
Post-Session Authentication

Naveed Ahmed and Christian D. Jensen

Technical University of Denmark, Copenhagen
{naah,Christian.Jensen}@imm.dtu.dk

Abstract. Entity authentication provides confidence in the claimed iden-
tity of a peer entity, but the manner in which this goal is achieved results
in different types of authentication. An important factor in this regard
is the order between authentication and the execution of the associated
session. In this paper, we consider the case of post-session authentica-
tion, where parties authenticate each other at the end of their interactive
session. This use of authentication is different from session-less authen-
tication (e.g., in RFID) and pre-session authentication (e.g., for access
control.)
Post-session authentication, although a new term, is not a new concept;
it is the basis of at least a few practical schemes. We, for the first time,
systematically study it and present the underlying authentication model.
Further, we show that an important class of problems is solvable using
post-session authentication as the only setup assumption. We hope post-
session authentication can be used to devise new strategies for building
trust among strangers.

1 Introduction

Entity authentication is an important requirement for the security of interactive
protocols, because if a party does not know with whom it is communicating then
there is little left what one can achieve in terms of security. Whereas authenti-
cation may seem a simple concept, it is one of the most confusing goals in the
security analysis [11]—even its operational definition1 is not agreed upon.

Nevertheless, most security experts do agree that authentication does not
correspond to one monolithic goal [8, 14]. To us, the term refers to a set of
fine level authentication goals (FLAGs) [16, 9]. A few examples of FLAGs are
identification, recognition, operativeness and willingness. For an entity A that
authenticates a peer entity B, identification assures that A is able to compute
the correct identity of B, while recognition makes sure that A is able to rec-
ognize B as the party with whom it has communicated before [23]. Similarly,
the operativeness assures A that B is currently there at the far-end, and the
1 A conceptual definition is often in a natural language capturing the meaning and the

use of a concept. An operational definition represents a computational procedure that
provides yes or no answer corresponding to the presence or absence of the concept
in a given system.

willingness makes sure that B is aware that it is being authenticated. Since dif-
ferent protocols achieve different sets of these fine level goals, the interpretation
of authentication varies.

A party always uses authentication as a service in an application. In Lowe’s
words [8], “the appropriate authentication requirement will depend upon the use
to which the protocol is put.” We distinguish between the three classes of use-
cases corresponding to the execution order of an authentication protocol and the
authentication-dependent interactive session. The first class represents session-
less authentication, e.g., RFID [20] and simple entity authentication [12]. In this
class, the result of authentication is used by a system to update its state, e.g., a
back-end database. Although the authentication result is not used for the other
types of interaction, the result may influence how authentication is carried out
subsequently, e.g., see the synchronization approach [20].

The second class represents pre-session authentication, which is the most
common use of authentication. Here, the result of authentication is used in a
subsequent session. For example, when a person logs in on a computer, the
operating system uses the authentication result, the person’s identity, to launch
his session, and all access control decisions in the session essentially depend on
it.

The third class, which is relatively less common, is post-session authentica-
tion, where authentication is carried out at the end of the associated session.
Authenticating the parties when a session is already over may not seem so use-
ful, but the following observations make this case worth considering. Firstly, if
an instance of post-session authentication fails then parties can always reject
the output of the session. Secondly, post-session authentication allows parties
to anonymously interact in the session and build a trust level before authenti-
cating each other, e.g., two spies may want to engage in such a session before
revealing their identities. For online shoppers, this type of authentication could
be attractive because it provides a kind of assurance that vendors are not using
any user-dependent pricing strategy. Similarly, mutually distrustful parties can
anonymously engage in an auction for a precious item, while keeping the thieves
among the bidders at bay.

In a general model of post-session authentication, parties engage in an arbi-
trary distributed computation, and at the end they authenticate each other in
the context of this computation. Clearly, an adversary can trivially take part in
the computation, but, at the end, the adversary can not authenticate himself as
a legitimate participant if the authentication protocol is secure.

Because the execution of a post-session authentication protocol is session-
dependent, its requirements are clearly more stringent than a session-less au-
thentication protocol. On the other hand, in the pre-session case, we may also
need to protect the confidentiality of some protocol terms (e.g., a session key),
in order to protect the integrity of the subsequent session. Sometimes a hybrid
form of authentication is used, e.g., continuous authentication in Auth-SL [26],
which may depend on a previous session, can be used for authorizing the access
to a protected resource in a later session.

The rest of the paper is arranged as follows. A few motivating examples
are presented in § 2. In § 3, we present our authentication model, and then in
§ 4 we demonstrate a plausibility result, namely session-less authentication, in
principle, can be used to compute any multi-party function. In § 5, we briefly
discuss some other interesting aspects of post-session authentication, followed
by a summary of the related work in § 6 and concluding remarks in § 7.

2 Examples of Post-session Authentication

In this section, we present four examples. The reader must note that a session
does not necessarily include all of the messages exchanged between two parties. A
session may represent a part of such interaction, such as the initial or middle part,
depending on the interdependency of authentication and exchanged messages.

Probably, the first known application of post-session authentication is in
PGPfone [1], which uses the method of numeric comparison for authentica-
tion. As we know, against an active attacker, Diffie-Hellman key-agreement
(DHKA) [21] can only provide confidentiality of the key if the man-in-middle
scenario can be rejected. PGPfone use DHKA to establish a call. A hash value of
the transcript of the key-agreement phase is computed and converted to numeric
values at the both ends. Then, the two parties authenticate each other by simply
reading off their respective numeric values.

The second example is of the Cocaine Auction (CA) protocol [3]. Its setup
uses anonymous broadcast to carry out an English style auction among untrust-
worthy parties. The classic allegory for the protocol is as follows.

Consider a number of dealers gathered around a table. One of the dealers, the
seller, offers his next shipment of cocaine to the the highest bidder, and he starts
the auction by proposing an initial bid. It is required that the bidders remain
anonymous to each other as well as to the seller. Also, the winner anonymously
arranges a secret appointment with the seller, to receive the goods and to pay
the bid. In the scenario described above, none of the parties completely trusts
in any other party. There is no party that can act as a trusted arbitrator. For
anonymity, even the seller should not able to find out the identity of the winner
before committing the sale. The way the protocol achieves these goals is a good
example of post-session authentication.

As the third example, we describe a secure communication protocol. Alice
wishes to securely and anonymously communicate with her friend Bob over the
Internet, but no public key infrastructure (PKI) is available to them, and neither
they posses a common secret key. They can use the Diffie-Hellman protocol [21]
to compute a common secret, but the protocol does not provide any authenti-
cation. Similarly, sending each other their public keys is of no use in absence of
a common certification authority. Authenticating each other using biometrics,
e.g., voice or video, is not good for anonymity, because a man-in-middle can then
easily identify the two parties. In such a restrictive scenario, they can use the
following post-session authentication protocol.

Alice and bob start an unauthenticated session, while also realizing the pos-
sibility of a man-in-middle attack. In this session, they present each other with a
series of challenges, such that answering these challenges require the knowledge
of their private interactions in the past. During the session they do not reveal the
answers to these challenges. For robustness, we can rely on the challenges with
yes (binary 1) or no (binary 0) answers. At the end of the session, the shared
secret is computed by concatenating the answers of these challenges.

Once the shared secret is computed at the both ends, Alice and Bob can use
this secret as a cryptographic key to authenticate each other using a suitable
symmetric-key authentication protocol [12]. This particular configuration of the
initial session and the authentication protocol clearly fits in the post-session
authentication class, because the success of the protocol execution inevitably
depends on the output of the preceding session.

The fourth example is the ordering system on an Amazon web store [22].
When a new user visits the web store, the Amazon web server stores a cookie
containing a session ID in the user’s machine. Although the user is completely
anonymous to the web store, the web store maintains the temporary database
record for the user’s session, which is addressable by the session ID in the cookie.
As a result, the user can conveniently explore the store, compare prices, select
vendors, and manage the shopping basket allocated to the session.

When the user opts for the check out, the web server asks her to sign up with
Amazon using her email address, which works as a pseudonym for the user, and
then the user is asked to provide a shipping address and a valid payment option.
In this way, the web store allows to complete all of the shopping activity except
the actual payment without requiring any prior authentication.

As in the above example, the authentication is not necessary for the initial
interaction, as long as a web store is willing to commit resources and allocate
a unique shopping basket to every potential buyer. At the same time, it is also
required that if the buyer proceeds to check-out then the result of her initial
interaction—the basket—can some how be linked to the subsequent authentica-
tion during the store’s check-out phase. On the other hand, note that this case
of post-session authentication can well be implemented in the manner of pre-
session authentication by forcing each potential buyer to sign up first, however,
doing so may not be a good business strategy.

3 Model of Authentication

Authentication is what an authentication protocol does is a dangerous approach2.
Many security models for protocols are not expressive enough to capture the
authentication requirements (see § 6). Often, authentication properties are ex-
pressed in an indirect way, e.g., in terms of protocol messages [15] or runs [8].
We use our binding sequence based framework [9, 17] to model post-session au-
thentication.
2 by Dieter Gollmann in an invited talk

Before going into the details of the actual model, we first motivate the reader
by listing some of its advantages. The framework allows simple definitions of
authentication goals, based on the notion of distinguishability. It is relatively
straight forward to express all interesting authentication goals (which we refer
to as FLAGs) in this framework. The framework allows to validate the security
and the correctness goals of a protocol independently.

The framework was originally used to model the session-less scenario [9], but
the extension of that model to post-session authentication turns out to be quite
straight forward and only requires the inclusion of one additional clause to the
operational definitions of authentication goals.

Summary of Session-less Authentication Model [9]

A set of FLAGs represents a possible set of correctness requirements for an
authentication protocol. Two authentication protocols are functionally different
for a calling routine (who may use an authentication protocol as a a service)
if their sets of FLAGs are different. Of course, to achieve a certain FLAG, dif-
ferent protocols may employ different cryptographic techniques, e.g., public-key
vs. symmetric-key ciphers, and nonces vs. time-stamps.

Let Xc represents the local entity for which a FLAG is being defined, and
Xj and Xl are two other network entities, s.t. c 6= j 6= l. Let G be a variable on
FLAGs.

RCOG[Xc �Xj]
def= If Xc verifies that Xj is the same entity that once existed

then Xc is said to achieve the goal recognition for Xj .
IDNT[Xc � Xj]

def= If Xc verifies that Xj can be linked to a record in a pre-
specified identification database then Xc is said to achieve the goal identifi-
cation3 for Xj .

OPER[Xc �Xj]
def= If Xc verifies that Xj currently exists on the network then

Xc is said to achieve the goal operativeness for Xj .
WLNG[Xc�Xj]

def= If an entity Xc verifies that once Xj wanted to communicate
to Xc then Xc is said to achieve willingness for Xj .

PSATH[Xc�Xj]
def= Pseudo single-sided authentication is achieved if an entity

Xc verifies that a peer entity Xj , with a pseudonym pid(Xj), is currently
ready to communicate with Xc.

SATH[Xc �Xj]
def= Single-sided authentication is achieved if an entity Xc ver-

ifies that a peer entity Xj , with the identification j, is currently ready to
communicate with Xc.

CNFM[Xc � Xj , G] def= If an entity Xc verifies that the peer entity Xj knows
that Xc has achieved a FLAG G for Xl then Xc is said to achieve the goal
confirmation on G from Xj .

3 Further, if that record cannot be used to feasibly recover the identity j then it is
qualified as anonymous identification. For brevity, we do not include the anonymity
aspect in this exposition, but it is trivial to write the anonymous versions of FLAGs.

SSATH[Xc � Xj]
def= Strong single-sided authentication is achieved by Xc for

Xj if Xc has the confirmation on the single-sided authentication for Xj from
Xj .

MATH[Xc �Xj]
def= If an entity Xc verifies that both parties (Xc and the peer

entity Xj) currently want to communicate with each other, then Xc is said
to achieve mutual authentication.

The above list of FLAGs is based on our experience. The FLAGs as pre-
sented above are independent of any protocol or any security model [5, 14] and
only capture the natural use of these terms. Now, we turn to the operational
definitions of FLAGs, in order to provide computational procedures correspond-
ing to whether or not certain FLAGs are achieved in the operational settings of
an authentication protocol Π. A central concept in this regard is of a binding
sequence.

Binding Sequence: A binding sequence βXc is a list of received messages in the
protocol transcript of an entity Xc, such that the messages are guaranteed
to be sent by honest parties.

A binding sequence can be replayed; only an unauthorized change in the list
is not possible without being detected by Xc. For example, the list of received
encrypted messages [{Nc}Kc

, {Nc + 1}Kc
], where Kc is the public key of Xc,

cannot be changed4 by a man-in-middle without the possibility of being detected
by Xc, although Xc may not know who is at the far-end and whether the list
is being replayed. In the literature, sometimes such a property for an individual
message is called the message integrity.

In the following, Xc can distinguish between two instances of a binding se-
quence if a distinguisher algorithm D(Cb, λ) (which runs in a polynomial time in
the length of its input) can be constructed on Xc. Here, Cb is a challenge picked
by Xc and is either C0 or C1; and λ is an auxiliary input, such as a decryption
key. The distinguisher correctly outputs 0 or 1 corresponding to C0 and C1, with
a high probability.

RCOG(Xc�Xj , βXc(i)) def= Let βXc(i), βXc(i′) and βXc(i′′) be generated when
Xc executes Π with Xj , Xl and Xj respectively, as shown in Fig. 1. Let the
two challenges be C0 = (βXc

(i), βXc
(i′)) and C1 = (βXc

(i), βXc
(i′′)). If there

exists Drcog(Cb, λ) on Xc for all choices of j and l then Xc is said to achieve
the goal recognition of Xj from βXc

(i).
IDNT(Xc � Xj , βXc

(i)) def= Same as RCOG(Xc � Xj , βXc
(i)) except the dis-

tinguisher Didnt(Cb, λ) gets a read-only access to an identification database
containing the identification records of all network entities, as a part of its
auxiliary input λ.

OPER(Xc � Xj , βXc
(i)) def= Let βXc

(i) and βXc
(i′) be generated when Xc ex-

ecutes Π twice with Xj , as shown in Fig. 1. Let the two challenges be
4 Standard assumptions apply: the public-key encryption scheme is secure, and the

private key is only known to Xc.

Fig. 1. Distinguishability Setups for FLAGs

Fig. 2. Relations among FLAGs

C0 = βXc
(i) and C1 = βXc

(i′). If there exists Doper(Cb, λ) on Xc for all runs
with Xj then Xc is said to achieve the goal operativeness for Xj .

WLNG(Xc �Xj , βXc(i)) def= If βXc(i) is generated on Xc in a run involving Xc

and Xj , as shown in Fig. 1, then IDNT(Xj � Xc, βXj
(i)) ⇒ WLNG(Xc �

Xj , βXc
(i)), where βXj

(i) consists of all those messages from βXc
(i) in which

Xj is a peer entity.
PSATH(Xc�Xj , βXc(i)) def= WLNG(Xc�Xj , βXc(i))∧OPER(Xc�Xj , βXc(i))∧

RCOG(Xc �Xj , βXc
(i))

SATH(Xc �Xj , βXc
(i)) def=

WLNG(Xc�Xj , βXc(i))∧OPER(Xc�Xj , βXc(i))∧ IDNT(Xc�Xj , βXc(i))
CNFM(Xc�Xj , βXc

(i), G) def= RCOG(Xc�Xj , β
′′
Xc

(i))∧OPER(Xc�Xj , β
′′
Xc

(i))
∧G(Xc �Xj , β

′
Xc

(i)),
where βXc

(i) = β′Xc
(i)||β′′Xc

(i) (|| stands for concatenation).
SSATH(Xc �Xj , βXc(i)) def= G ∧ CNFM(Xc �Xj , βXc(i), G),

where G = SATH(Xc �Xj , βXc
(i))

MATH(Xc�Xj , βXc
(i)) def= SATH(Xc�Xj , βXc

(i))∧CNFM(Xc�Xj , βXc
(i), G),

where G = SATH(Xj �Xc, βXj (i))

The hierarchical relations between FLAGs that are valid (by definition) are
shown in Fig. 2. Identification, willingness and recognition do not have any time-
liness property. Operativeness and willingness do not require the knowledge of
the identity (or pseudo identity) of a peer entity. The goal confirmation can be
applied to any other goal, e.g., a confirmation on MATH may be regarded as a

stronger form of mutual authentication. Identification, operativeness, and single-
sided authentication are respectively comparable to aliveness, recent aliveness [8],
and strong entity authentication [12].

Extension to Post-Session Class

For the post-session class, the definition of security—the binding sequence—
remains the same. We extend the correctness requirements, by including a post-
session clause in the operational definitions of FLAGs, to meet the requirement
that authentication should only succeeds in the context of a session. Before
introducing the new clause, we first elaborate the notion of a session itself.

In our model, a session only refers to the interactive part of a distributed
computation, in which a number of parties interact with each other by passing
messages over unreliable channels. Whether the computation is secure if some
of the parties are dishonest [19], and whether the computation meets its func-
tional requirements, are the concerns that are beyond the scope of our notion of
(interactive) session5. Similarly, in the part of computation that is carried out
locally by a party, all components and communication between the components
are assumed to be trusted (cf. secure information flow.)

Next, we consider the specification of a session, so that it can be used in our
computational model. On the one hand, one may need to specify a session at the
level of primitive communication steps of interactive Turing machines. On the
other hand, specifying a session by the end result of a computation may suffice.
The right level of specification is certainly application dependent. We abstract
away from this decision by defining the computational interpretation of a session
in the following way.

Session: An ith session Ψi = f(τi, .) is a set of terms computed by a party
from the transcript of its interaction τi before the ith execution of an au-
thentication protocol, such that each Ψi is unique among all q sessions in the
network, i.e., {Ψi : 1 ≤ i ≤ q} is necessarily a qth order set.

Depending on the required level of granularity, Ψi may well consists of a
complete transcript of communication with the time-stamps (thus making each
session trivially unique), a hash of the transcript, or a binary value distinguishing
only between uncorrupted and corrupted sessions (modified by an adversary.)
For our purpose, all sessions are in the set {Ψi : 1 ≤ i ≤ q}. This set will always
be empty for session-less authentication.

Claim 1: An authentication protocol that achieves G is vulnerable to session
hijacking if G does not depend on the session.

proof : Assuming G is not a valid post-session FLAG, a generic attack is possi-
ble. Let X1 and X2 be the two honest parties and A be an adversary. Now,
A plays a man-in-middle role while executing Ψ1 with X1 and Ψ2 with X2.
At the end of these sessions, A simply authenticate itself to X1 and X2.

5 This is why a seamless interaction with an MPC protocol is possible in § 4.

Consequently, X1 and X2 conclude that the prior session took place with A.
Hence, A is able to hijack (and claim the credit of) Ψ1 and Ψ2 ut

To prevent session hijacking and similar problems, the distinction between
responsibility and credit [27] is important. To summarize, in some applications
a claimant of a session can be held responsible for the messages in the session,
e.g., to make payment for an order in the last example of § 2, or the session
may represent an access control policy that is to be enforced on the behalf
of the claimant. In the other applications, the claimant may expect credit for
the session, e.g., winning bid in an auction, monetary reward for the session
containing the solution to a puzzle, or an increase in the reputation score.

There is no incentive in hijacking a session if the hijacking only implies the
responsibility at a later stage, however, making some honest party responsible for
an adversary’s generated session can be a real threat. On the other hand, if the
claim on a session means some credit then certainly hijacking is well motivated.

Therefore, we further qualify the session computing function f(τi, .) in the
definition of a session: if a session implies some credit (possibly in combination
with responsibility) then we require that the inverse function τi = f−1(Ψi, .) is a
one-way function. There are several ways to meet this requirement, e.g., by em-
ploying a Diffie-Hellman type construction [1] or a nonce based commitment [3].
In the following, we assume that this requirement is always met. For a session
that only leads to the responsibility, there is no such requirement.
Now, we extend the operational definitions of FLAGs to express the requirement
of post-session authentication.

Post-Session Clause: G is a valid post-session FLAG if finding a pair of ses-
sions Ψi and Ψj is infeasible such that, in a given run of authentication
protocol, G can be validated in the run for both Ψi and Ψj .

Intuitively, if a party can derive a FLAG from its binding sequence after Ψi
but the same FLAG can not be validated independent of Ψi, then this FLAG is
a valid post-session FLAG for the party. To illustrate how the proposed exten-
sion works, let us once again consider the third example from § 2; the abstract
narrations of the protocol are as follows.

1. Interactive Session:
Xalice → Xbob : [ci : 1 ≤ i ≤ |K|/2] (Alice sends her set of challenges.)
Xbob → Xalice : [ci : |K|/2 < i ≤ |K|] (Bob sends his set of challenges.)

2. Computation of Session:
on Xbob : Ψbob = Kbob ← [ci : 1 ≤ i ≤ |K|] (Compute Bob’s version of key.)
on Xalice : Ψalice = Kalice ← [ci : 1 ≤ i ≤ |K|] (Compute Alice’s version of key.)

2. Authentication :
Xalice → Xbob : Nalice
Xbob → Xalice : Nbob, {Nalice, Nbob, Alice}Kbob

Xalice → Xbob : {Nbob, Nalice}Kalice

In this example, the authentication protocol (ISO/IEC 9798-2) can not suc-
ceed without the same session at both ends, i.e., the authentication succeeds
only if Alice’s key Kalice and Bob’s key Kbob are equal. When the same session
is used, Alice and Bob achieve a certain set of FLAGs; this set can be computed
using the operational definitions of FLAGs.

Consider the operativeness of Bob: OPER(Xalice�Xbob, βalice), where βalice =
[{Nalice, Nbob, Alice}Kbob

]. As per the operational definition, we need to con-
sider two instances of the binding sequence in different runs of the protocol:
βalice(0) = [{N0

alice, N
0
bob, Alice}Kbob

] and βalice(1) = [{N1
alice, N

1
bob, Alice}Kbob

].

Claim 2: Alice achieves a valid post-session FLAG for Bob:
OPER(Xalice �Xbob, [{Nalice, Nbob, Alice}Kbob

]).
proof : The two operativeness challenges on Xalice are C0 = βalice(0) and C1 =

βalice(1). On Xalice, we use λ = [Kalice, N
0
alice, N

1
alice] as the auxiliary input

for the operativeness distinguisherDoper. We select a random bit b and invoke
the distinguisher: b′ ← Doper(Cb, λ), where b′ is the distinguisher’s output.
The distinguisher construction is as follows.
Doper(Cb′ , λ):
(1) Decrypt Cb′ using λ[0] to compute {x, ..}.
(2) If λ[2] = x then return b′ = 1 else return b′ = 0.
As per the operational requirement, if b = b′ then our distinguisher has
done a good job. For a key of size s = |Kalice| and a nonce of size t =
|Nalice|, and assuming uniform distribution for the key and the nonce, an
upper bound on the probability of failure for the distinguisher (b 6= b′) is
p.2−s + p.2−t, where p is the number of protocol instances using the same
key. Clearly, for sufficiently large s and t, the upper bound is negligible.
Also, trivially, finding Ψbob = Kbob and Ψalice = Kalice, such that Kalice 6=
Kbob and {N0

alice, N
0
bob, Alice}Kbob

= {N0
alice, N

0
bob, Alice}Kalice

is infeasible.
Hence, Alice can achieve the operativeness of Bob by running the protocol.

ut

A similar, analysis can be done for Bob, which we leave out due to space
constraints. Also the identification and willingness goals are trivially achieved
because there are only two legitimate parties, e.g., for the identification case, the
distinguisher can simply return the name of a far-end party after the successful
decryption of the received messages.

About Security Analysis

As mentioned earlier, one advantage of the binding sequence based model is
that the correctness analysis (for FLAGs) and the security analysis (for the
binding sequence) are independent. In fact, the security analysis is no more than
verifying the validity of the binding sequence of an authentication protocol. Since
security analysis is not the main focus of this paper, we briefly discuss how the
validation of a binding sequence can be done in complexity theoretic models [5]
and in formal security models [24, 25].

For the former case, let us consider the binding sequence of Bob corresponding
to the last message he received: βXbob

= [{Nbob, Nalice}]. There are three different
ways in which this sequence can be modified: [{Nbob, N ′alice}], [{N ′bob, Nalice}] and
[{N ′bob, N ′alice}], where a primed term represents a modified message. Now, for
each of these modified sequence, we calculate an upper bound of accepting the
modified sequence by Bob. For a valid binding sequence these upper bounds
should represent a negligible probability. Generalizing this method results in a
security analysis that involves verifying 2|βXc | − 1 cases of modified sequences.
Interested readers are referred to the appendixes of our technical report [17].

In an automated tool based on symbolic models, such as OFMC [24] or
LYSA [25], one can easily verify the validity of a binding sequence by verifying
the authenticity of each message in the binding sequence. Of course, this is an
over-approximation of the actual requirements of the binding sequence, because
a binding sequence can be replayed. We are currently investigating how to accu-
rately specify the actual requirement that allows such a replay but forbids the
replay of the individual messages in a binding sequence. For now, we can rely
on an ad-hoc solution: ignore all those attack traces in which the whole binding
sequence is being replayed.

4 Plausibility Result: Computable Class of Problems

In the classic problem of multi party computation (MPC) [19], a set of parties
want to compute an arbitrary function, such that the computation preserves
certain security properties, e.g., the correctness of the result and the privacy
of the inputs. The set of MPC parties consists of both honest and dishonest
parties. Most of the work on secure MPC, however, assumes the availability of
authenticated communication channels between honest parties.

In reality, authenticated channels may not always available, and therefore it
is interesting to consider the MPC security problem without this assumption.
Clearly, if the channels are not authentic then an adversary can even discon-
nect the MPC parties and run the protocol with any one of them without the
possibility of being detected. Therefore, one needs some weak assumption to
achieve a useful security guarantee. For example, Barak et al. [10] introduce the
assumption of independent execution: roughly speaking, if an adversary plays
man-in-middle then he must engage in independent executions of a protocol
with each of the protocol parties.

The post-session authentication is another such assumption, but this is strong
enough that it suffices to realize any MPC functionality correctly, assuming that
there exists an MPC protocol that computes this functionality on authenticated
channels. Note that the privacy of the inputs may not be protected, but the
correctness of the output is guaranteed. The reader may wonder that if the
parties have the capability to authenticate each other after a session then why
not they do so at the start and establish an authentic channel instead, however,
this is not always possible; some of the possible factors are listed below.

– PKI may be off-line or only accessible for a short duration at regular inter-
vals. In this situation, immediate authentication is not always possible.

– The honest parties of MPC may not necessarily trust each other. There-
fore, their decision to reveal their identities should depend on the observed
behaviour in the session.

– The authentication may require a long time, e.g., in using physical authen-
tication or postal mail to deliver PIN codes. Therefore, instead of waiting,
parties may decide to start a session based on a general trust level of their
community.

Usually, the proof for a theoretical plausibility of MPC is based on the sim-
ulation paradigm [19], in which one shows the equivalence between an actual
model and an appropriately constructed ideal model. For our post-session au-
thentication problem, this means constructing an ideal model that is similar
to the standard authenticated channel model (Fauth [10]) except it reveals all
the inputs to an adversary; then, we need to show that the adversary gain is
negligible in the post-session authentication case.

Instead of the simulation based approach, we employ an indirect and simpler
method. We construct, which we call, the Tabular scheme that interacts with
an arbitrary MPC protocol in a black-box manner to achieve the correct result,
while running on unauthenticated channels. In this way, this scheme serves as a
constructive proof of the correct computation of any MPC protocol.

Tabular Scheme: Consider n parties that take part in an MPC protocol, using
unauthenticated channels. Each party Pi, where 1 ≤ i ≤ n, maintains two
tables: Tt and Tr, each having n rows6 . In Tt, the jth row, where 1 ≤ j ≤
n, represents the list of messages sent to Pj . Similarly, in Tr, the jth row
represents the list of messages received supposedly (as the connections are
not authentic) from Pj . When the MPC protocol terminates, we execute a
post-session authentication protocol between each Pi and Pj pair, such that
Pi authenticates Pj using the jth row of Tt as its session, while Pj participate
in the authentication using her ith row of Tr as a session.

Claim 3: Consider a protocol ΠMPC between n parties communicating over au-
thenticated channels to compute a probabilistic functionality FMPC within
m interactions. If the inputs of n parties are not private then parties can
also compute FMPC while communicating over unauthenticated channels and
using an n-party post-session authentication protocol.

proof : We augment each of the n parties of ΠMPC with our Tabular Scheme as
specified above and use SATH (see § 3) as the definition of authentication
in the scheme. For each party, the memory requirement of the tables is
|Tt| + |Tr| = 2 × m × n × |M |, where |M | is the maximum size of any
individual message in the protocol.
The authentication protocol in the Tabular Scheme succeeds between Pi and
Pj only if jth row of Tt (on Pi) and ith row of Pr (on Pj) are exactly same
and the two parties possess legitimate credentials. These two rows can be

6 Actually one needs n− 1 rows, but we use n to simplify the indexing.

considered as the session footprint for the communication from Pi to Pj . On
the other hand, if both of these rows are same then this guarantees that the
adversary has not modified any message in these rows.
Next, we rerun the authentication protocol of the Tabular scheme to achieve
SATH between every pair of the protocol parties, which requires running
n(n − 1) instances7 of two-party SATH protocol. If all these instances suc-
ceed then this guarantees that all parties agree on the messages that were
exchanged in the session and the adversary has not fabricated, modified or
deleted any message in the session. Hence, the output of the protocol ΠMPC

is necessarily correct, i.e., FMPC. ut

Clearly, the Tabular scheme interacts with ΠMPC in a black-box manner,
which implies that we can deploy an arbitrary MPC protocol given that the
protocol does not require input privacy. Also note that the overhead, in terms
of memory (2×n×m×|M | bits) and time (n2−n instances of authentication),
is polynomial in the size of a protocol.

We can optimize the Tabular scheme by using a hash function, i.e., instead of
using a complete row we may use the hash value of the row as the representation
of a session, which, in many cases, can be encoded as a single message in an
authentication protocol. Depending on the requirements of an MPC protocol,
the definition of authentication can be relaxed from SATH, e.g., if timeliness is
not important then the operativeness goal (OPER) is not required.

5 Discussion and Future Directions

One may argue that the additional requirements in pre-session or post-session
authentication are not the “real” authentication requirements. A good illustra-
tive example is of a two-party secure communication protocol, in which a secret
session key is computed to establish a secure channel between the parties. Here,
the confidentiality of the key and authentication of the parties appear to be
completely independent protocol goals.

This view, however, manifests its limitation as soon as we consider the goal of
establishing two parallel secure channels between same two parties. Now, there
are two authentication results and two secret session keys, and the associations
between the keys (or the subsequent sessions) and the authentication results
are indeed essential requirements. Such a situation is even more dangerous for
post-session authentication, e.g., it will allow a session hijacking attack, in which
an honest party does all the hard work in a session and then a dishonest party
simply claims the ownership of the session at the end.8

The reader may have realized that not all the problems that are solvable us-
ing pre-session authentication can be solved using post-session authentication,
partially because post-session authentication can not guarantee the confidential-
ity of the inputs. Another factor is that if the session involves some access to a
7 The number of permutation pairs on a set of order n
8 The same attack is also described in the auction protocol [3].

protected resource, which only an authorized entity is allowed to do, then post-
session authentication can not help, because an adversary can easily pretend to
be an authorized party. Nevertheless, in many applications the effect of a ses-
sion on a system can be reversed, e.g., cancelling the purchasing order (if the
customer’s credit card payment is later denied by the issuing bank) and redoing
an auction.

The separation of correctness and security requirements as detailed in our
earlier work [9] is not affected with the post-session extension. In particular, the
validity of a binding sequence is the only required security property; all authenti-
cation properties of practical significance (FLAGs) can be derived from the bind-
ing sequence. We believe that the job of a security analyst (human/automated
tool) would be less strenuous if security requirements are fewer and pure, con-
sidering the security analysis is an undecidable problem in general.

For the future work, an immediate challenge is to find a general method that
can be used to specify the session computing function from a given set of appli-
cation requirements. In this regard, the notions of credit and responsibility are
critical and somehow needs to be specified formally. The notion of a session Ψi
can be interpreted in a probabilistic sense to obtain precise security bounds espe-
cially when Ψi is a digest of a complete transcript. This will imply that the unique
identification of sessions using their Ψi occurs with a certain (high) probability.
More research on these issues will help to integrate post-session authentication
into existing tools that automatically analyse authentication protocols or provide
a provable security assurance.

6 Related Work on Authentication Models

We only cover some highlights in the area that concerns with the modelling
aspect of authentication. Although the current models do not consider the post-
session scenario, we believe they can be extended for this purpose.

Probably, the first attempt to model authentication is in BAN logic [4], which
formalizes the authentication goals in terms of beliefs held by peer entities,
however, this line of work has some limitations [13]. In cryptographic models,
authentication in terms of matching conversation [5] is among the first, but still
popular, approach. This requirement is too strong [12], but it can be extended
to include a session to capture the post-session requirements.

Gollmann [7] presents an in-depth analysis of authentication. Roscoe [15]
distinguishes between intensional and extensional style of authentication goals.
Boyd and Mathuria [12] consider intensional specifications to be restrictive, and
Gollman [11] even discourages such formal specifications. The underlying cause
of this puzzle is that it is often not clear how an intensional property is related
to an extensional property. In our model, this problem is resolved as FLAGs
(extensional goals) are derived from the binding sequence (an intensional prop-
erty).

Some other proposals for authentication goals [6, 18, 2] are not satisfactory
[12]. Lowe [8] identifies four requirements of authentication with varying strength

and formalize them using process algebra. Boyd and Mathuria [12] provide only
two goals related to entity authentication. Cremer [14] introduces an hierarchy
of authentication levels. In many formal methods of security analysis [25, 24], the
focus is on message authentication. Nevertheless, these tools enable an automatic
validation of binding sequences, as indicated in § 3.

Gorrieri et al. [28] formalize the informal notions of credit and responsibil-
ity [27], which can be extended to formalize the session computation function.
Squicciarini et al. [26] propose an authentication framework that supports an au-
thentication decision based on the previous events that occurred in the system.
Such a framework can be used to support post-authentication, e.g., by defining
an authentication policy that cryptographically connects a session to the success
of a subsequent authentication event.

7 Conclusion

In this paper, we specify the requirements of post-session authentication and
show that it can be used to solve any MPC problem that is solvable on authen-
ticated channels and does not require the input privacy. Authenticating after a
session, if possible, indeed offers some advantages, such as anonymity and less
dependency on the availability of PKI. When the choice is available between
post-session and pre-session authentication, relative pros and cons are normally
application dependent. Although the use of post-session authentication is cur-
rently less common, we hope our work will be useful in recognizing its advantages,
as well as its limitations, and building more innovative secure systems.

References

1. Zimmermann, P.R.: Pgpfone: Pretty good privacy phone owner’s manual, version
1.0(5), http://web.mit.edu/network/pgpfone/manual/#PGP000057, 1996

2. ISO standard: Entity Authentication Mechanisms; Part 1: General Model.
ISO/IEC 9798-1, Second Edition, September 1991

3. Stajano, F., Anderson, R.: The Cocaine Auction Protocol: On the Power of Anony-
mous Broadcast. Information Hiding, pp.434–447, pub. Springer, 2000

4. Burrows, M. and Abadi, M. and Needham, R.M.: A logic of Authentication. DEC
System Research Center, Report 39, revised Feb 22, 1990

5. Bellare, M. and Rogaway, P.: Entity authentication and key distribution.
Crypto’93, pp.232–249, Springer-Verlag LNCS, Vol 773, 1993

6. Syverson, P.F. and Van Oorschot, P.C.: On Unifying Some Cryptographic Protocol
Logics. In Proc.: S&P, pub. IEEE, ISSN:1063-7109, 1994

7. Gollmann D.: What do we mean by entity authentication?. In Proc.: Symposium
on Security and Privacy, pub. IEEE, pp.46–54, 1996

8. Lowe, G.: A Hierarchy of Authentication Specifications. In Proc.: 10th Computer
Security Foundations Workshop (CSFW ’97), 1997

9. Ahmed, N. and Jensen, C.D.: Demarcation of Security in Authentication Protocols.
In Proc.: 1st SysSec Workshop, pub. IEEE Computer Society, pp. 43–50, 2011

10. Barak, B., Canetti, R., Lindell, Y., Pass, R., and Rabin, T.: Secure computation
without authentication. In: CRYPTO, pp.361–377, pub. Springer, 2005

11. Gollmann, D.: Authentication—myths and misconception. Cryptography and
Computational Number Theory, pub. Birkhauser, pp.203–225, 2001

12. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. pub.
Springer, ISBN: 978-3-540-43107-7, 2003

13. Kurkowski, M., Srebrny, M.: A Quantifier-free First-order Knowledge Logic of Au-
thentication. Fundamenta Informaticae 72(1-3), IOS, ISSN 1875-8681, 2006

14. Cremers, C.J.F.: Scyther: Semantics and Verification of Security Protocols. IPA
Dissertation Series 2006-20, Eindhoven, 2006

15. Roscoe, A.W.: Intensional specifications of security protocols. In Proc.: Computer
Security Foundations Workshop, pub. IEEE, pp.28–38, 1996

16. Ahmed, N. and Jensen, C.D.: Definition of Entity Authentication. In Proc.: 2nd
IWSCN, pub. IEEE, pp.1–7, 2010

17. Ahmed, N. and Jensen, C.D.: Adaptable authentication model. In Proc.: ESSoS,
pub. Springer, pp.234–247, (Technical Report: IMM-TR-2010-17), 2011

18. Menezes, A.J. and Van Oorschot, P.C. and Vanstone, S.A.: Handbook of Applied
Cryptography. CRC Press, 1997

19. Goldreich, O.: Foundations of cryptography: Basic applications. Cambridge Uni-
versity Press, 2004

20. Juels, A.: RFID security and privacy: A research survey. In J.: Selected Areas in
Communications 24(2), pub. IEEE, pp.381–394, 2006

21. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory, 22(6), pp.644–654, 1976

22. Amazon UK web store, http://www.amazon.co.uk
23. Lucks, S., Zenner, E., Weimerskirch, A., Westhoff, D.: Concrete security for entity

recognition: The Jane Doe protocol. IndoCrypt, pp.158–171, pub. Springer, 2008
24. Basin, D., Mödersheim, S., and Vigano, L.: OFMC: A symbolic model checker for

security protocols. In International J. of Information Security, pp.181–208, 2005
25. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., and Nielson, H.R.: Static vali-

dation of security protocols. Journal of Computer Security, pp.347–390, 2005
26. Squicciarini, A.C., Bhargav-Spantzel, A., Bertino, E., Czeksis, A.B.: Auth-SL: a

system for the specification and enforcement of quality-based authentication poli-
cies. In Proc.: ICICS’07, pp.386–397, 2007

27. Abadi, M.: Two facets of authentication. In Proc.: Computer Security Foundations
Workshop, pub. IEEE, pp.27–32, 1998

28. Gorrieri, R., Martinelli, F. and Petrocchi, M.: A formalization of credit and re-
sponsibility within the gndc schema. ENTCS, vol. 157(3), pub. Elsevier, pp.61–78,
2006

