
A Model for Adaptive Monitoring
Con�gurations

H. Abdu, H. Lut�yya, M. Bauer
Department of Computer Science
The University of Western Ontario

London, Ontario, Canada
fhasina, hanan, bauerg@csd.uwo.ca

Abstract

With the increased availability and complexity of distributed systems comes a
greater need for solutions to assist in the management of distributed system
components. Despite the signi�cant contributions made towards the develop-
ment of management tools that monitor and control distributed systems, little
has been done to address issues such as the cost of management and how it can
adapt to the dynamic changes in user requirements as well as system resources.
We present an adaptive model, in which an initial optimal con�guration of

management agents is determined according to a set of user/system require-
ments. These agents can later be dynamically recon�gured to adapt to changes
in resource availability and user/system constraints, with minimal e�ect on
the behaviour of the managed system components. Algorithm, prototype, and
experimental results are presented.

Keywords

Distributed Systems Management, Monitoring Overhead, Management Agents,
Monitoring Directives

1. Introduction

With the increased availability and complexity of distributed systems comes a
greater need for solutions to assist in the management of system components
(e.g. resources, networks, application processes). The management environ-
ment needs to collect data about the existence and behaviour of services and
devices of many kinds. The data has to be kept for analysis based on di�erent
viewpoints, such as the performance of a particular service, or the availability
of a set of services, and for analysis over di�erent time scales. The management
system also has to provide automatic reactions of various kinds to maintain
services and service quality. The collection and control functions are performed
by entities referred to as management agents. Agents communicate with
managed objects to collect information relevant for management.
Large computer systems are expected to have a long lifetime. The services

it is expected to perform will evolve as the needs of users evolve. This means
that a large system cannot be assumed to remain static for its operational

(c) 1999 IFIP

lifetime. Operational changes, such as physical/logical location, component
degradation, system re-dimensioning etc., need to be catered for. This, in turn,
implies that management needs will change. Thus, the set of agents being used
need to be dynamic to accommodate the changes. Even without changes to the
system, management requirements may change as a function of changes in user
expectations of the behaviour of the system.
While signi�cant contributions have been made towards the development of

management tools that monitor and control distributed system components,
little has been done to address issues such as the cost of management and how
it can adapt to the dynamic changes in user requirements as well as system
resources. Current research examines how to facilitate agent recon�guration.
For example, management by delegation ([1]) allows tasks to be speci�ed by
packing into a program a set of commands and sending this to the appropriate
agent. This is a precursor towards the work in code mobility which has been
raised mainly by a new family of programming languages, usually referred to
as mobile code languages. This allows a client to pass code to a server to
be executed on the machine that the server is on ([2, 3]). However, little of
the current research examines this problem from the following view: Agents
consume the same resources used by managed objects. Thus, an overhead in
the managed system is unavoidable. The question is the following: Can it be
minimized?
Our work focusses on the problem of minimizing overhead due to monitoring.

Monitoring involves the collection and analysis of information concerning the
behaviour of managed objects. We refer to the speci�cation of the set of at-
tributes and operations, representing the data obtained from managed objects,
and the analysis executed on this information, asmonitoring directives. Our
de�nition of monitoring directives include synchronous polling done by man-
agement applications, as well as asynchronous events sent by managed objects
to the management application.
By specifying data and operations, directives determine the type of agents to

be allocated (i.e. agents can collect di�erent types of data, can execute di�erent
operations, run under di�erent protocols, etc.). There are, however, questions
such as: How many agents are to be allocated? Where should they be started?
Which agents collect data from which managed objects? Will the operations be
executed centrally by a single agent, or will they be distributed among various
agents? In the latter case, how will the various agents communicate? Is there
any speci�c topology to be followed? Will there be enough resources to allocate
all these agents? If so, how should the resources be distributed? Is there any
speci�c resource whose usage should be minimized? These and other constraints
are used to model an `arrangement' of agents and managed objects which we
refer to as monitoring con�guration. An e�cient monitoring con�guration,
that satis�es all user/system requirements (referred to as the optimal con�gu-
ration), is the key to minimize the cost of monitoring, by e�ciently allocating
resources from the monitored distributed system.
We propose a model to optimize the monitoring of distributed systems, by

determining the optimal con�guration that minimizes monitoring overhead ac-
cording to a set of user/system requirements. The optimal con�guration can
further be modi�ed as changes occur in the system, with minimal overhead on
the monitored system.
The rest of this paper is organized as follows: Section 2 describes our model.

Section 3 illustrates the implementation of the model. Section 4 describes our
prototype. Validation of the model through experiments is described in Section
5. Summary and concluding remarks are discussed in Section 6.

(c) 1999 IFIP

2. Model

Optimizing monitoring involves minimizing overhead, based on a set of con-
straints. The monitoring overhead of a set of agents is reected by the con-
sumption of resources such as CPU, memory and network tra�c (referred to as
overhead metrics).
In this section, we de�ne a monitoring con�guration as a directed graph,

with costs associated with its nodes and edges. These costs are a measure of
di�erent overhead metrics. This motivates the formulation of an Integer Linear
Programming (ILP) [4] model, in which the variables are nodes and edges of
the monitoring con�guration graph, the constraints are user and system require-
ments, and the objective function coe�cients are the cost of overhead metrics.

2.1 De�nitions

De�nition 2.1.1. Amonitoring con�guration is a directed graphMC = (V;E)
where V = fv1; v2; : : : ; vng represents the set of nodes, and E represents the
data ow between nodes in V . There is an outgoing edge from node vi to node
vj , represented by ei;j = (vi; vj), if and only if vi requests information from vj,
or vj asynchronously sends data to vi. For example, if vi is an agent collecting
information from a managed object represented by node vj , then there is an
outgoing edge, ei;j, from vi to vj . Similarly, if vj is a process that noti�es vi
that it has timed out too many times, then there is an edge ei;j from vi to vj . 2

The nodes of a con�guration graph represent management agents and man-
aged objects. Agents can be of two types: collector and analysis. Collec-
tor agents collect information from managed objects and transmit the data to
analysis agents, responsible for performing analysis operations on the collected
information. Operations can be executed by a single analysis agent, or can be
distributed among a set of communicating analysis agents, depending on the
de�ned constraints. Figure 1 illustrates possible monitoring con�gurations for
a sample directive (for purpose of illustration, we use a simple example). The
directive speci�es an average operation on the memory usage collected from six
managed objects. In Figure 1(a) all the data is collected and analyzed by a
single agent, whereas, in (b), data is collected by six di�erent collector agents,
and the analysis is distributed among di�erent analysis agents.

m1
m1

m2
m2

m3
m3

m4
m4

m5
m5

m6
m6

m1 m2 m3 m4 m5 m6

m12 m1m2

m34 m3 m4

m56 m5 m6

m12 m34 m56

(a)

p2 p3p1 p5p4 p6

(b)

- Managed Object- Agent

p2p1 p5p4 p6p3

avg(,)

= avg()

= avg()

=avg()

avg()

Figure 1: Sample monitoring con�gurations

The cost associated with a con�guration graph is the sum of the costs associated
with its nodes and edges.

(c) 1999 IFIP

De�nition 2.1.2. The cost of a monitoring con�guration MC is de�ned as
follows:

cost(MC) =
P

vi2V
cost(vi) +

P
ei;j2E

cost(ei;j) (1) 2

The costs associated with the nodes and edges of a graph are de�ned as follows:

De�nition 2.1.3. The cost of a node vi is de�ned as cost(vi) = c1(vi)+c2(vi)+
: : :+ cn(vi), where c1; c2; : : : ; cn are overhead metrics, such as CPU (number of
processes in queue), memory (amount of memory in use by a process while the
process is running) and response time (time between an operation invocation
made to a process, and the completion of that operation), and depend on the
type of agents and managed objects being represented, the rate in which data
is being collected, and the type of analysis being done. 2

De�nition 2.1.4. The cost of an edge ei;j = (vi; vj) is de�ned as c(ei;j)
which represents the network tra�c between nodes vi and vj . Network tra�c
is generated only between nodes located in di�erent hosts, in which case it is
measured by the number of packets transmitted during monitoring. This tra�c
depends on factors such as the directive being evaluated (e.g. polling frequency,
size of the collected information type, sampling period, etc.), the location of
nodes, and the type of agents involved (i.e. agents di�er in protocols they use:
some are connection-oriented and others are connection-less, thus di�ering in
the generated network tra�c).
We de�ne the cost of an edge ei;j in function of the number of bytes required

to send one packet of data. This value will depend on factors such as the pro-
tocol used by managed objects and agents. For example, CMIP agents require
the exchange of more control bytes compared to SNMP agents. If n is the size
of the attribute being collected, and c is the number of control bytes required
for sending a packet through an edge, the total number of bytes required for
each time data is sent is a function of (c+ n). 2

There is a clear trade-o� between the di�erent costs de�ned above. For
example, having multiple agents and managed objects allocated in one host
reduce network tra�c. However, the memory usage and CPU load on that
host would increase. Thus we specify a subset of the costs to be minimized
that, along with other user/system constraints, is included in Req, the set of
user/system requirements to be satis�ed when optimizing the monitoring of a
distributed system. Examples of requirements include the following:

� Resource constraints: specify what resource is to be minimized (e.g. net-
work tra�c, response time);

� Topology constraints: specify preferred topology of agents (e.g. central-
ized, binary-tree con�guration, etc.);

� Con�guration constraints: specify preferences on the number and location
of agents (e.g. only two agents per host, collector agents may only run on
host spud.csd.uwo.ca);

� Directive constraints: specify the directives to be evaluated (e.g. at-
tributes, operations, polling frequency, etc.).

We can now de�ne the problem of optimizing monitoring as follows:

(c) 1999 IFIP

De�nition 2.1.5. Monitoring optimization consists of determining a con�gu-
ration MC of agents and managed objects that satis�es a set of user/system
requirements (Req), given a set of monitoring directives (D), managed objects
(M), and management agents (A); and that can be recon�gured upon changes
in Req, with minimal e�ect on M . 2

2.2 Modelling Adaptiveness

In this section, we model the monitoring optimization problem as a 0-1 Integer
Linear Programming (ILP) [4] problem, focussing on enabling recon�gurable
monitoring con�gurations. Figure 2 illustrates the structure that will be used
by our model.

xy11

xy22

mo1

mo2

mom

.

.

.
.

.

.

. . .

. . .

.

.

.

.

.

.

.

.

.

. . .

moi

ac1 acn

aan
aak

aa1

aa2

aan

.

.

.

ac2 acj

.

.

.

.
.

.

.

.

.

aa2

aa1

managed objects

zx11
zx22

zxnn

zz11

zz12

zznn

zz22

x

 y

z

z

analysis
agents

collector
agents

xy21 xyn1

xy12 xyn2

xy1m xy2m xynm

zx21 zxn1
zx12

zz21

zzn1

zz1n

zz2n

zx1n zx2n

Figure 2: Structuring the optimization problem as an ILP problem

Collector agents are represented by x, managed objects by y, and analysis
agents by z. Collector agents collect information from managed objects. In-
formation is then passed to one or more analysis agents, that execute analysis
operations on the collected data. These interactions are represented by the
variables xy, zx and zz.

A variable xyij in Figure 2 represents the communication between the jth

managed object and the ith collector agent. A variable zxij represents the

communication between the ith analysis agent and the jth collector agent, and

a variable zzij represents the information passed from the ith analysis agent to

the jth analysis agent. These variables can be either 0 or 1, representing the
absence or existence of an edge between corresponding nodes [5].
Finding the optimal monitoring con�guration consists of determining the

values of the variables xy, zx and zz (the edges of the monitoring con�guration)
in such a way that the requirements speci�ed in Req are satis�ed, and the
associated cost of the con�guration is minimal. When formulating this problem
as an ILP problem, we have:

minimize f = CX =
P

ij cyijxyij +
P

ij cxijzxij +
P

ij czijzzij (2)

subject to AX � B, X = f0; 1g

(c) 1999 IFIP

Where X is the n-dimensional vector of variables, representing the xy, zx
and zz variables. C is the n-dimensional vector representing the cost of the n
variables in X, according to our de�nition of monitoring con�guration costs (in
this example, the values in C represent the network tra�c cost between nodes).
A is the m � n matrix and B is the m-dimensional vector of constraint coe�-
cients, representing the m constraints obtained by translating the requirements
in Req into mathematical equations (examples in Section 4.).

Managed

Req

optimal MCX

Managed

Req

Reconfiguration

t = t

t > t
0

0

optimization

ILP

Initial

Directives (D)

Directives (D)

Agents (A)

Objects (M)

AX <= B

subj to
min f = CX

overhead
cost

A, B

C

XA x A,
A x M

Agents (A)

Objects (M)

Figure 3: A model for adaptiveness

Figure 3 illustrates our model from an operational view. At time t = t0,
agents (A), managed objects (M), directives (D) and a set of requirements Req
are mapped into the ILP function coe�cients (C), variables (X), and constraint
matrices (A and B). The value of X that minimizes f , satisfying AX � B,
is determined, representing the edges of the optimal monitoring con�guration
MC.
If, at any time t > t0, agents, managed objects, directives or the optimization

constraints are modi�ed, MC is dynamically recon�gured. The new input to
the algorithm includes the existing optimal solution, thus saving computation.
Recon�guration is further explained in the next section.

3. Algorithm

We use a modi�ed version of the implicit enumeration algorithm [6] to imple-
ment our optimization problem. In this method, all solutions are enumerated
but the vast majority are enumerated implicitly. Only a few are explicitly enu-
merated.
In an n-variable 0,1 problem there will be 2n possible solutions, most of which

may be infeasible. Instead of generating all the 2n solutions and verifying the
feasibility of each one of them, the implicit method starts with one of the 2n

solutions. If there are constraints violated by this initial solution (constraints
in Ax � B), the algorithm selects a set of candidate variables that, if raised to
1, can bring about feasibility. A variable can be a candidate if it has a negative
coe�cient in matrix A (due to the `�' sign), and a cost c that, when added to
the current value of f will not increase it more than a speci�ed limit (the new
variable, when added to the solution, must not result in a value of f that is
greater than the current feasible solution). If there is more than one candidate,
the one with most negative coe�cient in A is chosen. The variable is added to
the current partial solution S, f is updated by adding the coe�cient of the new
variable, and the value of the variable is set to 1.
The above process is continued until a partial solution is fathomed, either

by feasibility or in-feasibility. `Fathoming' occurs once a partial solution that
cannot be completed in such a way as to avoid violating one or more of the

(c) 1999 IFIP

constraints is found. For example, in a 4 variable (x1; x2; x3; x4) problem, if the
combination (0, 0, 1, 0) is tested, and it is veri�ed that none of the constraints

can be satis�ed with x3 = 1, then all the 8 solutions (23) having x3 = 1 have
been implicitly enumerated and can be ignored, thus being fathomed. Similarly,
once we �nd a feasible completion of a partial solution we say that the partial
solution is fathomed because no other completion of it is more attractive than
that completion in which all other variables are equal to zero. In other words, all
combinations where the current variables in the solution are equal to one have
been implicitly fathomed. Thus, in a problem with 5 variables, if 2 variables

are set to 1 in the feasible solution, then 2(5�2) possible solution have been
implicitly fathomed.

Are there any

Begin

backtrack

return Z and

violated constraints?

End

optimal_X

Include new index

corresponding va-
in S and initialize

riable to 1, and up-
date objective

 function

yesyes
no

Is there a candidate
to make constraints

feasible?

All indexes in S
have been com-

plemented?

no yes

no

Figure 4: State machine for the implicit enumeration algorithm

Once a solution is fathomed (due to feasibility or in-feasibility), the algo-
rithm `backtracks'. Backtracking consists of fathoming the existing solution,
i.e. searching for a better solution, in which the last variable included in the
current partial solution (xi) is set to zero. This way all solutions are enumer-
ated, since the solutions in which xi is set to 1 were already fathomed before
backtracking.
The algorithm ends when a new feasible solution is found during a back-

tracking due to feasibility, or if no more variables can be set to zero during
backtracking. In the latter situation, the algorithm returns the last existing
feasible solution (Z). At any iteration of the algorithm, it is obvious by inspec-
tion of the current partial solution exactly how many and which solutions have
been implicitly enumerated so far. It is clear that every time fathoming occurs,

2n�1 solutions have been implicitly enumerated. Thus, an optimal solution can
be found in very few steps. Figure 4 illustrates the main steps of this algorithm.
We use the `backtracking' feature of the implicit enumeration method to in-

corporate the dynamic recon�guration capability into our model. For example,
if an initial optimal con�guration is determined at time t = t0, and, at time
t = tn, an agent has to be migrated to another location, the optimal con�gura-
tion vector (X) is reused in such a way that the backtracking is started on the
variables that correspond to the agent being migrated. This way, all the other
edges, that may not have to be modi�ed, do not have to be recomputed.

(c) 1999 IFIP

In other situations, the existing solution vector is modi�ed according to
changes occurred in the system, in order to provide an initial feasible solution
closer to optimality. For example, if new managed objects are to be monitored,
the variables corresponding to the new edges are added to the model. Instead of
initializing them to zero, the algorithm initializes to 1 the edges between these
managed objects and one of the existing agents. The ability to utilize existing
feasible solutions is one of the main advantages of this algorithm.
There are no speci�c numbers to represent the amount of computation saved

during recon�guration. This depends on the type of changes occurred in Req,
and on the existing monitoring con�guration. For example, the amount of
computation saved during recon�guration due to changes in con�guration con-
straints (e.g. location of agents and managed objects) is greater than what is
saved when changing topology constraints.

4. Prototype

Our prototype consists of an implementation of the algorithm and a Java appli-
cation that enables users to specify the number and location of managed objects
and agents (see Figure 5). Users can also set constraints to the problem, by
selecting requirements, which are mapped to mathematical constraints. For
example, if in Figure 5 the user selects 10 managed objects, 3 collector agents
and 3 analysis agents in di�erent locations, we have the structure showed in
Figure 6 (the names beside managed objects and agents indicate their location
speci�ed by the user), with a total of 48 ((10� 3)+ (3� 3)+ (3� 3)) variables,

resulting in 248 di�erent monitoring con�gurations.
The user can now select the constraints to the problem. For example, in Fig-

ure 7, the user is given the option to select the overhead metric to be minimized.
The selected constraints are mapped to equations. For example, a resource con-
straint that minimizes network tra�c results in having the objective function
coe�cients representing the network tra�c between nodes. Topological con-
straint opting for a hierarchical structure (i.e. only one incoming edge per
node) would result in the following constraints:

� xy11 + xy21 + xy31 � 1 : not more than one edge from collector agents to
mo1

� : : :

� xy110 + xy210 + xy310 � 1 : not more than one edge from collector agents
to mo10

� zx11 + zx12 + zx13 � 1: not more than one edge from analysis agents to
ac1

� zx21 + zx22 + zx23 � 1: not more than one edge from analysis agents to
ac2

� zx31 + zx32 + zx33 � 1: not more than one edge from analysis agents to
ac3

� zz11 + zz12 + zz13 � 1: not more than one edge from analysis agents to
aa1

� zz21 + zz22 + zz23 � 1: not more than one edge from analysis agents to
aa2

(c) 1999 IFIP

� zz31 + zz32 + zz33 � 1: not more than one edge from analysis agents to
aa3.

Figure 5: Choosing location of managed objects

All constraints are mapped into matrix A and vector B, which are used by
the ILP algorithm to �nd the optimal con�guration (Figure 8).

ac1aa1

mo1 (spud)
mo2 (spud)

(spud) (kimchi)ac3(dada)ac2

aa2

(spud)

(dada)

(kimchi)

aa2

aa1

aa3

(spud)

(kimchi)

(dada)
mo9 (kimchi)
mo8 (kimchi)

mo7 (dada)
mo6 (dada)

mo5 (dada)

mo4 (spud)

mo3 (spud)

mo10 (kimchi)

z

z

x

 y

xy11
xy22

xy33

zx11

zx22

zx33

zz22

xy12

xy13

xy14

xy15

xy16
xy17

xy18

xy19

xy1 10

xy21

xy23

xy24

xy25

xy26
xy27

xy28

xy29

xy2 10

xy31
xy32

xy34

xy35

xy36
xy37

xy38

xy39

x y3 10

zx12

zx13

zx21

zx23

zx31

zx32

aa3

zz11

zz12

zz13

zz21

zz23

zz31

zz32

zz33

Figure 6: A sample input for the optimization algorithm

The user can now dynamically change the input to the algorithm. Figure 9
illustrates some options.
The next section describes some of the experiments performed to validate our

model, along with results that compare the iterations taken by the algorithm
to determine the initial con�guration and to perform recon�guration.

5. Experiment

We have a set of experiments to test the e�ectiveness of the formulated problem
and algorithm. We compared the overhead of our `optimal' con�guration with
the overhead of other possible con�gurations, in terms of the resource being
minimized. We will present the results of one of our experiments.
Our monitoring system is based on the OSI Management Framework, where

the CMIP protocol is used for agent-to-agent communications. We have two

(c) 1999 IFIP

Figure 7: Resource constraints

Figure 8: The optimal con�guration

Figure 9: Changing requirements

(c) 1999 IFIP

types of agents: a DCE Collector Agent and Statistics Agent. The DCE Agent
is used to collect information from DCE application processes (we use a sample
OSF DCE based distributed Linear Programming application). It has a CMIP
Interface to communicate with the OSI environment and a DCE Knowledge
Source that enables the use of DCE RPC to communicate with DCE appli-
cation processes. The Statistics Agent analyzes the data collected by DCE
agents. Currently, statistics agents support four operations: max, min, avg,
and total. Agents and managed objects (DCE application processes) can run
in three RS=6000 machines (dada, kimchi and spud). These are con�guration
constraints set by the system. These agents, managed objects and the set of
directives and user/system requirements were the input to the ILP model. The
directives and requirements are as follows:

� Directives:

{ Average number of messages sent by all managed objects;

{ Sum of the process identi�er of all managed objects;

� Requirements:

{ Resource constraint: minimize network tra�c;

{ Con�guration constraint: one collector and one analysis agent per
host;

{ Topology constraint: every node has a maximum of one incoming
edge;

{ Directive

� attributes: number of messages, PID
� operations: average and total.

The directives were deliberately kept simple for illustration purpose. The
resource constraint determines the costs being minimized. In this example, the
coe�cients of the objective function (f = CX) represent the network tra�c
between agents, and between an agent and a managed object. This coe�cients
were determined based on the agent and managed object frameworks (e.g. OSI,
DCE).
We compared the network tra�c generated by the `optimal' con�guration

with the network tra�c generated by three other con�gurations: single agent,
`expensive', and binary con�guration. The comparison was repeated for di�er-
ent number of managed objects (i.e. 2; 4; 6; 8 and 10), resulting in 20 di�erent
monitoring con�gurations. In the single agent con�guration, one centralized
agent collects information from all the managed objects. In the `expensive'
con�guration, all the edges in the graph are between agents and managed ob-
jects in di�erent hosts. The binary con�guration has the feature of limiting the
number of outgoing edges from an analysis agent to a maximum of two.
For example, the 4 con�gurations for 10 managed objects are illustrated in

Figure 10. The main di�erence between (b) and (d) is that, in (d), the managed
objects located in a given host send their information to a collector agent located
in a remote host, as opposed to an agent in the same host (as in (b)).
The network tra�c produced by hosts was measured using the UNIX net-

stats utility. The comparison was done using the number of packets remotely
transmitted during monitoring. Results are shown in Figure 11.
The graph also shows that the network tra�c was a�ected by simply switching

the location of agents from the `optimal' con�guration in Figure 10(b) to the
`expensive' con�guration in (c).

(c) 1999 IFIP

k sp d

sp k

ddsp sp sp sp

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

k

sp k

dd

k

d

ksp

k

dd

d

sp sp sp sp k k k

sp sp sp sp k k k

k k k

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

- Statistics Management Agent- DCE Management Agent- Managed Application Process

Kimchi Spud - Dada

d

sp

d

dsp

sp spsp sp k k k d d

 d

d

d sp

d

 d
d

 (a) ‘‘single agent’’

(c) ‘‘binary’’ (d)‘‘expensive’’

(b) ‘‘optimal’’

Figure 10: Di�erent con�gurations with ten managed objects

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Factor Contribution

Number of
managed objects

- 32.1%

Monitoring
Configuration

- 49.7%

Combination
of both factors

- 15%

Errors
(and system
 specific factors)

- 3%

mo

2

4
6
8
10
12
14
16
18
20
22
24
26
28

8 102 4 6

optimal
expensive

binary
single agent #pck

(K)

(a) (b)

Figure 11: Network tra�c generated by monitoring

(c) 1999 IFIP

The measured network tra�c was not only due to monitoring, but also due
to the monitored application itself, and other activities in the system. To
verify the actual contribution of the monitoring con�gurations to the monitoring
overhead, we performed a factorial analysis on the data. The two main factors
were: number of managed objects and monitoring con�guration. The results
are shown in 11(b). The percentage of errors represents uctuations in network
tra�c, and contribution from other activities in the system. Due to the dynamic
nature of distributed systems, there are constant uctuations in network tra�c
values and other resources, resulting in outliers that a�ect measurements.
We also observed a trade-o� between network tra�c and other resource usage,

such as the amount of memory used by agents. This con�rms the fact that
monitoring overhead involves di�erent metrics, and the choice of what resource
is to be minimized is a trade-o� decision that depends on user and system
constraints.
In the second part of the experiment, we veri�ed the e�ciency of the al-

gorithm, in terms of recon�guration. This was done by changing constraints
dynamically, and comparing the computation required to �nd the new opti-
mal solution, with the computation required for the optimization done `from
scratch', i.e. without using the existing optimal solution. For a given number
of variables, after the initial optimal con�guration was determined, recon�gu-
ration was repeated by modifying one constraint at a time. An average of the
computation saved for each recon�guration was taken, representing the percent-
age of computation saved by recon�guration, for a given number of variables.
This result is shown in Figure 12.

70%15

#variables %saved

53%

40%

50%

80%

80%

19

25

41

56

111

Figure 12: E�ciency of recon�guration

6. Concluding Remarks

We motivated the need of an adaptive model in which management agents
and managed objects can be recon�gured according to dynamic changes in
management requirements, user/system constraints and resource availability,
in such a way that resources are e�ciently utilized.
We presented an algorithm that determines an optimal con�guration for a

given set of agents, managed objects, directives and user requirements. The al-
gorithm also determines new con�gurations according to changes in user/system
constraints. This recon�guration is done using the existing optimal solution,
thus reducing computation. The algorithm is part of our optimization testbed,
which enables users to specify constraints to the optimization algorithm, such
as the resources to be minimized, and the type of con�guration to be selected.
The algorithm and our assumptions on the e�ects of monitoring were con�rmed
through experiments.

(c) 1999 IFIP

We believe that this work is an important contribution towards creating adap-
tive monitoring systems, with minimal cost on the monitored system. A similar
approach can be found in [7], where agents are dynamically recon�gured ac-
cording to changes that may occur in the system. The recon�guration is done
according to a cost function that determines the network tra�c generated by
agents. The main di�erence, however, is that [7] focusses on a framework based
on mobile agents, thus not applicable to other types of monitoring systems, and
with drawbacks such as security.
Despite the positive results, there are important points to be analyzed, and

that are part of our future research. These include:

� How accurate are the cost functions assigned to overhead metrics? Are
there any e�cient techniques that can be used to assign these costs, con-
sidering features such as protocol and agent architecture, that very from
system to system?

� What is the cost of optimization? How expensive is dynamic recon�gura-
tion? In what systems would this method be more applicable?

� How would recon�guration be done in the case of multiple directives?

� How would this solution be applied to larger systems? Currently, our work
has been applied to relatively small systems. We will examine larger sys-
tems where constraints include organizational boundaries or technological
constraints in the model.

References

[1] G. Goldszmidt and Y. Yemini. Distributed Management by Delegation. 15th
International Conference on Distributed Computing, 1995.

[2] M. J. Williams and A. T. Bendiab. A Toolset for Architecture Independent,
Recon�gurable, Multi-Agent Systems. First International Workshop, MA
'97 - Lecture Notes in Computer Science, pages 210{221, 1997.

[3] M. Baldi, S. Gai, and G. P. Picco. Exploiting Code Mobility in Decentralized
and Flexible Network Management. First International Workshop, MA '97
- Lecture Notes in Computer Science, pages 12{26, 1997.

[4] D. G. Luenberger. Linear and Nonlinear Programming. Addison Wesley,
1984.

[5] H. Abdu, H. Lut�yya, and M. Bauer. A Testbed for Optimizing the Moni-
toring of Distributed Systems. To appear in Proceedings of PDCS'98, 1998.

[6] D. R. Plane and C. McMillan. Discrete Optimization. Prentice-Hall Inc,
1971.

[7] A. Liotta, G. Knight, and G. Pavlou. Modelling Network and System Mon-
itoring Over the Internet with Mobile Agents. IEEE/IFIP Network Oper-
ations and Management Symposium Conference Proceedings, pages 303 {
312, 1998.

(c) 1999 IFIP

