
Multi-Management: application-centric
approach

Alex Aizman
Netro Corporation
3860 North First Street
San Jose, CA 95134
USA
e-mail: alexa@netro-corp.com
phone: (408) 216-1550
fax: (408) 216-1555

Abstract
The pace of evolution in communications and network management and the need to
provide new and emerging services gives rise to a whole range of “multi-
management” issues. This paper discusses some problems resulting from the lack of
compatibility between embedded application and management models. It discusses
the requirement to either upgrade existing management technology or support
multiple management models and protocols.

Part of the problem may be solved at the embedded software level. This paper
presents SNMP Application Framework (SAF), the product specifically tailored to
address SNMP-related issues. It shows how to decouple applications from manage-
ment and support both SNMP and CORBA-based management, and at the same time
preserve consistent application design.

Keywords
Embedded application, management agent, management information model, SNMP,
CORBA, multi-management.

1. Introduction

It is impossible to provide new and emerging end-user services, like Internet
telephony, video-on-demand and content-pushing, without being able to manage
heterogeneous networks. There is a direct connection between the explosive growth
of the Internet and the need for integrated management. At the same time it is not an
easy task to manage, for instance, an ATM network where two different
manufacturers supply equipment. The explanation for this is partly in the fact that
there are major differences between existing management standards and multi-vendor
technologies. There are fundamental differences in their design philosophy, in the
way management information is represented, and how managed objects are structured
and named [1].

(c) 1999 IFIP

2

Along with global connectivity, network devices acquire more computing power and
memory. Nowadays it becomes viable and often necessary to either interoperate with
a “foreign” management application, or to upgrade the management model, or to
make a transition from one network management technology to another that is more
sophisticated and up-to-date.

This paper is organized as follows. The first part discusses heterogeneous network
management problems which every telecommunication OEM faces to a lesser or
greater degree. A brief introduction to SNMP is included. It then presents SNMP
Application Framework (SAF) [2]. Using a simplified fault management scheme for
an example, the paper demonstrates how to implement SNMP tables for two
application classes with inheritance. Finally, the multi-management potential of the
approach is demonstrated using the example of dual SNMP and CORBA-based
management.

1.1 Multi-management problems

The management model is typically specified in a number of flat files: SNMP MIBs,
CMIP/GDMO MIBs, IDL files, etc. Some commonly used management alternatives
are depicted in Figure 1a).

CORBA
manager

Agent

SNMP
manager

CMIP
manager

Web-based
manager

SNMP MIBs

GDMO MIBs

IDL

HTML

Agent

A
pp

lic
at

io
n

M
o

de
l

 Manager 1

Manager 2

 MIBs
M

an
ag

em
en

t
M

od
el

 1

 MIBs

M
a

na
ge

m
en

t
M

od
el

 2

Figure 1: Multi-management: a) multiple management models (left)
 b) multiple management specifications (right)

From a manager’s perspective, the agent implements the specification. Even if there
is only one network management technology, it is often the case that several specifi-
cations describe the same managed entity (Figure 1b). One real-life problem that we
had to solve at Netro [3] was to support standard ATM (RFC 1695, [4]) and
proprietary Cisco MIBs, both of which model an ATM switch, but not quite in the
same way. On top of it, there was a Netro proprietary MIB with additional
parameters relevant to the point-to-multipoint topology of our system. Did we have to
provide 3 different implementations, and in addition correlate between them to
monitor and control one ATM switch? The answer is certainly “no.”

(c) 1999 IFIP

3

Generally speaking, specifications tend to be updated every so often, especially when
it concerns worldwide standards and cutting edge technology. SNMP MIBs are
revised on a regular basis. What happens when the MIB is outdated; when it is in-
complete or ambiguous [5]? When the ATM Forum (or other standards body) has its
own view, one that is not completely compliant with the IETF’s approach?

Not only multiple management protocols and models (i.e., multi-management per se)
but also the lack of compatibility between management and application models may
adversely impact embedded application development. Many agent implementations
incorrectly assume that “the information model used in the protocol is the only one
they can work with” [6].

1.2 Alternative approaches

In terms of inter-domain management or system maintenance over time, multi-
management might create a significant problem for device vendors, equipment
manufacturers and the companies that provide network management solutions.

Technically, the problem is addressed by providing additional layers of indirection
between the management application and the agent. Figure 2 shows two approaches:

Agent

A
pp

lic
at

io
n

M
od

el

 MIBs

M
an

ag
em

en
t

M
od

el

Other
Management

Model
...............
...............
..............

Agent

A
pp

lic
at

io
n

M
od

el

 MIBs

M
an

ag
em

en
t

M
od

el

MAP M
AP

SAF
Other

Management
Model

...............

...............
..............

M
AP

MAP

Figure 2: Mapping alternatives: a)MIBs ➪ ANY (left) b)application ➪ ANY (right)

One example of the MIBs to ANY approach is an implementation of dual SNMP and
CMIP support (see [1], where GDMO MIBs are translated to SNMP MIBs). Another
example is SNMP MIB into CORBA IDL conversion [8]. Commercial and non-
commercial MIB to HTML converters [9] provide another similar approach. Figure
2a) shows the mapping layer implementation that may require some “cooperation”
from the existing software but the overall impact is minimal. The drawback is, in my
opinion, that it inadvertently promotes an already implemented management model,
with all its restrictions and idiosyncrasies.

(c) 1999 IFIP

4

This paper takes an application-centric, or application to ANY approach (Figure 2b).
The initial motivation behind this work was to shield developers from the restrictions
and particularities of SNMP (i.e., by separating the SNMP tasks from the embedded
application). An application model might be specified in OMT diagrams, or UML
diagrams, or header files, but possibly (and preferably) not MIBs. The application
model, and not the MIBs, is the primary source of mapping.

2. SNMP: Simple Network Management Protocol

SNMP is widely known and used, extensively documented and described (see [5, 6,
7, 10]). SNMP is specified in a series of inter-related standards (for SNMP version 2
specification see [11]); it is widely deployed because of “its low impact and low
implementation cost in almost any network device” [6]. The SNMP model "is
designed only for protocol and agent efficiency” [6]. To implement an SNMP agent,
one usually follows the directions provided by the SNMP agent toolkit vendor and
implements access routines (sometimes also called “method routines”) to get and set
values of managed attributes (Figure 3).

SNMP
manager

SNMP
agent

Get/Set/GetNext/GetBulk(SNMPv2)

Trap/Inform(SNMPv2)

MIBs
iso(1).org(3)...

"abc"

iso(1).org(3)...

iso(1).org(3).dod(6).internet(1)...

SNMP request (OID (type, index), value)

iso(1).org(3)...

Application

.......

.......

.......

.......

.......

.......

123456
1.2.3.4

MA
instance

Figure 3: SNMP a) messaging (left) b) information model (right)

A managed object is a software abstraction of “any resource that an organization
wishes to monitor and/or control” [7]. Objects like hubs and switches, modems and
radios, network interfaces and connections encapsulate their properties and behavior,
form application relationships and type hierarchies. At the same time SNMP defines
management information as a collection of simple single- or multi-instance variables
(Figure 3b). Object technology is an indisputable predominant paradigm for
conceptualizing, building and deploying applications. With 32Mb of RAM and a
32bit CPU on the device, one can develop embedded applications using modern
object frameworks and off-the-shelf components.

3. SNMP Application Framework

An SNMP Application Framework (SAF) product was completed in October 1997
([2]). SAF is currently deployed in Netro P-MP (point-to-multipoint) wireless
systems ([3]). It serves as a middleware, providing access to management information
encapsulated inside application objects.

(c) 1999 IFIP

5

Agent implementation requires several skills, which in many cases means several
people. One person should understand protocol and management information models.
Another person codes the embedded system. A third person understands the
technology that is being managed. At Netro every developer responsible for a
managed component or service combines all these skills. SAF makes it possible and
easy, since development is essentially confined to its own application domain.

SAF combines a Perl-based MIB compiler, called a Managed Table GENerator
(MTGEN), and a C++ library. MTGEN produces an application layer that incorpo-
rates compile-time knowledge of MIB table schemas and indexes, variable types and
access modifiers, default values and ranges, textual conventions and traps.
Additionally, to support features that are insufficiently covered by SNMP, like object
inheritance and object creation [5], MTGEN processes commented keywords and
generates “aliases” (see section 3.4) and “object factories”.

There is a naming convention between SAF and the application. The MIB variable
name (by default), or its logical substitution specified in the MIB, must be used to
construct instances of variables.

3.1 SAF terms

To eliminate ambiguity of the term “managed object” from here on, MIB variables
are called Managed Attributes (MAs). Following is a brief introduction to other SAF
terms (which are discussed in more detail in subsequent sections):

• Application Object (AO). In the context of this paper AO means a “big” object
(as opposed to fine-grained MIB variables). SAF application objects contain
managed attributes (MAs) and are of type AoBase.

• Managed Table (M-table) and Managed Row (M-row). M-table and M-row cor-
respond to a MIB table and MIB table rows.

• Managed Attribute Reference (MaRef). MaRef is a special kind of a managed
attribute that does not contain a value of its own and redirects SNMP operations
to the “real” MA it references.

3.2 SAF architecture

From the perspective of SNMP request resolution, the agent is built of 4 distinct
layers shown in Figure 4 below (notice previously introduced AO, M-table, M-row,
MaRef).

(c) 1999 IFIP

6

SNMP daemon

OID parser

SNMP data unit

{ OID (type, index), value }

{ name, index, value }

name: "foo"
OID: iso(1).org(3)...

type: integer
...

bar

name: "foo"
multi-instance attribute

name: "bar"
single-instance attribute

Attribute Descriptors
Descriptors
Layer

 M-Tables
 Layer

Application

{ OID (type, index), value }

MaRef (foo)

foo

managed table

MaRef (id)

eventId eventDescr

managed table

fooTableDscr
schema: (foo, ...)

eventTableDscr
schema:(id, description)

Table Descriptors

OID
parser

1

2

3

4

5

6

Application Object

foo

Event

id descrip.

Request Broker

M
-row

s

Figure 4: SAF architecture

The 1st layer, OID parser, is a thin layer interposed between SNMP implementation
and the rest of the Agent. Its task is to translate OID from ASN.1 dotted notation to a
pair of objects: name and index.

The 2nd layer, Descriptors is based exclusively on MIB definitions. SAF MIB
compiler MTGEN code-generates its entire contents from the MIBs this particular
agent is implementing. Once descriptors are created and initialized they stay intact
throughout the agent’s lifetime.

The 3rd, Managed tables or M-tables layer facilitates object-relational mapping.
Creation and deletion of AOs causes (“behind the scenes”) creation and deletion of
one (in a simple case) or several M-rows per AO, respectively.

The 4th layer is the application per se. It is the one that performs specific tasks
varying from agent to agent, from MIB to MIB, and from device to device.

(c) 1999 IFIP

7

The Request Broker object (Figure 4) owns the result of the MIB compilation:
attribute and tables descriptors. To resolve an SNMP request, Request Broker
performs the following steps (also shown and numbered in Figure 4 above):

Table 1: SNMP request resolution

Step From To defined at

1 OID ➪ (name, index) compile-time
2 Name ➪ Attribute descriptor compile-time

3 Attribute descriptor ➪ M-table descriptor compile-time

4 M-table descriptor ➪ M-table instance compile-time

5 (M-table, index) ➪ M-row run-time

6 (M-row, name) ➪ Attribute instance run-time

Steps 1 through 4 are code-generated, while steps 5 and 6 depend on the application
logic of creating and destroying object instances (Table 1).

Now we will take a “real-life” example and walk through the entire development
process, from specification to implementation.

3.3 Example: events and alarms

Events report non-exceptional or exceptional developments in the managed system.
In our simplified fault management scheme, an event will have only two attributes: id
and description. The application triggers an event, which manifests itself by sending
SNMP traps to the manager (or managers) and logging to the persistent event log. It
may also result in some other application-dependent actions.

Network management emphasizes the role of exceptional (as opposed to
informational) events, namely alarms. An alarm can be raised and cleared, it has
criticality (minor, major), status (on, off) and mask (enabled, disabled) (Figure 5b).

There are a certain number of documented events and alarms in the managed system.
Let’s say, the manager wishes to browse registered events and alarms, configure
(enable, disable) individual alarms and select active (that is, raised) alarms from all
available alarms.

3.3.1 Application model

Figure 5a) depicts a typical SNMP view of the managed system. Figure 5b) shows
application objects and their attributes. Notice that both the Event and the Alarm
inherit AoBase - the base of all application objects. All managed attributes in the
system inherit MaBase.

(c) 1999 IFIP

8

eventId alarmId
alarm

Description

eventTable alarmTable

event
Description

..........

..........

id: MaInt
description: MaString

Trigger(): RetCode

Event

criticality: MaInt
status: MaInt
mask: MaInt
Raise(): RetCode
Clear(): RetCode

Alarm

AoBase

eventEntry alarmEntry

eventsMIB name: const char*

Set(): RetCode
Get(): RetCode

MaBase

MaInt MaString

Figure 5: Events and alarms as: (a) eventsMIB (left) (b) static class diagram (right)

The first step is to translate MIB definitions into C++. Figure 6 shows a sample of
event definition in the eventsMIB and the corresponding MTGEN-generated code:

EventEntry OBJECT-TYPE
 …
 INDEX { eventId }
 ::= { eventTable 1 }
EventEntry ::= SEQUENCE {
 EventId INTEGER,
 EventDescription String }
eventId OBJECT-TYPE
 SYNTAX INTEGER
 …
 ::= { eventEntry 1 }
eventDescription OBJECT-TYPE
 SYNTAX String
 ::= { eventEntry 2 }

DECLARE_MT_DESCRIPTOR(Event);

MtDscrEvent.Schema().Append(
 "eventId",
 MA_INTEGER_TYPE,
 MA_READONLY);
MtDscrEvent.Schema().Append(
 "eventDescription",
 MA_STRING_TYPE,
 MA_READONLY);

MtDscrEvent.GetSchema().SetIndex(
"eventId");

Figure 6: Event in: a) MIB (left) and b) generated C++ (right)

3.3.2 Construction and request resolution

To demonstrate the mechanism by which the construction of AOs completes the
SNMP request resolution path (Table 1, steps 5 and 6).

class Event : public AoBase {
public:
Event(int eid, const char* d) :
 id(“eventId”, eid, this),
 descr("eventDescription", d,
 this)
…
MaInt id;
MaString description;
};

class Alarm : public Event {
public:
Alarm(int eid, const char* d,
 ALARM_CRITICALITY c, …) :
 Event(eid, d),
 Criticality(“alarmCriticality”,c,
 this)
…
MaInt criticality;
};

Figure 7: Application object construction: a) event (left) b) alarm (right)

(c) 1999 IFIP

9

Let’s consider the construction of an Event (Figure 7a) in more detail:

1) The names “eventId” and “eventDescription” are used to find attribute and table
descriptors: name ➪ attribute descriptor ➪ M-table descriptor ➪ M-table.

2) The constructor of the managed attribute Event.id creates a new managed row
(M-row) and inserts it in the respective M-table. This M-row will hold a
reference to Event during the lifetime of this application object.

3) Event.id inserts a reference (MaRef) to itself into the newly created M-row. In a
regular (that is, not optimized) case the M-table does not hold any values;
instead it contains rows of references to managed attributes. The reference, a
special attribute of type MaRef, relays SNMP Get and Set operations to real
managed attributes encapsulated inside application objects (AoBase).

4) The Event.description constructor finds the newly created M-row for this Event
(notice the parameter this in both event members’ constructors, Figure 7) and
inserts in it a new MaRef object: MaRef (Event.description).

3.4 Object-relational mapping

Despite a general rule in SNMP that a MIB table row corresponds to a managed
object, in many cases it is not so. Application objects tend to form complex relation-
ships with multiple inheritance, containment and referencing, while an SNMP
information model operates in terms of single-instance attributes and simple
relational tables. To map tables on objects, SAF uses the mechanism of “multi-
naming”, or aliasing.

Aliases provide multiple SNMP paths to the same objects. Let’s consider the
following example. An alarm is an exceptional event, and therefore it has to be rep-
resented (or, more exactly, be visible to SNMP) in both Event and Alarm tables.
Static aliases are specified in MIBs by inserting an ASN.1 comment with the
keyword “alias”. Figure 8 shows a sample of eventsMIB code with an alias for
alarmId.

EventId OBJECT-TYPE
…
DESCRIPTION “Event ID”
::= { eventEntry 1 }

AlarmId OBJECT-TYPE
…
DESCRIPTION "Alarm ID"
-- alias name: eventId
::= { alarmEntry 1 }

Figure 8: Event ID definition in a) event MIB table (left)
 and b) alarm MIB table (right)

Using compile-time information, the SAF MIB compiler generates an alias object for
an Alarm. Upon Alarm construction, the framework takes care of populating both
Alarm and Event M-tables with references to a single object (Figure 9).

(c) 1999 IFIP

10

MaRef(id)

"id"

MaRef(desc)

"description"

eventTable

descript
ion criticality status mask

MaRef(id)

"id"

MaRef(desc)

"description"

alarmTable

MaRef(crit)

"criticality"

MaRef(stat)

"status"

MaRef(mask)

"mask"

id

"event’s" part of
Alarm

Alarm

Figure 9: Object-relational mapping: a) eventTable row ➪ Alarm (left)
b) alarmTable row ➪ Alarm (right)

3.5 SNMP queries

One of the intrinsic problems with SNMP is that the manager has to perform
numerous fine-grained requests so it can analyze and correlate data. Consider the
MIB table of all alarms. In practice there may be dozens of alarms, each one
“connected” to a piece of equipment, software module, service or such. Typically all
alarms are either clear, or a few alarms are active (raised) and the majority remain
inactive (clear). It is important for the manager to see a subset of all alarms: active
alarms. Having access to the MIB table of all alarms, the manager is able to select
active alarms (which in SQL terms would look like: select * from alarmTable where
status = on). However, to optimize network traffic it would make sense to process
“the query” on the server (i.e., agent) side. To accommodate this, we’d have to write
a new MIB table, activeAlarmTable, which at any given time contains only active
alarms. The question is; how can it be supported without duplicating data?

One possible approach is to use dynamic (run-time, instead of static compile-time)
aliasing. When the “real” alarm is raised (Figure 10), it creates an ActiveAlarm object
containing references (i.e., objects of class MaRef) to “real” alarm attributes, at which
point the manager sees the raised alarm in the activeAlarm MIB table.

SAF_RET_CODE Alarm::Raise () {
 …
 m_active_alarm = new ActiveAlarm(*this);
 …
}

Figure 10: Dynamic aliasing

An alternative approach would be to override SAF implementation of an
ActiveAlarm M-table methods get and get-next.

4. SNMP/SAF and CORBA

SNMP has a huge installation base and is still proliferating. Quite often dual
management support is required for an existing SNMP agent or SNMP-based
Element Management System (EMS). The challenge of heterogeneous management
in this case boils down to interfacing with an “umbrella” NMSs of upper-tier CLECs

(c) 1999 IFIP

11

and Integrated Service Providers (ISPs). At the present time, northbound CORBA
[12, 13] interfaces are used increasingly for this kind of interoperation. Where the
SNMP manager performs several get and set operations, the CORBA manager
acquires the referenced object and executes a single transactional operation on it.

4.1 Example: configuring connections

Let’s first consider a simple example of a configuration management, or more spe-
cifically, connection configuration management. Being a quite common situation, it
becomes more interesting when the network device has capabilities allowing it to
configure different kinds of interfaces and provide different types of connections:
ATM, Frame Relay, ISDN BRI, etc. Connections may have something in common,
for example, every connection may be activated and deactivated (Figure 11):

class ConnectionBase : public AoBase, public ConnectionBase_skel {
 …
 SAF_RET_CODE Activate () {return adm_stat.Set(ACTIVE);}
 SAF_RET_CODE Deactivate () {return adm_stat.Set(NOT_IN_SRVICE);}
 …
 MaInt adm_stat;
};

Figure 11: Connection base class for dual SNMP and CORBA support

To enable a connection, the CORBA manager performs the connection->Activate()
operation on a CORBA object reference of the “right” connection. ORB supports
polymorphic messaging and the call is dispatched and executed on the real target
connection. The SNMP manager uses a different language for the same purpose,
saying: “set administrative status of the connection to active” or something to that
effect. This time SAF acts as a “dispatcher” interposed between multiple SNMP
tables of connections and the application. The set request will reach the “right”
connection object and, transparently to the application, modify the value of the
managed attribute adm_stat (Figure 11).

4.2 Example: configuring interfaces

To proceed with the last example, a few introductory words about the company and
the product are due. Netro ([3]) manufactures fixed wireless access (FWA)1

broadband point-to-multipoint (P-MP) communication systems. A system consists of
a base station, connected to an ATM network and multiple terminals at customer
premises, providing a variety of access services: circuit emulation, frame relay, IP,
etc. Figure 12 depicts a typical case when equipment is used to get access to IP
networks (in this case, to Internet and Intranet via two different routers). For
purposes of discussion, the entire P-MP wireless network is “collapsed” into a “black
box” called “Netro”, with IP-over-ATM (IPOA) interfaces at the CPE.

1 Unfortunately, when describing telecommunication equipment configuration, we cannot avoid use of

multiple acronyms. Here are some of them. CPE stands for Customer Premises Equipment, IPOA – IP
over ATM, PVC - permanent virtual connection.

(c) 1999 IFIP

12

ATM
cloud

Customer Premises Network

Ethernet Netro

Access Network

router

Internet

router

Intranet

AAL5 P
VC

AAL5 PVC

Figure 12: Configuration with IPOA interfaces

Since, generally speaking, this is a case of interworking between connection-oriented
and connectionless protocols there should be a way to associate IP flow and a
connection. At Netro we implemented just one (simple but useful) scenario when the
IP route is one-to-one associated with a point-to-point link between two end points:
“Netro” and an ATM-enabled IP router (Figure 12). More specifically, the point-to-
point link is the AAL5 PVC that is used to transport IP datagrams according to RFC
1483 ([4]).

To configure the IPOA interface, the NMS has to specify its IP address, the ATM
connection between it and a “next hop” RFC 1483 enabled router, and a type of
encapsulating IP datagram. Initially we implemented the IPOA application object as
shown on the left side of Figure 13.

AoBase

Index: MaInt
Descr: MaString
Type: Maint
...

Activate(): RetCode
Deactivate(): RetCode

IfEntry_impl

ownAddr: MaIpAddress
encapsulationType: MaByte
p2pLink: AAL5_PVC

SetP2pLink (...): RetCode

IpoaEntry_impl

AoBase

ifEntry_skel

IfEntry_impl

IpoaEntry_impl

IpoaEntry_skel

IfEntry_stub

IpoaEntry_stub

Figure 13: IPOA object: a) SNMP-only support (left) b) SNMP and CORBA (right)

To support SNMP, the IPOA object makes use of framework classes, AoBase and
MAs. Other than that, it is a simple specialization of a MIB-II ifEntry (an entry in the
MIB-II table of network interfaces).

Netro equipment, shown as a “Netro” box on Figure 12, is responsible for only one
segment of the network, its “access” portion. To provide IP service, the network

(c) 1999 IFIP

13

management system has to be able to configure all other segments between the end-
user and the ISP. Figure 13 demonstrates a transition of IPOA inheritance hierarchy.
IPOA implementation becomes a CORBA object implementing the server IDL stub
(also called skeleton) and exposing methods from the IDL-generated client stub
IpoaEntry_stub. The new IPOA object facilitates the application to ANY approach,
as it is shown on Figure 2b.

4.3 Discussion

As it was mentioned earlier (section 1.2), dual CORBA and SNMP support may be
achieved by translating SNMP MIBs directly into CORBA IDL files [8]. Table 2
below highlights some of the differences.

Table 2: SNMP ➪ CORBA versus SAF-based application ➪ CORBA

SNMP ➪ CORBA SAF application ➪ CORBA

Source of IDL interfaces MIBs AO class definitions

Objects Correspond to
MIB table rows

1) Application objects
2) M-tables

Inheritance Not supported Supported

With SAF, inter-domain management between CORBA and SNMP becomes a
technical issue of:

1) selecting a subset of CORBA objects from all application objects and “IDL-
izing” their class definitions;

2) generating server IDL stubs and adding the existing implementation code.

That basically concludes the procedure of implementing dual SNMP and CORBA
management for a SAF-based agent. Registering M-tables with the COS Naming
Service [13] allows retrieval of M-table object references and subsequently (since
M-table implements get and get-next operations), retrieval of AOs and their
attributes.

The obvious and generic (but not optimized) approach would be to consider all SAF
AOs to be CORBA objects. However, the overhead of implementing every AO as a
CORBA object might appear to be too taxing in terms of performance and memory
usage. The question of how to produce IDL files may be approached in a variety of
ways. Often it is sufficient to publish an already existing method of an application
object via IDL. In other cases a simple IDL-to-application adaptation is needed.
Since the management interface is based on an existing functionality, this adaptation
usually boils down to converting input parameters and/or calling several routines that
are already implemented.

(c) 1999 IFIP

14

5. Conclusion

This paper discusses a range of problems arising from the lack of compatibility
between embedded application and management models and the need to support
multiple management models and protocols. The SNMP Application Framework
example shows how to separate “management” and “application” concerns, preserve
consistent application design and handle multi-management issues. The paper
demonstrates one way of facilitating dual management support. In practice the
tradeoff of changing the embedded agent has to be weighed against a non-intrusive
approach involving CMIP/GDMO Q-adaptation (or CORBA-to-SNMP gateway) and
therefore, an additional translation layer, performance deterioration, and inadequate
mapping between information models.

References

[1] Mazumdar, S., Brady, S., and Levine, D., "Design of Protocol Independent
Management agent to Support SNMP and CMIP Queries", Third International
Symposium on Integrated Network Management, San Francisco, CA, 1993.

[2] Aizman, A., “Application framework for rapid agent development”, Third IEEE
System Management Workshop, Newport, Rhode Island, April 1998.

[3] Netro corporate site, http://www.netro-corp.com

[4] Internet standards available from http://www.ietf.org

[5] Perkins, D., McGinnis, E. “Understanding SNMP MIBs”, Prentice Hall, 1997.

[6] Bapat, S., "Object-oriented networks: models for architecture, operations and
management", Prentice-Hall PTR, 1994.

[7] Stallings, W., "Networking standards: a guide to OSI, ISDN, LAN and MAN
standards", Addison-Wesley, 1993.

[8] Mazumdar, S., "Inter-Domain Management between CORBA and SNMP",
presented at Seventh IFIP/IEEE International Workshop on Distributed Systems:
Operations & Management, L'Aquila, Italy, October, 1996.

[9] The Web-based Management Page:
http://www.mindspring.com/~jlindsay/webbased.html

[10] Rose, M. T. “The Simple Book”, Prentice Hall (Second Edition), 1996.

[11] Case J., McCloghrie, K., Rose, M., and Waldbusser, S., “Structure of
Management Information for version 2 of the Simple Network management
Protocol (SNMPv2)”, RFC 1442, April 1993.

[12] Object Management Group, “The Common Object Request Broker:
Architecture and Specification”, Revision 2.0, July 1995.

[13] Object Management Group, “CORBAservices: Common Object Services
Specification”, November 1997, http://www.omg.org/corba/sectrans.html

(c) 1999 IFIP

