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Abstract. Reputation and trust-based models have gained popularity
recently because they have been shown to be promising in the area of
trust management. Despite this fact, building reliable systems still re-
mains a challenge. Proposed models focus on historical and online infor-
mation to determine the reputation of domain members. However, the
dynamic nature of reputation and trust requires an equally dynamic ap-
proach to computing and resolving trust related issues in any domain.
This paper proposes a reliable and novel dynamic framework that utilises
a data-driven approach for trust management. The framework uses past
interactions, recent and anticipated future trust values of every identity
in the domain. The proposed framework is critically evaluated and com-
pared with existing work through experiments. The advantage of this
proactive framework compared to other approaches is that informed de-
cisions about the domain can be made before misbehaviour occurs.
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1 Introduction

In a social context, when a person is trusted, it implicitly means that the prob-
ability that the person will perform an action that is beneficial or at least not
detrimental in the society, is high enough to consider engaging in some form of
cooperation with the individual [5]. Reputation, on the other hand, is the opinion
of one person about another; it is a measure of the trustworthiness of a person.
Both trust and reputation have been used synonymously in literature.

Behavioural expectation in any domain can be motivated from a social per-
spective, where individuals are expected to behave in certain ways within the
society. The behaviour of an individual, whether good or bad, will determine how
others will cooperate with the individual. The expected behaviour of a sensor
for example, in a Wireless Sensor Network (WSN) set up for monitoring, is to be
cooperative in collecting and processing observed data with neighbouring sen-
sors. Misbehaviour is the deviation from the expected behaviour in the domain
and entities that misbehave are said to be untrusted.

Reputation and Trust-based Models (RTMs) [1, 3, 4, 6, 7, 17] are described as
systems that provide mechanisms to produce a metric encapsulating reputation



for a given domain for each identity in the domain . This is referred to as Trust
Value (TV) or trust ratings in this paper. Generally, RTMs aim to provide in-
formation to distinguish between trustworthy and untrustworthy members. The
models encourage members to cooperate by providing incentives and discour-
age maliciousness by punishment schemes such as isolation and service denial.
RTMs have been used extensively in various e-commerce and online communities
such as YouTube, Amazon and eBay. Some literatures also suggest their use in
domains ranging from Peer-to-Peer (P2P) to mobile networks [3, 6, 8, 17].

Traditional RTMs rely on recommendations provided by entities in the do-
main to determine the reputation of others. Each of the models addresses some
of the trust issues but not all of the problems, or in the process of solving one
issue they introduce others. An example of the problem that arises from the re-
liance on these recommendations is collusion, where two or more entities team up
to behave maliciously. Without countermeasures, the effects of this attack have
shown to dramatically affect the network performance as evidenced in poor re-
liability and quality of service, higher overhead and throughput degradation [3].
Incentive policies that are used in P2P networks to ensure cooperation between
peers are also generally susceptible to collusion attack [14].

Generally, RTMs make use of past events as a pointer for the future. How-
ever, for an RTM to be reliable and effective in trust management, trust has to
be predictable. It is generally assumed that the predictive power of an RTM de-
pends on the supposition that past behaviour is an indication of future behaviour
[13]. This assumption might not be true with another malicious behaviour called
intoxication. Intoxication occurs because the effect of past good behaviour out-
weighs the effect of current misbehaviour. Therefore, we argue that using historic
(or past) interactions as the only basis for predicting the future TVs of iden-
tities in a domain is inadequate to provide a trusted system. Our framework
extends the supposition further by not only considering past interactions but
also anticipating possible future behaviour of members.

In previous papers [18, 19], we described how trust decisions can be corrupted
through recommendations made by members. We proposed a framework that is
capable of providing dynamic trust ratings of members at runtime and predicting
the future trust ratings. The framework does not rely on collective opinion and
recommendations to determine the reputation of members. Instead, the frame-
work predicts a potential compromise before it occurs. In this paper we present
an extension to our original design, which uses predictions of future behaviour
to determine trust ratings. We also present experiments comparing the results
obtained with and without the use of prediction capabilities, confirming that the
framework can provide more reliable predictions.

The rest of this paper is organised as follows: Section 2 describes significant
RTMs in literature. The motivation for the use of dynamic data-driven paradigm
in this research is discussed in Sect. 3 while Sect. 4 details the components of
the framework. Section 5 presents a set of experimental results and analysis that
shows that the predictive capability of our framework. Finally, we discuss and
conclude in Sect. 6 and Sect. 7 respectively.



2 Related Work

Researchers proposed RTMs to solve trust related issues and the models have
shown positive results. Some models that have contributed significantly to trust
management in literature are discussed in this section.

Michiardi and Molva [17] proposed a model where reputation is formed and
updated over time by direct observations and information provided by other
members of the network. In their model, nodes have to contribute continuously
to remain trusted or their reputation will be degraded until they are excluded
from the network. The model gives a higher weight to past behaviour. The
authors argue that a more recent sporadic misbehaviour should have minimal
influence on a node’s reputation that has been built over a long period of time.

A file-sharing P2P reputation system’s algorithm: EigenTrust [10], similar
to the popular PageRank aims to identify sources of inauthentic file and to
prevent peers downloading from them. The algorithm assigns each peer a unique
global TV, based on the peer’s history of uploads. EigenTrust’s susceptibility to
collusion has been demonstrated in [14], where certain colluding peers are able
to obtain high TVs.

Buchegger et al. [3] proposed a protocol that aims to detect and isolate mis-
behaving nodes, making it unattractive for any node to deny cooperation with
others. In the protocol, each node maintains a reputation and a trust rating
about every other node of interest. Only fresh reputation is propagated in the
network, with more weight given to the current behaviour of a node over its past
behaviour. Nodes monitor and detect misbehaviour in their neighbourhood by
means of an enhanced packet acknowledgment mechanism; where the confirma-
tion of acknowledgment comes indirectly by overhearing the next node forward
the packet [2, 20].

In the work of Ganeriwal et al. [6]; which is applicable to WSNs, each sensor
node maintains reputation metrics. These metrics represent the past behaviour
of other nodes and are used as an inherent aspect in predicting their future
behaviour. The model relies on network members to maintain the reputation of
others based on their experiences and uses this to evaluate their trustworthiness.

More recent studies on RTMs are discussed in [1, 4, 7]. A common problem
seen in the models is the vulnerability to collusion attacks [9]. Models applicable
in the mobile networks domain, make use of a component resident on each node
called watchdog mechanism. This component monitors its neighbourhood and
gathers data by promiscuous observation. By promiscuous observation we mean
that each node overhears the transmission of neighbours to detect misbehaviour.
Watchdog requires that every node report to the originator about the next node.
Once misbehaviour is detected, a negative TV is stored. This detection mech-
anism also has a weakness of failing to detect a misbehaving device in case of
collusions [16].

Let us consider a set of sensor nodes that are deployed along the roadside
to monitor vehicular movement in order to obtain real traffic flow data and
conditions. The sensors are equipped with wireless interfaces with which they
form a network. Nodes collaborate to collect and process data that generate



Fig. 1. Sensor node can misbehave by colluding to deceive the network

information about traffic conditions. When a sensor node receives information
from another, this is combined and fused with local information before being
sent to a server to control traffic. Figure 1 depicts collusion attack showing a
downside of the watchdog mechanism. Knowing that WSNs are vulnerable to
attacks due to their nature, an adversary compromises a sensor node, which in
turn compromises other nodes. Consider a normal situation, where for example,
sensor node A forwards a message to node B and B forwards the message to
C. Node C then forwards the message to node D. However, node C may decide
to alter the message before sending it to D. With the watchdog mechanism, it
is possible that B colludes with C and does not report to A when C alters
message M, before forwarding the message. Misbehaving nodes do not only have
the chance to collude but can also propagate false information. Therefore, trust
decisions can be corrupted through recommendations made by such sensor nodes.

3 Why Dynamic Data-Driven Simulation?

A disreputable person could redeem himself through honest actions and a trusted
person could become less reputable or untrustworthy if he misbehaves in a soci-
ety. This analogy is applicable also in trust management and implies that trust
can fluctuate over time, making it dynamic. This dynamic nature of trust there-
fore calls for an equally dynamic approach for identifying misbehaving members.

The missing element in traditional RTMs is the reliable prediction of fu-
ture TVs of members to proactively prevent misbehaviour. The classification of
members into different levels of risk is also an important missing element. This
classification can potentially help the RTM to focus on members that are of
high-risk in the domain. Hence, we propose an approach that

1. Predicts the future TVs using past events, recent events and possible future
interactions

2. Provides information about members that are classified as high-risk
3. Prevents members’ bias from influencing trust decisions
4. Provides dynamic TVs of domain members.

This fits within a more general emerging paradigm referred to as Dynamic
Data-Driven Application Systems (DDDAS). The DDDAS approach is that of
a symbiotic relationship between reality and simulations. The simulation is able
to make predictions about how an entity would evolve and its future state. The
predictions made can then influence how and where future data will be gathered
from the system, in order to focus on areas of uncertainty [11].



DDDAS has been applied in the simulation of physical, artificial or social
entities [12, 15]. The application of DDDAS for trust management provides dy-
namism in the detection of misbehaving members and prediction of future rat-
ings. The data about behaviour of members is simulated to gain a better under-
standing and a more accurate prediction of the level of trust for each member.

4 Dynamic Data-Driven Framework

This section introduces the framework and gives a comparative analysis with
pre-existing models using monitoring, simulation, dynamism, and prediction as
criteria. Figure 2 illustrates the relationship between the framework components.

Fig. 2. Framework components showing how data is injected into the simulation and
the scenarios s1, s2, ..., sn

4.1 Trust Computation

Trust computation is very difficult, as trust has to be defined precisely. This is
because the computation is crucial to the fulfilment of the functions in any trust-
based framework. Computing trust in RTMs has been described as an abstract
mathematical specification of how available information should be transformed
into a usable metric [8]. In this framework, the specification is made through
explicit equations.

A set of discrete TVs is assumed in the framework and each value represents
a degree of trust [19]. These discrete degrees of trust introduce flexibility into ap-
plications of our framework, as different behaviours correspond to different levels
of trust. Table 1 shows the trust table, the degrees of trust and corresponding
level of risk in this framework.

Captured qualitative data is converted to a quantitative value. Data collected
from the network (e.g. a P2P system, eBay, WSN etc) is transformed to a value
ranging from 0 to 5, where a score of 0 means a node is completely untrusted, 5
means a node is absolutely trusted and if 0 < TV < 5, then it implies that the
node is trusted to a certain extent.



Using the notation tvR, let the computed TV be

tvR = µhtv
R
h + µotv

R
o (1)

where tvRh and tvRo are the average historical and recent online TVs respectively.
Weights µh and µo are scaling factors of the TVs which can be varied and are
introduced to allow for flexibility in the framework.

The simulation considers the possible scenarios a member may undertake in
the future and the average of the ratings for the member determines the future
tvSf . An predicted overall TV is computed as

TV = µhtv
R
h + µotv

R
o + µf tv

S
f (2)

where µf is a scaling factor for the predicted value.
In the framework, recent behaviour has more weight than past interactions.

This is to prevent nodes from attaining a good reputation and subsequently
misbehaving (intoxication attack described in Sect. 1). The weights are used to
control the effect of historical behaviour of nodes on their recent activities. For
example, if (µo, µh) > 0 and µo > µh, this places more emphasis on recent
behaviour as opposed to historical.

Table 1. Trust table showing the degrees of trust, meanings, descriptions and corre-
sponding risk levels

TV Meaning Description Risk Level

5 Complete trust Trusted node with an excellent reputation Low risk
4 Good trust level Very reliable node Low risk
3 Average trust level Average value and somewhat reliable node Medium risk
2 Average trust level Average value but questionable node Medium risk
1 Poor trust level A questionable node High risk
0 Complete distrust Malicious node with a bad reputation High risk

4.2 Simulation

In order for any RTM to fulfil its functions; observations, experiences and rec-
ommendations need to be captured and represented numerically. The simulation
of the network runs concurrently with the real system itself. The aim of the sim-
ulation is to predict TV of members by using past interactions, current events
and possible future scenarios. However, this component of the framework works
ahead in time of the system. At specific time slots, the current state of the system
is obtained and adapted to the simulation.

Data collected from the system are the online TV (tvRo ) that represents the
current rating of a member and the computed TV (tvR) using the online ratings
and past events. These values from reality are injected into the simulation at the



start. The simulation runs for more time steps and considers different what-if
scenarios in which a member may be in the future.

Possible outcomes in the what-if scenarios are simulated to anticipate possible
fluctuations in member behaviour. This is because the behaviour of members
generally in any network, domain or context is dynamic and changes with time.
Examples of possible scenarios that can be considered by the simulation are
collusion attacks such as altering a message, intoxication and normal expected
behaviour. The resulting TV for a member in each scenario is considered and
with this information, it is possible to compute and anticipate the future TV of
the member. In the controller (a trusted framework component depicted in Fig.
2), the data from the simulation is combined with online and historical TVs in
order to obtain an overall TV.

After some specified time intervals T1, T2, ..., Tn, the simulation state is ob-
served and compared with the actual state; this comparison is done automatically
in the controller. The framework is adaptive such that if there are any differences
in the predicted values and the reality, the weights for the trust computation
can be continually adjusted to reflect reality. Each instance of the adjustment al-
ways ensures that the condition µo > µh holds. This means that an entity’s most
recent action has more impact on its TV than past actions; consequently pre-
venting intoxication. The exact way the adjustment may be achieved is beyond
the scope of this paper.

Table 2 compares the extended framework with the RTMs described earlier
based on the criteria of monitoring, simulation, dynamism and prediction.

Table 2. Summary table comparing existing RTMs with framework

Models [17] [10] [3] [6] Framework

Monitoring Watchdog
mechanism

Peer recommen-
dation

Watchdog
mechanism

Watchdog
mechanism

Controller moni-
toring

Simulation n/a n/a n/a n/a Simulation of pos-
sible future states

Dynamism Ratings
are not
constant

Periodic itera-
tions to compute
global TVs

Periodically
updated

Provides
real time
feedback

Online ratings and
control at intervals

Prediction n/a Past interactions
serve as an indi-
cation of TVs

n/a Trust metric
that is repre-
sentative of a
nodes’ future
behaviour

Prediction of TVs
using data from
history, online and
possible future be-
haviours

The framework performs better by predicting the future TVs of members.
The prediction gives the network enough time for preventive measures, making
the framework proactive compared to other models that are reactive. We refer
to being proactive in terms of providing control such as downgrading of TV of
suspect members that are predicted to be malicious before they can carry out



an attack. This is contrary to how other approaches work, that only downgrade
the TV as a reaction to misbehaviour. The assumption is that a member that
has been compromised by an adversary exhibits a sequence of behaviour in order
to misbehave. A hypothetical example is depicted in Fig. 3a and Fig. 3b which
show the time difference in response time between the framework and other
approaches. Figure 3a shows that the TV is only downgraded at time t5 after
the member exhibits maliciousness. The simulation in the framework predicts
the maliciousness between time interval t1 and t2 and the TV is downgraded at
time t3 in Fig. 3b.

Fig. 3. Other approaches in (a) compared with the dynamic approach in (b)

5 Experiments

This section describes the simulation environment setup using Repast Sim-
phony1, an agent based simulation toolkit. The experimental analysis is to con-
firm the hypothesis described in Fig(s). 3a and 3b showing the reliability of the
framework in providing timely predictions. Experiments were carried out us-
ing a P2P network scenario where the framework anticipates the behaviour of
members in different network scenarios and predicts the TV of network peers.

The network is modelled with certain properties. Peers interact with oth-
ers using the communication mechanism found in a P2P network, causing peer
states to change. The peers are self-contained as they are uniquely identifiable
with a set of characteristics, behaviours and attributes. Also, the peers function
independently and interact with other peers by message transfer.

In each experiment, the network consists of dormant peers that do not par-
ticipate in network activities, misbehaving peers and reputable peers that are
active in file upload and download. The network parameters used are in Table 3.

1 http://repast.sourceforge.net/



The simulation which runs concurrently with the network contains a snapshot
of the network and is 20 ticks (a compression of time) ahead.

5.1 Implementation Environment

The experiments were carried out with and without the predictive capability of
the framework. In the first experiment, trust computation was based on only the
online data and past interactions with no predictions from the simulation.

Table 3. Simulation parameters

Parameter Value

Total simulation time (in ticks) 100
Total number of nodes 100
Percentage of malicious nodes 4
Total number of messages transferred 27
Default trust values tvRo , tvRh 2.5
Online weight µo 0.5
Historical weight µh 0.3
Prediction weight µf 0.17

The TV derived from nodes recent activities tvRo is updated every 5 ticks.
The tvRo from the last update replaces the value of tvRh every 5 ticks. The set
of past tvRh s is stored in a database for records of historical TVs. With every
observation k in the experiment, we compute tvRo with the formula (tvRo )kth =
((tvRo )k − 1th) − α and (tvRo )kth = ((tvRo )k − 1th) + (α + 0.5) for observed bad
and good behaviour respectively, where α is set to 0.5.

From mathematical proofing, the weightings of the TVs serve as a scaling
factor and must be such that 0 ≤ 1/µo + 1/µh < 1 for the overall TV to be
within the range of 0 and 5. Also, in order for more emphasis to be placed on
recent observations, µo > µh. For these experiments, the weights were kept at
constant values of 0.5, 0.3 and 0.17 for µo, µh and µf respectively.

The simulation component in the second experiment considered 3 possible
scenarios and the corresponding TVs for each scenario was obtained. The what-
if scenarios considered are collusion, intoxication and failure to cooperate in
forwarding of files. A scenario where the peer is active and behaves as expected
is also considered. The average of the TVs (tvSf ) from the scenarios was used

and combined with tvRo and tvRh (of each peer) to compute the overall TV in the
second experiment.

5.2 Preliminary Results

In the absence of prediction, the misbehaving nodes colluded and sent inau-
thentic files through the network at 60 ticks. With prediction, the framework
detected and flagged the peer as malicious at 40 ticks and with a downgrade of



its TV immediately. Figure 4 shows the TVs of one of the misbehaving peers,
with and without the use of prediction. The figure shows the time gained with
the use of prediction with a downgrade of the peer’s TV immediately to below
the allowed threshold of 2.

Fig. 4. P2P file-sharing network result (with and without prediction of TVs)

Ultimately in the experiment with prediction, the peer is isolated because
its overall TV is below the threshold for other peers to want to cooperate with
the peer. This averts the misbehaviour, unlike in the experiment without the
prediction (similar to the models that do not anticipate future behaviour by
simulation), where the TV was downgraded as a response to the attack. Figure
5 compares the predicted trust with actual TV for some peers. The graph shows
the changes in the value of a peer exhibiting intoxication, an untrusted peer
whose TV continues to drop and a trusted peer that is active with a high value.

Fig. 5. TVs of a peer and the comparison of the values in the network and simulation



6 Discussion

Ad hoc networks are traditionally known to lack a central entity; therefore, this
framework will be most applicable in semi-distributed contexts such as sensor
networks, which lend themselves to centralised control.

By comparing the results from the simulation with those from the network,
we observed some degree of variance and this might account for possible false-
positives or false-negatives generated from the simulation. Hence, we shall ex-
plore approaches to improve the correlation of these trust values (i.e. simulated
and actual) in the future. Approaches to parameterise the simulation rules for
more dynamism in the framework will also be considered in the near future.

In this paper, our experimental study considers only the case of fixed number
of identities in the network without random entry and exit of peers. In the future,
we shall analyse the implication of dynamic admission and departure of nodes
on accuracy of the predictive capability of our framework. Even though we have
assumed a constant value for the TV weights, the simulation has a potential to
be adaptive in a way that the feedback gathered from the system can help in
the adjustments of the weights for future rounds.

7 Conclusion

This paper proposes a dynamic reputation and trust-based framework that is
able to predict the behaviour of network members in the future. The frame-
work anticipates future events and considers available information for predic-
tion. Compared to other existing work on trust management, this framework
has shown to have the potential to be useful in terms of providing timely infor-
mation about the domain. This approach is not only useful at the network level
but also at a higher level, providing adequate and timely information that al-
lows for countermeasures and making security aware decisions in the network by
stakeholders. It can therefore be concluded that the use of monitoring, simula-
tion, and feedback in terms of prediction and control mechanisms, can potentially
improve the reliability of systems that rely on trust management to function.
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