increase of K and P
have two potential problems. The �rst is that the data quality of the collection
system is decreased. However, assuming the distributions are uniform in the
dimensions selected for sampling, adding noise does not change the expectation
of the output before and after using the proposed methods. The real problem
comes from calculating the expected deviation of this output given each sampling
mechanism.

The second potential pitfall is the that the system is more sensitive to rogue
sensors. The e�ects of rogue sensors can be ampli�ed with sampling is the sensor
implements the sampling and provide malicious data. However, if the sensors are
required to submit sampled sanitized data then abnormal deviations of sampling
values can be detected. The sensor system still needs to use other tools to validate
the data reported by individual sensors, but this question is out of the scope of
this paper.

6 Conclusions

Anonymization procedures employed by aggregation services are a unique and
important special cases of anonymity. Without proper anonymization, those ser-
vices vulnerable to injection attacks and reduces the con�dence of sensors. The
absence of an absolute method to assure anonymity for sensors indicates that
economic and information theoric approaches are needed. We have shown the
fastest known algorithm for sensor location and the kinds of mitigation mecha-
nisms that can be put in place. We introduced two parameters that can be used
to explain the e�ectiveness of potential mitigation solutions.



In the particular case of the Dshield we have enumerated the problems of
other currently proposed defense mechanisms. We have o�ered a set of methods
that can be used to avoid said enumerated problems such as the use of ran-
domized packet sampling, sensor sampling and correlation sampling. Further we
have shown that speci�city when describing sampling methodologies is required.
Sampling in di�erent spaces generates di�erent dependencies.

Further research is required into the e�cacy of leveraging determining in-
formation asymmetries. Currently we are working to determine how robust our
proposed methods are against rogue sensors. Currently deployed data aggrega-
tors must implement defense mechanisms as soon as possible in order to guaran-
tee the accuracy of their data set. Future aggregation services must spend more
time in the analysis of the anonymization mechanisms speci�cally in on how to
generate anonymization methods with highest marginal costs for attackers.
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8 Appendix

What we have then is a problem of system identi�cation. These type of problems
are very common in the control theory, and our problem tough similar hast three
properties that make them a little bit di�erent: (i ) exact knowledge of complexity
of the transfer function, (ii ) large input space, and (iii ) non-zero mean (or
median) error. The exact knowledge of the complexity of the transfer function
means that we know the exact structure of the system we want to identify, thus
the identi�cation task is to generate good approximations for the parameters of
that structure. The fact that this structure is known a priori in general reduces
the complexity of the identi�cation procedure. Usually identi�cation systems
have a relatively small input space of order less than 103 where in our case we
have a large set of inputs, that is all valid Internet end points around109 . This
means that methods that require large number of input-output probes cannot
be used as the space cannot be generated or stored. The non-zero mean error
means that some techniques as sum of squares cannot be used directly.

However, the theory and knowledge of system identi�cation procedures can
still be used but with some caveats. For our case the critical part is to determine
the excitation signals necessary for appropriate identi�cation. These signals must
satisfy two conditions: They must cover as much as possible the internal state
of the system and they must be detectable(identi�able) in the output. Since an
attacker can reach any end point in the system, what really requires study is the
detection of the signal.

8.1 Signal detection in discrete spaces

Discrete signal detection is a known problem in communication systems. In par-
ticular, in cases where the transmission channel is linear and the noise is with
�nite energy and with zero mean (ex. white noise) methods to detect signal are
pretty much known. Our case in particular has a �nite output space and the sig-
nal is also discrete in time. Our function is not linear (in general) and the noise
is bounded and has has non-zero mean. But even in these case, signal detection
with an arbitrary non-zero error is possible under the following circumstances:

1. Ability to excite the channel

2. Noise is i.i.d. (Independent identically distributed) at each time period.

3. System is time invariant.

4. The conditional PDF of the output in the case with no signal is known.

5. For at least one of the possible output values yi the conditional probability,
given the signal is present is known to di�er from the no signal case by at least
some known εi. In other words: ∃yi/‖P (yi|Nosignal)− P (yi|Signal)‖ ≥ εi



8.2 Proof, binary Case

If the output function is binary, from condition (4) we know the signal less
distribution d 1 with parameters: p1 and q1 = 1 − p1 . Since this distribution
is time invariant (conditions (2), (3)) , a sequence of outputs of this distribution
will generate a binomial distribution. This binomial distribution with N trials
has:

µd1 = Np1

µd1 ,2 = σ2
d1 = Np1q1

(a.1)

From the conditions for identi�cation(condition (5) ) we know that for the
signal case we have p2 p1 + (Or the opposite, in which we can rename the output
signals). In this case (with signal) the repeated trial would yield to another
binomial distribution with:

µd2 = Np2

µd2 ,2 = σ2
d2 = Np2q2

(a.2)

Now, we want the error to be least that some preq. If we set the decision
threshold in the midpoint between the two expectations t = (Np1 + Np2)/2.
The error of detection is given by the maximum area where the decision threshold
gives the opposite value. What is needed is to �nd an N which the error would be
less than that. Using the Tchevyche�'s inequality we can say:

P |Xd1 − µd1 ≥ t| ≤ σ2
d1

t2 ≤ preq (a.3)
Replacing in equation (4) with values from equation (2) we can come with:

Np1q1
(N(p2−p1)/2)2 ≤ preq

4p1q1
N(p2−p1) ≤ preq

Thus:
N ≥ p1q1

preq(p2−p1)2

Similarly for the second distribution (with signal) we have:
N ≥ p2q2

preq(p2−p1)2

Thus we can �nd a bound for N that satis�es the requirement for an arbitrary
but non-zero error requirement preq .

8.3 Arbitrary Case

We can convert an arbitrary function that we know at least some εi into the
binary case. And we can use the above proof.
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