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Abstract
We propose a hetwork management and control architecture that is able to dynamically
load application-specific code, which in turn is able to control resources at a very low
level. Recognising the existing diversity of network management and control archi-
tectures, we then address the problem of interoperability between control architecture
domains. Given such interoperability, we show how clients can install application-
specific policies that span multiple domains.
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1 Introduction

In this paper we concern ourselves with establishing resource management policies that
span multiple domains. We call such policgebal Resource management in net-
works involves the reservation and allocation of resources to applications, for example
in the form of connections. This is true regardless of the network technology. Resource
Management and Quality of Service (QoS) guarantees have been a part of ATM from
the outset but are now rapidly gaining ground in IP as well. The focus of this paper is
on ATM but many of the issues are equally relevant in other network technologies. We
observe that there may be many policies pertaining to resource management, each of
which may be suitable in certain application areas, but not in others.

We define a networknanagement and control architectuf®CA) as the set of
protocols, policies and algorithms used to control and manage a net&aridman
the MCA described in this paper implements commonly used operations efficiently and
with simple interfaces, while allowing applications to extend this basic functionality to
customise according to their needs. We call such a M@@Atic

1.1 Contribution

The first problem we address is that the generic nature of high-level primitives prevents
applications from exploiting application-specific knowledge. As an example, consider
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Figure 1. The nature of an applicatich may be such that at any time only one of
the endpoints is active as source and every endggint becomes the source exactly
T;(t) seconds after its neighboGf became active as source (i.e. the source moves in
clockwise direction, assuming addition is mod 4). For applicatipthe connections

to be made are determined by the following algorithm: if the last connectiondfpom
was a multicast, then a connection is made across sWittom C; to C;,., else a
multicast connection is made frofy; to C;1 andC;3. For good performance, it
would be useful ford to set up all connections to and from the central swifcko a
change of source only requires changing the switch connectiSraiccording to the
algorithm. This is hard to do using high-level end-to-end primitives. While this exam-
ple lies almost entirely within theontrol plane, a similar example for thmanagement
plane may consist of gathering and manipulating management information whenever
some application-specific event occurs.

As a solution, we introduce a MCA which allows applications to load their own
code into the network, i.e. to program the network. This, combined with the abil-
ity to reserve and allocate arbitrary collections of resources in the network, opens up
the control and management architecture to incorporate application-specific behaviour.
Although beyond the scope of this paper, we observe that advance reservations are also
explicitly supported. The code is able to interact with the MCA at a very low level,
enabling applications to have their own policies executed both in the reservation and
allocation domain. Applications can even extend the MCA with new operations which
are accessible to other applications as well.

This brings us to the second problem. The solution of loading application-specific
code as described above allows applications to introduce application-specific policies,
into the heart of the MCA controlling a certain MCA domain. Many applications,
however, extend beyond the boundaries of a single control and management domain.
We would like to support these applications in a similar way. The challenge here is
twofold.

Firstly, different types of MCAs should be enabled to interoperate. Ideally, this
should be possible without degrading the functionality of two communicating feature-
rich MCAs A andB, only because an interconnecting MCA(located betweer and
B) does not provide this rich functionality.

Secondly, clients should be allowed to take their policies across domain boundaries.
This way clients can exploit their specific knowledge about the nature of their applica-
tion throughout the network. We call these policiggbal. One problem here is that,
although applications may be assumed to have knowledge about the local domain (e.g.
about the topology), no such knowledge can be assumed for remote MCA domains.

1.2 Overview

We introduce an elastic MCA callésandmarthat allows applications to specify their

own policies which may span multiple MCA domains. Background information is
given in section 2. Section 3 discusses basic operations of the Sandman. Light-weight
virtual networks ometletsare introduced in section 4 and dynamic code loading in
section 5. Techniques to achieve interoperability are the topic of section 6, while global
policies are discussed in section 7. Implementation details are mentioned in section 8.
Related work and conclusions, finally, are the topics of section 9 and 10 respectively.

2 Background

It seems unlikely that there will ever be a one-size-fits-all solution for MCAs. Many
solutions for network control exist today (e.g. Q.2931, P-NNI, IP Switching, etc.) each
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serving its purpose, but it is not realistic to expect any of these to evolv&ir@MCA
that will cater to all our needs, present and future.

Instead, we would like to enable users to control their networks with the MCA
that suits their environment best. For this purpose, previous work in the Computer
Laboratory has allowed us to partition physical networks into virtual networks, each
of which can be controlled by its own MCA [1]. This is illustrated in Figure 2, where
a switch divider process partitions the resources on a switchsimitchletsand offers
the same switch interface to the MCAs as found on the switch itself. It appears to the
MCAs as if they are controlling a real (albeit smaller) switch. Clients C1, C2 and C3
each then request its own MCA to exercise management and control, e.g. to set up
connections.

CONTROL CONTROL
ARCHITECTURE A JIARCHITECTURE B
@ divider divider
=z =

Figure 1 Client-specific knowledge Figure 2 Partitioning switches

As mentioned before, we think that the infeasibility of a one-size-fits-all solution ap-
plies also to the MCA itself. Therefore, we would like to extend the idea of switchlets
into the MCA by enabling individual applications to specify their own policies for re-
serving and allocating resources. In this way, we can really speak apentcontral
flexible control that is not dictated by any one standard, organisation or network oper-
ator. Even so, the MCA proposed here is not intended to replace any existing MCAs.
Instead it is expected to run alongside them as illustrated in Figure 2.

3 Basic operations

The MCA proposed here supports a few basic operation classes. For this paper, the
relevant ones are:

1. Unicast connection Probably the most common operation is the connection
from source to sink for a particular time interval with particular characteristics. If
the admission control accepts accepts a request for such a connection, the client
is guaranteed that the connection will be set up in that time interval. Traditional,
i{mmedia)te, connections simply leave out the interval in which case it defaults to
now, 00).

2. Multi-source, multi-sink connectionsA small number of more complicated
types of connections exist, such as a connection that is time-shared by multi-
ple sources and which may have multiple sinks each with its own and possibly
overlapping time interval. These are described in [2].

3. Information gatheringA rather wide-ranging class of operations to discover the
state of the network, the topology, routes, available capacity, etc.

4. Reservation of arbitrary sets of resourceé&he reservation of arbitrary sets re-
sources is described in section 4.

(c) 1999 IFIP



5. Loading application-specific cod@llowing applications to load their own code
into the MCA allows them to exploit application-specific knowledge on a very
low level. We will discuss loadable code in section 5.

The first two of these operation classes allow for reservation in advance, so that
guarantees about the availability of resources at some time in the future can be given.
These operations are very common and can be expected to be sufficient for the majority
of applications. We call these tipgimary operations. All other operations mentioned
above are calledecondaryperations.

4 Recursively partitioning networks

The primary operations are expected to be sufficiently expressive for a large class of
applications. Some applications, however, have very specific needs so, in order not
to restrict them, we propose to give these applications a number of resources which
are theirs to use as they please (i.e. without imposing on them connections of any
predetermined type). This is also useful for certain network management tasks. For
example, it has been suggested in [3] to partition resources in the (virtual) network, so
that immediate reservations are shielded from advance reservations (and vice versa).
For this purpose the Sandman allows a client to make (possibly advance) reservations
for something called aetlet which is a small virtual network in a larger virtual net-
work.

Netlets consist of (a share of) an arbitrary set of resources within the encompassing
virtual network (VN). For example, for a switch port we specify a netlet element con-
sisting of the switch name, port number, direction (i.e. in or out), number of channels
(e.g. VClsin ATM) and bandwidth. These elements need not be adjacent as one netlet
may consist of multiple unconnected sub-partitions (see Figure 3).

Netlets can be created recursively, so it is possible to create netlets in netlets. This
enables applications to repartition resources almost unrestrictedly. In fact, the encom-
passing VN of section 2 can itself be thought of as a netlet fiielevel netlet).
Repartitioning network resources merely extends the idea of switchlets into the MCA.
This has a number of advantages. We briefly mention two:

1. Policing differentiating.VNs must be policed, because misbehaviour in one VN
(null-level netlet)\, should not affect any of the other VNs. Given null-level
policing, however, we can decide not to police at a higher-level netlet, because
even if connections in the netlet misbehave, the problems will be limitéd,to
only and not propagate to the outside world. (Note that the final responsibility
of shielding different domains from each other, lies with the switch divider—this
is why recursive partitioning in the MCA does not obsolete the partitioning by
the divider.)

We can now differentiate the policing policy in the network, e.g.: given that there
is hard (in-band) null-level policing, we can decide to police specific netlets only
very loosely (e.g. by periodically taking measurements from switches to see if
they have exceeded their allocated bandwidths) and certain other netlets not at
all. In fact, theloosenessnay vary from netlet to netlet. In other words, netlets
are light-weight VNs (in this sense, the relation between a higher-level netlet and
a VN is similar to that between a thread and process).

2. Partitioning. Using netlets, it is easy to separate immediate and future reserva-
tions as proposed in [3].

At the start of the reservation interval, the netlet resources are allocated to the applica-
tion which requested them. Using simple operations the client can set up and tear down
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end-to-end connections in netlets. At the end of the interval, the MCA automatically
tears down all connections belonging to the netlet and releases its resources. However,
since the resources of a netlet are saibbegtongto a specific application (and nobody
else), the application should be able to manipulate these resourmegway it wants

to, not just by setting up connections between endpoints. For this, applications need
control at a finer level of granularity than end-to-end. For example, we want to enable
applications to set up a connection across an individual switch from a specific input
(port, vpi, vci) to a specific output (port, vpi, vci). This allows applications to build
their own connection types and setup mechanisms. We call such low-level operations
tertiary operations.

5 Loading application-specific code

One problem with giving fine-grain control over network resources is that because of
the distributed nature of the interaction between client and Sandman, it takes a long
time to do simple things such as setting up a connection across a large humber of
switches (each low-level switch connection request travels across the network). An el-
egant solution for this problemis to enable the application to push its own management
and control policy (limited to resources owned by the application) into the MCA and
have it interact locally with the low-level control operations (in our implementation
this interaction is very fast as it takes place within the same address space).

In other words, we enable applications to program the network using dynamically
loadableagents(DLAs). Note that this is different from what is commonly called
active networkg4] in the sense that it keeps a clear distinction between control and
data path, whileactive networksre generally understood to interpret the packets on
the data path.

5.1 Code and available operations

To enable clients to load code into the network, there is an operation in the Sandman’s
secondary interface which takes as arguments a policy and a statttimeat which

time the application wants the policy to be run. This is illustrated in Figure 4. At
start of day, the implementation of the Sandman has two public interfaces: one for
the primary operations and one for the secondary operations. The tertiary interface
need not be publicly accessible. Note that restrictions may be placed on the number
of DLAs allowed in the MCA as well as on the amount of CPU time each DLA gets.
An interface to the DLA enables remote applications (e.g. the parent) to communicate
with it. This allows DLAs to make arbitrary extensions to the core functionality of the
Sandman. The operations that are made available to the DLA range from the usual
operations that are available to normal applications (i.e. the primary and secondary
operations) to the low-level tertiary operations.

5.2 Security

Running foreign code in the heart of the MCA introduces risks that range from the
risk that the code steals or manipulates sensitive information, to the risk that a DLA
uses up too much resource capacity. The former could be handled by careful shield-
ing between the code and the rest of the Sandman while the latter can be dealt with
by using an operating system such as Nemesis [5]. Another issue concerns the ques-
tion of access restriction, i.e. which applications do we allow what sort of access to
the MCA’s functionality. The current implementation uses a capability-based access
control scheme. In this document we will not address security issues any further.
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5.3 Combining resources with policies

Summarising, given the notions nétletandloadable codegit is possible to associate
application-specific behaviour with particular (sets of) netlets. Netlets and loadable
code together enable applications to implement any resource allocation and manage-
ment policy within the MCA domain that suits their environment. Note that the load-
able code is also able to create new netlets (if need be recursively), which it can control
itself as separate netlets, or associate with a DLA other than itself. Our experience
with the loadable code feature of the Sandman has shown that it is extremely useful in
prototyping and testing. We will demonstrate next how it can be used for implement-
ingllir]teroperability between multiple MCA domains as well as for establishing global
policies.

6 MCA interoperability

As mentioned before, we do not intend the Sandman to replace any existing MCAs.
Instead, we expect it to run alongside instantiations of Q.2931, IP switching, other
instantiations of Sandman, etc. This makes interoperability an important issue. In
this section we show how to achieve this. We stress that the issues are not specific
to the Sandman MCA. Instead, they apply to interoperation between any two MCA
domains. Consider Figure 5. In the figure, we see four different MCA domains, three
of which are controlled by instantiations of the Sandman, while the one in the middle
is controlled by some other MCA, e.g. P-NNI. We call this the MCA-X domain. The
figure illustrates all four types of inter-domain interaction:

1. Sandman to Sandman, direct;

2. Sandman to MCA-X, direct;

3. MCA-Xto Sandman, direct;

4. Sandman to Sandman, via MCA-X.

Note that it is sufficient to consider only the cases where communication originates in
Sandman-1 and MCA-X. We assume that the Sandman MCA has only partial domain-
level knowledge about the topology (or at least about that part of the total network that
is of interest to it). By this we mean that Sandman-1 knows that endpoint 2 is connected
to Sandman-2, but not what the exact topology within Sandman-2 is. Similarly, it
knows that endpoint 6 is connected to the network controlled by Sandman-3 and that
it can be reached through MCA-X.
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The dashed line L3 between the Sandman-3 and the MCA-X domain indicates that
there might be other domains between Sandman-3 and MCA-X of which Sandman-1
has no knowledge. When communication originates in MCA-X, we do not require the
MCA to have even this knowledge. We will show that to MCA-X, Sandman-1 exhibits
exactly the same behaviour as another instantiation of MCA-X, so that MCA-X can
use its own proprietary signalling to set up connections to endpoints in Sandman-1.

6.1 Simple interoperability between domains

We first discuss a simple solution for interoperability between domains which resem-
bles the one proposed in [6], which is to associate gateway code psalio-endpoint

that corresponds to the link connecting the two MCAsp#eudo-endpoiris a con-

trol gatewaythat translates signalling messages from one MCA into those of another
MCA. In Sandman domains it takes the role of an endpoint, while to a neighbouring
MCA-X domain, it may look like a native MCA-X switch controller.

Under normal operation, where both endpoints lie in the same domain, the Sandman
MCA sets up a connection from one endpoint to another (or a number of others) and
then notifies the endpoints that the connection is in place. Things are different if one
(or more) of the endpoints lie outside the local domain. Without loss of generality, we
take the example of a point-to-point connection connectna@ local endpoint (i.e.
within the Sandman’s domain), with, a remote endpoint (outside the domain), as il-
lustrated for two interoperating Sandman domains in Figure 6. When a request for such
a connection arrives at the Sandman MCA, the pseudo-endfaihthe appropriate
outgoing link automatically takes on the role of the remote end@inh other words,
whenever a Sandman MCA tries to set up a connection to a remote endpoint, it really
sets up a connection within its own domain, to the pseudo-endpoint corresponding to
the outgoing link and then notifies the pseudo-endpoint that the connection is in place
(and which vpi-vci values are associated with it).

Sandman 2

notify (B, vpi, vci)

Pseudo EndPoint C

connect (C, B, vpi, vci)

notify (B, vpi’, vci')

Figure 5 Multiple MCA domains Figure 6 Control gateway

Upon receiving the notification, the pseudo-endpoint translates the setup request to
whatever signalling protocol is used in the neighbouring domain (this includes address
translation if necessary). If the neighbouring domain is another Sandman domain, it
simply repeats the connection request, this time assuming the role of endpoint A. If
the neighbouring domain succeeds in setting up the rest of the connection, the pseudo-
endpointreturns an acknowledgementto the first Sandman MCA. If not, the connection
set up has failed and all actions taken so far in the first Sandman MCA are rolled back
also (the resources are released and the client is notified).

Connections from MCA-X to the Sandman could be set up in the same way if such
a control gateway is implemented in the MCA-X domain. Alternatively, it is possible
to let the Sandman offer the same sort of interface to the MCA-X domain that would
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have been offered by another MCA-X domain. This is illustrated in Figure 7. In
this case, the MCA-X domain cannot tell that its is actually communicating with a
different MCA. For example, many MCAs have well known channels for signalling.
For example, ATMF UNI signalling uses a dedicated VC with VCI=5and VPI = 0. It
is not difficult to direct this VC to the control gateway which then translates incoming
signalling messages into Sandman requests.

This solution covers all four cases of interoperability mentioned in section 6. We
call this thehop-by-hop solutiofor interoperability because each MCA only commu-
nicates with its immediate neighbour, translating each control message from its own
domain directly into that of the neighbouring MCA.

6.2 Shortcomings of hop-by-hop solution

The hop-by-hop solution provides very basic interoperability between multiple MCA
domains. The solution is attractive because of its simplicity but for the same reason
limited in its usefulness.

The main problem is that the signalling gateways reduce all possible interconnection
to the lowest common denominator in terms of MCA functionality. Consider, for ex-
ample, the case of two Sandman domains, connected by one or more P-NNI domains,
such as between Sandman-1 and Sandman-3 in Figure 5. Although both Sandman
MCAs support the use of future reservations, it is impossible to make use of this func-
tionality in an inter-domain connection. This is because at the control gateway between
Sandman-1 and MCA-X (P-NNI), the future reservation request is translated into the
type of request that P-NNI understands, e.g. immediate setup. After that it will never
be ‘promoted’ to future reservation again. Instead, at the boundary between MCA-X
and Sandman-3, the immediate setup request is translated into a Sandman immediate
setup request. In other words, all functionality is reduced to the simplest common
service on the path between Sandman-1 and Sandman-3. We call this the problem of
functionality degradation

An additional problem is that the nature of the interoperation between two domains
is fixed. This makes it hard to exploit application-specific knowledge. Again taking
the example of future reservations, consider the case where endpoint 1 in Sandman-1
wants to reserve in advance for a connection from itself to endpoint 4 in MCA-X. The
Sandman domain first makes all local future reservations for an int@iya}:, Tend)
and then injects the request into the MCA-X domain via the control gateway.

The control gateway has to translate the request into control operations that MCA-
X understands. One option would be to simply allocate the resources (i.e. setup the
connection) in the MCA-X domain immediately and keep it in place, so that at least the
future reservation is guaranteed. This is the right solution if the guarantees regarding
the availability of resources is;q.t, Tena] are important and the resources in MCA-

X are scarce. Alternatively, it may decide not to allocate any resources in MCA-X

at all and simpltry to set up the connection when it is needed at,;. This may

be the right solution if there is little risk of some other application using the required
resources in the meantime. The point is that the gateway has to choose how the request
is translated, while the chosen solution may be optimal in certain situations but not in
others. It would be preferable if the application itself was able to specify the nature
of the interoperation between two domains, allowing it to exploit application-specific
knowledge that is impossible to support otherwise. We call this the probldixeaf
interaction
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6.3 Sandman control channels and tunnels

We first address the problem of functionality degradation. We stress again the fact
that the Sandman serves only as an example MCA—the exact same issues need to
be addressed when interconnecting other types of MCA. Observe that functionality
degradation occurs when multiple Sandman domains are on the paths between the
endpoints and when these Sandman domains are separated by non-Sandman MCAs.
If no other Sandman domains are involved, we can’t do better than the hop-by-hop
solution.

When multiple Sandman domains are involved, however, we propose to implement
an inter-Sandman signalling channel (ISSC) between each two adjacent Sandman do-
mains (possibly separated by a number of MCA-X domains). This is illustrated in
Figure 8. As indicated in the figure, there is no need to dedicate a well-known vpi-vci
value for the signalling channel. The channel can be set up simply using hop-by-hop
inter-domain communication as described in section 6.1 (lowest common denomina-
tor is good enough for setting up simple signalling channels). All intermediate do-
mains simply pass on the Sandman control messages without even looking at them
(tunnelling). As usual, the ISSC finds its endpoints in the control gateways of both
Sandman domains (in other words, the control gateways are the entities that signal to
each other).

MCA-X
I Signalling

>§ signalling channel

(e.g. vpi=0, vci=5)

Figure 7 Signalling translation Figure 8 Inter-Sandman signalling

Now, when Sandman-1 wants to communicate with Sandman-3 (Figure 8), it sets up
a data connection between the two MCA domains. Ostensibly, the data connections
also find their endpoints in the pseudo-endpoints described in section 6.1, so that the
pseudo-endpoints (i.e. the control gateways) get notified when connections are set up
which allows them to handle these connections further (outside the local domain). The
pseudo-endpoints take care of the administration and maintenance of these connec-
tions. Inside the two Sandman domains however, these inter-domain data channels can
be connected in any way the MCA wants to. So the data channels are really data tun-
nels connecting two Sandman domains. The further connection of these data channels
on the remote side is controlled by signalling over the ISSC. Note that it is still not
necessary for one Sandman domain to have precise knowledge of the topology of the
remote domain: all routing is local to the individual domains. Note also that it is possi-
ble to set up data channels in advance or leave them in place after a certain application
is done with them. We call thisminnel caching

So to take up the example again of a reservation in advance for a connection from
endpoint 1 in Sandman-1to endpoint 6 in Sandman-3 (in Figure 5), this now becomes a
matter of grabbing a data channel between the two Sandman domains and then making
a local reservation in advance in Sandman-1 which is transferred over the ISSC to
Sandman-3. Sandman-3’s control gateway picks up the request and tries to make an
advance reservation from link L3 to the eventual destination. If successful, it returns
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true. If not, the actions in Sandman-1 are also rolled back. At the start of the reservation
interval, the connections are set up locally on both sides and connected to the VC of
the chosen data channel.

We now have full interoperation between islands of Sandman domains, providing
the full functionality of the MCA, while being interconnected by simple connections
that act as tunnels. Note that we do not have to set up ISSCs from an originating Sand-
man domain to all other Sandman domains on a path between a source and destination.
Instead, we again use hop-by-hop interconnectivity, albeit of a somewhat coarser gran-
ularity. Each hop is now a Sandman domain. Setting up connections end-to-end is
done by sending the appropriate control message along the ISSCs from one Sandman
hop to the next.

6.4 Loadable interoperability

We still have to address the problemfided interaction For example, in the example

of making a future reservation from a Sandman-1 endpoint to a Sandman-3 endpoint
in section 6.3 it was assumed that the data channel between the two domains was set
up immediately. This may be the right solution in certain cases but not necessarily
in others (as shown in section 6.2). We now propose a very simple solution to this
shortcoming.

Essentially, we allow applications to define their own pseudo-endpoints (if neces-
sary with their own ISSC and data channels). For this we use DLAs, as discussed in
section 5. So, users are allowed to load up their own gateway code dynamically. Of
course, there have to be restrictions on this, as we don’t want application-specific and
maybe faulty pseudo-endpoint code to become the only available optiafi fppli-
cations. A simple solution is to enable users to associate their own pseudo-endpoint
with a particulametlet(assuming the netlet owns capacity on the outgoing link). Now,
whenever a connection to a remote endpoint is made in this netlet, the netlet gate-
way is used to communicate with the neighbouring MCA (as well as with the remote
Sandman, using the netlet ISSC).

This allows applications to specify exactly the mapping between Sandman opera-
tions and the operations supported by the neighbouring domain. For example, a netlet
gateway may decide not to map a future reservation onto an immediate connection in
the neighbouring domain, choosing instead to wait until the start of the reservation
interval (e.g., because it knows that bandwidth is unlimited in MCA-X).

7 Global policies

Section 5 described how applications can push DLAs into their local MCA, while
section 6 showed how multiple MCAs can cooperate without suffering from function-
ality degradation. All this, however, is not sufficient for implementing truly global
application-specific policies. In the interaction between domains, we have so far only
been able to use the basic operations of the MCA. In other words, we may have been
able to prevent functionalitgegradationbut we still haven’t enabled clients to imple-
ment their own functionalitypgradesacross multiple domains.

We will first look at a property of DLAs which enables policies to spread over or
migrate through a network. After that we will briefly look at operations that support
migrated or replicated policies that have no knowledge about their new local domain.
Fir}.allly, we will discuss very briefly an example to demonstrate the usefulness of global
policies.
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7.1 Policy migration and replication

An interesting property of the DLA support as discussed in section 5 is that it allows
the DLA itself to push loadable code into other MCAs. This follows from the fact that
starting loadable code is part of the secondary interface of the Sandman MCA where
the secondary interface is publicly accessible. So, in a multi-domain network, the code
is capable of sending DLAs across the wire which will then be run in the remote MCA.
Using this mechanism the DLA is also able to migrate or replita&df across a larger
network (see Figure 9). Note that the various incarnations of the DLA distributed over
the network, as well as different DLAs are still able to communicate.

It can be argued that a network operator running a MCA in a particular administra-
tive domain will probably not want to allow code from applications in very different
administrative domains to be loaded inside the heart of its MCA. Nevertheless, we feel
that there are advantages in doing precisely this and that there is no intrinsic risk in
doing so (provided the security issues described in section 5.2 are addressed).

But even if we accept that DLAs are not allowed to spread across multiple admin-
istrative domains, this does not mean that they are not allowed to spread over multiple
MCA domains, as these are very different things. MCA domains only consists of an
instantiation of the MCA together with one or more switches they control. In fact,
the most common MCA domain consists simply of a traditional switch controller on
a single switch. Therefore, there will generally be multiple MCA domains in a single
administrative domain (which could be as large as a department). In this respect, the
Sandman MCA is only different from traditional MCAs in that it offers a choice of
how many switches one wants to associate with the MCA domain. This could be a
single switch as in traditional systems, or small clusters of three or four switches. This
is illustrated in Figure 10. Within the (fairly large) administrative domain, it is then
perfectly permissible to have DLAs cross MCA domain boundaries.

- Sngle switch™,
( SANDMAN-1 | | SANDMAN-2 ) omain ;
DLA: migrate ‘- New ;{ /W ]
Qto Sandmeres i} incarnation of *, gAdmlngsrtrghve
Coee TDLAC - - d
A CA™.

o

Figure 9 Policy migration Figure 10 Domains and boundaries

7.2 Environmental awareness

It may be assumed that a DLA has rather extensive knowledge about the domain where
it was created. For example, the topology of the network may be known to the applica-
tion injecting the DLA and hence programmed into the DLA. Such domain knowledge
can no longer be assumed when DLAs migrate through the larger network in order
to implement global policies. A DLA may know that certain endpoints are connected
to a particular MCA domain, but it generally has no knowledge of the switches and
interconnections on the paths between these endpoints. This makes it impossible to
exercise low-level control over the resources in this domain (using netlets), unless we
provide the netlet with operations to learn about its new environment.
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For this purpose, the tertiary interface contains a number of operations to allow
DLAs to acquire knowledge about the new domain. One of these operations returns to
the DLA (upon request) a detailed description of a path between two endpoints. Using
this operation, a DLA can learn about the part of the MCA domain that is of interest
to the DLA. The DLA can now start creating netlets consisting of exactly these paths,
allowing it the low-level control that it may require to implement application specific
policies in the new domain.

7.3 Example: mobile agents for mobile computing

We have shown how application-specific policies spanning multiple MCA domains can
be introduced into the network. This allows applications to make use of application-
specific knowledge that would otherwise be difficult if not impossible to exploit. To
demonstrate the usefulness of these global policies, consider the case of mobile com-
puting. A client may have very specific knowledge about the route followed by, or
the communication pattern associated with a particular mobile syste(see Fig-

ure 10). We assume that there are multiple MCA domains and that the mobile system
roams among these domains. We are now able to install the client’s application-specific
knowledge across the entire administrative domain. It is even possible to have a DLA
‘follow’ the mobile system as it travels from domain to domain (which means that it
does not burden those parts of the network thais not even close to). The DLA

sets up connections for the mobile system, works out the routes for them and also
collects data about the communication (e.g. for billing, etc.). This is an example of
application-specific control using roaming policies of which a proof-of-conceptimple-
mentation has been achieved.

8 Implementation details

The Sandman MCA has been implemented as a distributed system running over an
implementation of CORBA. The DLAs are currently specified in the form of Tcl8.0
code. Experiments were also conducted with code specification in Java, but in our
implementation the interaction between C and Tcl bytecode was slightly faster. Also,
it is easier to quickly write and modify Tcl scripts (even on the fly) than Java programs.
Even so, this is all just an implementation detail: there is no reason why the DLA
should not consist of compiled C programs, so that there is no noticeable performance
penalty to be paid when using loadable code.

The testbed consisted of a number of Sun UltraSparcs and ATM cameras, connected
by Fore switches. The switches were partitioned and controlled using the switch di-
viders as described in section 2.

9 Related work

9.1 Programming the network

Several solutions to make network nodes programmable have been proposed over the
last few years. We distinguish between solutions that maintain a clear separation be-
tween control and data path (such as the solution proposed here) and solutions where
control and data path are the same. An example of the latter is what has come to be
known asActive Network$4]. Active Networks are packet-switched networks where
each packet may carry executable code. In [4] these packets are cabsalesi.e.

little programs with embedded data that are evaluated in a transient execution environ-
ment, allowing network nodes to process the data in an application-specific way. The
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execution of the packets in the data path is strongly related to the speed with which
these packets can travel through the network. Note that the Operation, Administra-
tion and Maintenance (OAM) cells in ATM offer a similar, albeit much more restricted
functionality (the OAM cell effectively carries one of a finite number of pre-defined
programs).

Intelligent Networks (IN) [7] allows the introduction of new services by associ-
ating them with signalling endpoints. Basic calls are separated from IN-based calls.
For example, dialling an 0-800 number will trigger a temporary suspension of call-
processing and initiate a series of transactions between the local switching point (in IN
terminology: the Service Switching Point or SSP) and the so-called Service Control
Point (SCP), which is essentially a real-time database. A lookup in this database (e.g.
for a 0-800 number) tries to find the corresponding application-speeifigce logi¢
i.e. the code which is then executed. The code sends back instructions to the SSP
on how to process the call. The bulk of current IN transactions consist of translating
the number dialled by the caller into another number depending on the needs of the
service.

In [8] a solution to network management usithgjegated agenis proposed, where
the agents are dynamically loadable code that can be dispatched using a so-called del-
egation protocol to an executing elastic (extensible) server. This helps prevent the
explosion of management traffic from all over the network to a central site, which re-
sults from using management models that were designed when management was still
a relative simple task and the traffic generated by it was minimal. Delegating manage-
ment also makes the control loop (from managing code to managed device) smaller,
decreasing the probability of failure at times when there are problems in the network
(and management is needed the most).

Connection closures [6] are related to first-level netlets with associated behaviour.
They provide for a way to open up the specification of an application’s resource al-
location behaviour. It is not possible to recursively partition the resources. Also, as
indicated by the name, the connection closure associates application policy with a set
of resources owned by the application. It is not possible to extend the MCA with new
“public” operations (i.e. operations that can be used by any application in the system).

9.2 Interoperability

Efforts within the ATM Forum and the ITU-T have led to the definition of signalling in-
terfaces between switches called the Network-to-Network Interfaces (NNIs). Of these,
the ATM Forum’s Private Network-to-Network Interface is intended for private net-
works and contains interfaces both for the exchange of routing information and for
connection control [9]. The public NNI developed by the ITU-T serves as a demarca-
tion point between two public networks. It is based on a modified version of Signalling
System 7 and uses preassigned VCls for signalling.

Closely related to this and the sort of interoperability discussed in this paper are
the ATM Forum’s efforts regarding the broadband inter-carrier interface (B-ICI). B-
ICl is similar to a NNI except that NNl is really a switch-to-switch interface, designed
to makes switches from different vendors work together, so that if these switches are
located in the same network, the NNI needs to exist inside the network as well. B-ICI
on the other hand is only concerned with internetworking between public carriers and
need never exist within the network. B-ICI specifies a wide range of physical layers
over which the ATM layer can run and also particular adaptation layers for common
inter-carrier services such as Frame Relay.

In [6] a mechanism very similar to the simple hop-by-hop solution of section 6.1
is described. It is used to provide interoperability between a home-grown MCA and
other MCAs.
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10 Conclusions

In this paper we discussed the design and implementation of an elastic management
and control architecture (MCA) called Sandman which enables applications to inject
their own policies into the network in the form of DLAs. It allows very fine grain con-

trol over the resources in the network (up to the level of individual switch connections)
and allows extensions by means of new user-defined operations accessible to any appli-
cation. Also, here as elsewhere, we have maintained a strict separation between control
path and data path. The resources in the network can be recursively (re-)partitioned at
an almost arbitrarily fine granularity using netlets. A netlet can be associated with
application-specific code, if this is so desired. A general solution for interoperability
across multiple domains has been presented. The solution consists of a simple hop-by-
hop mechanism in addition to dedicated signalling channels between Sandman islands
(separated by other MCAS) that does not suffer from functionality degradation at the
domain boundaries. Finally, we have shown how we can achieve application-specific
policies spanning multiple domains by allowing dynamically loadable agents migrate
from one MCA to the next, installing application-specific policy in each domain.

We believe that such an open approach to network control and management allows
applications to exploit application-specific knowledge that would be difficult to capture
by a fixed set of high-level primitive operations. This in turn allows for a class of
operations that hitherto have been impossible to implement.
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