
Reusable Architecture for Data-Centric
Network Management Systems

Rajeev Gopal, David Whitefield
Network Management Group
Hughes Network Systems
11717 Exploration Lane, Germantown, Maryland 20876
USA
{rgopal, dwhitefield}@hns.com

Abstract
This paper describes a reusable architecture that has been used to develop network
management systems for data-centric satellite-based networks. The satellite-transport
characteristics and networks impose unique constraints on the management systems.
Under the data-centric scheme, the manager keeps the network configuration
management information that is automatically downloaded by the agents residing on
the managed devices. An exclusive use of standards-based off-the-shelf network
management platforms does not directly address all requirements for data-centric
management of large satellite networks. The architecture described here is based on
an integration scheme, called DBMS-based auto discovery. This scheme keeps
relational DBMS and NM platforms in synchronization. The integration scheme
preserves the desirable development and operational features of both the NM
platform and the DBMS and leads to significant savings in development effort and
time.

Keywords
Satellite networks, auto-discovery, case studies and experience, standards and
frameworks

1. Introduction

Satellites are now playing an ever-increasing role in information distribution and in
providing the infrastructure for large-scale multi-media networks. Originating as a
broadcast mechanism for television networks and intercontinental telephony trunk
lines, satellite-based networks are now being widely deployed for interactive data,
voice, video, and Internet applications. Satellites use space, which is a shared
medium, to transmit information utilizing time and frequency division multiplexing.
Frequency reuse is further enhanced using spot-beams so that a cellular-like
architecture can be used with the satellite networks. This mechanism is the corner
stone for the next generation of satellite networks. The full potential of satellite
networks can be realized by providing an intelligent operations and maintenance

(c) 1999 IFIP

.

system that allows responsive configuration control for optimal utilization of
precious resources in the time and frequency domains.

The power and usefulness of satellite networks, similar to their terrestrial
counterparts, require a comprehensive network management system that can be used
for operations and maintenance. Traditionally, the Network Management Systems
(NMS) for satellite networks have been developed in a proprietary fashion with
some use of computing (and not network management) standards and related off-the-
shelf software. With the growing emergence of satellite, terrestrial, and hybrid
networks, interoperability and standards compliance is rapidly becoming a
requirement. However, satellite networks have unique management requirements
and not all of them are well aligned with the standardization efforts and the network
management platforms that are becoming available. Instead of having a false sense
of security that software vendors will provide a complete solution, it is important to
identify the deficiencies so that unique solutions can be developed. It is seen that
many of the desired requirements are already available in the form of Database
Management Systems. An integration of the network management platforms and the
DBMS can address many more requirements, as discussed in this paper.

The same physical satellite network can provide several logical virtual networks
each tuned to specific requirements based on the type and volume of traffic.
Because of centralized maintenance, all pre-configuration and provisioning activities
have to be well supported. This requires sophisticated version management support
for configuration data so that multiple versions of correct, complete, and consistent
network configuration can be maintained within the NMS while operators are
experimenting with new scenarios or incrementally adjusting configurations. This
centralized handling of configuration data, termed data-centric management, is a key
requirement for satellite networks because of the large and complex relationships
and configuration rules imposed by satellite networks. It is essential to eliminate the
possibility that a single mis-configuration leads to a large non-localized impact on
the network.

From a functional point of view, satellite networks share common high-level
network management requirements with their terrestrial counter-parts. On the other
hand, traditional satellite networks are flat and typically cover large geographical
area. Often, their deployment is in remote locations with no local maintenance or
upgrade facility. Management links have limited bandwidth availability that
requires efficient data coding schemes. To save power and reduce recurring cost for
remote stations (thousands to millions in number), processing, memory, and storage
capability has severe limitations. This requires that remote device configuration
information along with executable software be downloaded from the manager in
charge of remote devices scattered over a wide geographic area since there is not
enough storage within a device. This configuration management aspect of the
satellite networks is described in this paper.

The paper is organized as follows. Section 2 summarizes key facets of network
management and the role of network management standards namely, SNMP and
CMIP. Section 3 details a data-centric approach for configuration management that
aims at handling large, flat networks with (persistent) memory-less managed

(c) 1999 IFIP

devices. Section 4 summarizes the requirements. Section 5 presents an overview of
the DBMS-based auto-discovery scheme that serves as the integration mechanism
for DBMS-resident configuration management and the network management
platforms. Section 6 summarizes the application of this reusable architecture in
multiple network management systems with cost-benefit analysis. Section 7
summarizes the contributions of this paper and provides a roadmap for future work.

2. Standards-Based Network Management

Network Management as a discipline has gained some maturity and acceptance [5]
with the development of key standards such as SNMP [6] and CMIP [7]. The
implementation of network management systems also leverages several computing
standards such as C++, SQL, HTML, Java, etc. However, the SNMP family is
mostly driven by the management of commonly used terrestrial devices such as
routers, bridges, workstations, etc. The CMIP family, originating from OSI and now
including TMN [4], is aimed at the telecommunications world with complex and
large networks. Both of these standards address the management information
modeling with Management Information Bases (MIBs) and protocols to exchange
information between a manager and the agents residing on the managed devices.

SNMP uses trap-driven polling while CMIP uses notifications (traps) as the
primary means of collecting status and event information from agents. Although
SNMP (v1) is easy to implement, its scalability, security, bulk data transfer, and
manager-to-manager communication capabilities are limited. CMIP addresses these
areas, but at the cost of complex and costly implementation. This cost can be
justified at a small number of managers but not on the agent side where large
number of minimally configured devices are connected to the manager with low
bandwidth links. One common deficiency in both SNMP and CMIP family is a lack
of behavioral modeling. Both MIBs provide only a place-holder for textual
description of device behavior.

In both SNMP and CMIP network management, the agent is expected to know
and store the device configuration. The manager can interrogate an agent to get the
current configuration or even instruct the agent to modify some attributes. This
implies that the managed device has a way of storing configuration persistently using
either disk drives or non-volatile memory in order to maintain current
configurations. For large satellite networks this model does not work since the
remote devices are designed to carry mostly traffic and the cost model does not
allow for data persistence support for large number of configuration attributes. In
such large, flat networks, the manager keeps the correct and current configuration
for each managed device. When a device boots, it requests its configuration (and
executable software) from the manager. When the device’s configuration or software
changes at the manager, the agent is immediately notified of the change to reconcile
its processing. This unique feature, termed data-centric configuration management,
is not directly supported in either the SNMP or the CMIP model and requires a
custom solution.

(c) 1999 IFIP

.

3. Configuration Management

A major issue in network management has been where to store configuration data.
Many approaches are possible and each has its benefits and drawbacks. It is
generally accepted that the device has the current NM data, but it is unclear who
should hold the desired NM data. This simple distinction has many repercussions in
the entire architecture of an NMS. This is because most configuration management
data access is for read-only purposes and satellite bandwidth is so limited.

Satellite network management is simplified if the network manager provides
configuration data persistence for the managed devices. This imposes a database-
centric architecture for network management systems. This approach is discussed
first. For completeness, two other approaches are also briefly described. Several
advantages of the database-centric approach in the areas of consistency checking and
pre-configuration are also described.

3.1 Database-Centric

A database-centric approach, shown in Figure 1, is where the network manager
stores the desired configuration. If the agent does not posses the current desired
configuration, this need is identified and the manager ensures that configuration is
reconciled with the agent with a downline load mechanism. With this approach, the
manager has to include a comprehensive data management facility. This is typically
provided by a DBMS where all configuration data is stored and indexed. The use of
a DBMS facilitates the implementation of the configuration management
applications directly on top of the DBMS. The operators use these applications to
browse and change configuration data, stored locally in the manager’s DBMS, for
the network devices. The NMS ensures that the changes are automatically provided
to the agent.

Figure 1: Data-centric network management

The configuration data is converted to files that are then sent to the agent by an
entity called reconciler that resides within the NMS. Reconciler publishes all
changes in configuration data to the potentially interested agents. An intelligent
agent can request and pull a specific piece of data, identified by version numbers or
time-stamps The configuration information is sent in files with minimal coding
overhead so that the agents can quickly receive and parse the configuration data sent
by the manager. Under this scheme, the NMS is not required to poll and push the
configuration information (parameters or software files). This kind of intelligence
within the agents ensures that the NMS does not have to keep associated state
information for disseminating configuration information to large number of agents.

NMS AgentOperator

(c) 1999 IFIP

3.2 Agent-Centric

An agent-centric approach, shown in Figure 2, is where the agent stores the current
and desired NM data, using Non Volatile RAM or even disk. If an operator-level
application needs to show configuration data, the manager has to retrieve this
information from the agent. The manager may temporarily cache this information,
but it is the agent that has the most current data. The data transfer from the agent to
the manager could be time consuming because of the limited bandwidth and satellite
delay between a manager and the agents that are not always geographically co-
located. If the agent has a persistence problem, such as NV RAM failure, then all of
its configuration information will be lost and must be reentered from an external
source.

Almost every major network management platform assumes an agent-centric
approach with open protocols such as SNMP and CMIP. Thus, third party and
satellite devices conforming to agent-centric approach can be operated easily with
off-the-shelf platforms supporting open protocols. Some of these platforms may
provide persistence, but it is typically used for local objects residing on the network
management host such as event logs.

Figure 2: Agent-centric network management

3.3 Manager and Agent Stash

Another approach is to store the desired NM data in a private stash largely
independent of the manager or the agent. This allows for slightly better redundancy
if either the manager or agent fails, but introduces consistency problems for the NM
data. Either the manager or the agent can write to this stash and either of them can
read from the stash when this backup data is needed. Stashing is just for illustration
purposes and is less likely to be used in satellite products since stashing is not
transparent. Each application is required to implement its own reconciliation
scheme. Consistency between stashes and versions of stashes used to acquire
desired NM data for agents is not easily enforceable

3.4 Consistency Checking

Consistency checking is an important issue for any approach to configuration data
persistence. In order to prevent an operator from mis-configuring a complex
network, the system provides double checks. These checks are performed at the
manager before any data is sent to the agent. Many third-party devices that use
SNMP let the agent do all consistency checking. In that case, the manager resends
requests repeatedly over the network until a positive response is received from the
agent.

Operator NMS Agent

(c) 1999 IFIP

.

It is not easy to ensure consistency across several agents because of the
difficulty in implementing transaction and locking control in such a distributed
scenario. Consistency checks, especially that involve more than one object, are best
implemented at the server level so that client applications are not expected to make
these checks individually. This minimizes redundant code and can also improve
performance since all data is available at the server level on the manager.

A data-centric approach where the manager provides agent data persistence is
found to be most suitable for ensuring consistency. In this approach it is possible to
fully leverage the distributed locking, triggers, and transaction features of modern
databases. All configuration-related consistency constraints and transformations can
be coded within the DBMS as internal procedures. These software modules are
invoked automatically using the DBMS triggering mechanism when an object is
created, deleted, or modified. A trigger can thus reliably run all checks and also
make related secondary changes in the same or other tables transparent to the various
management applications using the DBMS.

3.5 Pre-Configuration

The database-centric approach is also needed for providing pre-configuration
support. Often a network operator wishes to pre-configure the network before the
actual hardware arrives or is installed. This allows the network operator to decide
when they wish to perform all of the data entry necessary to configure a network
rather than doing it only after the hardware has been installed and while it is turned
on. This also allows the network configuration to be entered in the factory. This
value-added feature is only possible if operators can configure a network without
having to interact with a real network agent.

3.6 Multiple Versions

Most networks continue to evolve with on-going change, addition, and deletion
activities. Multiple operators may be involved in a large network dealing with the
various phases of planning, installation, test, and commissioning activities. A data-
centric manager requires a version management facility where the database can store
configuration information related to these specific stages and provide a robust
environment for defining and deploying configuration data. A DBMS simplifies the
management of multi-version configuration data by using a suitable granularity at
the database (network), table (device type), or the row (specific device) levels.

4. Requirements

The requirements for satellite network management networks are presented under
three categories: business, architectural, and functional.

4.1 Business Requirements

Some next generation network management system (NMS) requirements are driven
by market forces including sharing of common reusable software by multiple
product lines, low cost development, and standards-compliance.

(c) 1999 IFIP

4.2 Architectural Requirements

The architectural requirements, shown in Table 1, also include those derived from
major business requirements. For each architectural requirement, we also show its
implementation with the following: Database Management System (DBMS) and
Network Management Platform (NMP). Note that all network management
platforms may not necessarily meet all of these requirements.

Table 1: Architectural requirements for network management systems

Feature Description Implmented
With

Proprietary
Protocol
Translation

The NMS should be able to manage devices
utilizing proprietary protocols for configuration,
events, command/response, test, diagnostics, and
performance data.

NMP

Data-Centric
Management

The NMS should be able to provide data-centric
management where configuration data is kept in
DBMS facilitating centralized configuration.

DBMS

Scalable
Architecture

The NMS should be scalable to handle tens of
thousands and potentially millions of
geographically distributed managed devices

DBMS and
NMP

Distributed
Software
Architecture

GUI, server and network interface applications to
run on different computers over IP protocols.

DBMS and
NMP

Rapid GUI
Generation

Operators should be able to configure devices
using easy-to-use GUI applications. Their
development and modification should be low cost.

DBMS
tools

Object-
Oriented APIs

The APIs should allow the use of object-oriented
implementation tools such as C++ and Java.

DBMS and
NMP

Multi-User
Operation

Multiple operators should be able to use, without
jeopardizing data integrity, the same NMS and
share common network configuration and
monitoring data.

DBMS

Transaction
Processing

The network configuration should be created and
modified under well-defined transactions in a
multi-user scenario.

DBMS

Version
Management

Multiple versions of network configuration should
be available to the operator.

DBMS

(c) 1999 IFIP

.

Pre-
Configuration

Operator should be able to pre-configure non-
existent devices and store the configuration until
the devices become on-line and fetch their
configuration from the NMS.

DBMS

4.3 Functional Requirements

The following functional requirements coupled with the business and architectural
requirements listed earlier provide the necessary structure to analyze our approach.
The functional requirements are listed under five areas. There is a comment at the
end of each area that summarizes whether the implementation is database or network
management platform based.
1. Fault Management - Encompasses fault detection, isolation and the correction

of abnormal operation of the network. Faults cause systems to fail to meet their
operational objectives and they may be persistent or transient. This involves
collection of events and alarms, suitable applications for viewing and managing
these logs and iconic displays, and performing actions.

The fault management requirements are met with the network management
platform.

2. Performance Management - Monitors the behavior of resources in the
environment and the effectiveness of communication activities to be evaluated.
This involves collection of performance data (notification and/or polling) and
viewing applications.

The performance management requirements are only partially met with off-the-
shelf network management platform features. Historical performance data
(logging and visualization) can benefit from DBMS.

3. Configuration Management - Identifies, exercises control over, collects data
from and provides data to systems for the purpose of preparing for, initializing,
starting providing for the continuous operation of, and terminating
interconnection services. This includes auto-discovery, SNMP and CMIP MIB
browsers and rules engines for data-centric configuration consistency and
downline load generation rules. Also important is the modeling scheme for
configuration data.

Except for SNMP and MIB browsing, these requirements are not suitable for the
network management platform and warrant the use of DBMS.

4. Accounting Management - Enables charges to be established for the use of
resources in the environment, and for costs to be identified for the use of those
resources. This includes collection and processing of accounting data.

The accounting management information is collected using the platform
functionality (similar to performance and fault) for file transfers. Historical data
is stored in the DBMS and visualization applications are easily built on top of
the DBMS.

5. Security Management - Supports the application of security policies by means
of functions including the creation, deletion and control of security services and

(c) 1999 IFIP

mechanisms, the distribution of security-relevant information, and the reporting
of security-relevant events. This includes operator access control and managed
element security.

Object-level security, especially for configuration, requires granularity that is
typically missing from SNMP (v1) platforms. CMIP platforms do provide
security. Configuration-based security is provided by the DBMS.

6. Navigation – Navigation provides an operator interface (often with geographic
map features) to view the network, its components, and current status.

The navigation features are provided by the network management platform.

4.4 Discussion of the DBMS Requirements

The requirements can be grouped into three broad categories. The first is the set of
functions that are easily mapped to the relational DBMS. The second set of functions
can be hosted by network management platforms. The final set of remaining
functions requires in-house software development.

There is an advantage in using relational DBMS as opposed to object-oriented
DBMS for network management applications. Although functionally rich (with
seamless mapping to object-oriented language primitives), object-oriented DBMS is
still not as commonly used as its relational counterpart. With the availability of
layering software that facilitate the use of object-oriented language, the relational
DBMS now provide best of the both worlds, as enumerated below:
• Relational DBMS, as opposed to object-oriented DBMS, is well entrenched in

modern computing. It offers a wide variety of interfaces (SQL, C++, HTML,
Java) and mature features such as third-party applications, scalability, stability,
replication, distribution, etc.

• Relational DBMS and associated rapid generation tools are increasingly useful
in developing GUI applications and web interfaces.

• Relational DBMS provides engines for configuration and downline load rules
and is available on all major hardware/software platforms.

5. DBMS-Based Auto-Discovery

Many requirements listed above for complex multi-protocol satellite devices can
easily be met with network management platforms. However, most of the device
specific work is related to the implementation of configuration applications ensuring
correct and consistent behavior. The need for storing the entire network
configuration in a DBMS is aligned with transaction, multi-user, and pre-
configuration requirements. It is also clear that substantial development is with
respect to information stored in the DBMS. The major objective for a suitable
integration scheme (reusable architecture) is to somehow keep both the platform and
the DBMS in synchronization so that various applications can be seamlessly
developed and used without precluding the use of the desirable features of either the
platform or the DBMS. Two additional possibilities are discussed first, followed by
the scheme actually used in the reusable architecture.

(c) 1999 IFIP

.

5.1 NM Platform API with Embedded DBMS

One possible implementation could be that the DBMS is embedded within the
network management platform. All custom applications are developed using the
API provided by the platform. The model for the network (full FCAPS) is located in
the platform. Applications that require persistence ultimately use the DBMS features
as seen through the platform API. Though elegant, this scheme has two major
disadvantages. First, one cannot benefit from the large selection of application
development tools that are available for the DBMS (and not the platform). Second,
essential features such as transaction management that are central part of the DBMS
are likely to be missing from the platform. Any DBMS embedding essentially
precludes the use of these desirable features because of current inadequate NMP
APIs.

5.2 DBMS API with Embedded Platform

Taking the reverse approach where the DBMS is layered above the platform
introduces its own problems. In this scheme the DBMS hosts the network model (all
FCAPS) and the platform becomes a client for the DBMS. The DBMS APIs are
generally available for data use and are less likely to have the message definition and
processing capabilities that are required by fault and performance management
applications. It becomes easier to develop GUI applications with the rapid
generators, but these applications will not be able to benefit from the message
modeling (such GDMO) besides suffering from poor message handling
performance. Moreover, many off-the-shelf applications such as alarm manager and
event manager bundled with the platform may need to be developed again on top of
the database. Command-response types of management protocols are problematic to
implement in a transaction-based DBMS.

5.3 DBMS and NM Platform at the Same Level

By keeping both the DBMS and the NM platform at the same level, as shown in
Figure 3, we can benefit from their respective attractive features. The configuration
applications can be developed on top of the DBMS, benefiting from the availability
of rapid generator tools. The respective APIs are used to develop custom
applications. The first challenge is to make sure that the NM platform and the
DBMS are synchronized with respect to the network model. Secondly, the user
interface should seamlessly provide access to all NM applications irrespective of
how they are hosted.

Architecturally, the NMS can be divided into three horizontal layers. The
topmost layer includes all user-level applications that are used by the operator.
Currently GUIs use Motif, but this layer is fast migrating to the Web-based standards
(HTML and Java). A visual display of entire network in terms of device
containment hierarchy is provided by the platform viewer application. The second
layer is the server layer which contains the following: models for network
components, network containment hierarchy, APIs for user-applications, distribution
function, routing function, various logging services, APIs for the network interface
layer, etc. The bottom-most layer provides the interface to the network. It can

(c) 1999 IFIP

directly support the standard protocols such as SNMP and CMIP or provide libraries
for converting legacy protocols. The integration of the DBMS and NM should be
transparent from all user applications.

 Performance Accounting

Network Management
Plat form

Protocol Adaptor

D B M S

Rules Eng ine

Finder:
D B M S - B a s e d

Auto-
Discovery

A larm
Manager

Event
Manager

Log
Manager

Conf igur
at ion
Apps

Satel l i te Network wi th Distr ibuted Remote Terminals
R e m o t e R e m o t e

R e m o t eR e m o t e

E
ve

n
t/

A
la

rm

C
o

m
m

a
n

d
/

R
e

sp
o

n
se

Cus tom
A p p

Network
V iewer

C
o

n
fi

g
u

ra
ti

o
n

R
e

co
n

ci
le

r

SNMP, CMIP, and
Propr ietary Protocols

Perf.
Apps

C h a n g eRepl icat ion

Account .
Apps

Figure 3: Reusable architecture for network management systems

The detailed configuration data for each device, represented by an icon on the
viewer, is stored in the DBMS. The containment hierarchy should be in sync with
the database representation. The configuration applications are developed using
DBMS tools (rapid application generators). Several configuration constraints [1]
have to be addressed to ensure correct and consistent configuration. The
configuration rules are coded in a high-level DBMS internal procedure language.
When a GUI (or a command line interface for that matter) configuration application
creates or adds a device in the database, then the database triggers get activated and
eventually the containment hierarchy gets replicated to the NM platform. Thus, the
network management platform automatically discovers the managed devices through
the DBMS (that is storing configuration data for the managed network). Similar
discovery in the SNMP world requires that the manager poll all managed devices in
the network.

The platform itself collects traps and command-response information and
changes the icon color based on the status. The operator can launch any fault,
performance, or configuration application from menus associated with the icon via a
common launching procedure. The configuration changes are converted to the
download files using rules that are also coded in the same DBMS internal procedure
language. Both configuration checks and download file generation thus share a
common rules language and processing engine.

This scheme preserves the distribution and scalability features of the DBMS and
network management platform. For larger networks it is possible to partition and

(c) 1999 IFIP

.

map the network into multiple instances of the platform and DBMS. Each DBMS
instance synchronizes, using a dedicated Finder module, with its counterpart
platform instance for the managed devices under its domain. The platform instances
can perform command/response handling and event propagation within their
hierarchy.

Another possibility where both the DBMS and the NMP are at the same level
could have been that a management application uses two-phased commits. This
scheme is not desirable since it exposes each application to two APIs (DBMS and
platform) and also because there is a general lack of transaction support in NM
platforms.

6. Application of Reusable Architecture

Two network management systems have already been developed using this reusable
architecture. Many more are under various development stages.

6.1 VSAT Telephony

A Very Small Aperture Terminal (VSAT) telephony network management system
was the first application of the reusable architecture. The network is based on Geo-
synchronous satellite and can include thousands of remote VSATs. The network
management system monitors the remotes for their status and performance
characteristics. The configuration data is stored in the database.

The Finder module replicates the containment hierarchy to the network
management platform (Sun Solstice Enterprise Manager). Fault management
applications are off-the-shelf, while custom performance application has been
developed on the network management platform. A web-based version of these
applications is also available [2].

6.2 Mobile Satellite Network

A network management system for managing satellite base stations of a medium-
earth-orbit (MEO) satellite network has been developed. The network uses MEO
satellites for providing global mobile telephony and related applications. The
satellite base station is a key component that provides the functionality of cellular
Base Station Controller (BSC) and Base Transmission Station (BTS). In addition, it
includes a resource management system that dynamically manages the frequency
and time slots for multi spot-beam satellites.

The NMS manages a variety of equipment using proprietary (Message Protocol
Adapters) and SNMP protocols. The software and device configuration is
automatically down loaded from the NMS. Accounting data is collected using FTP.
A viewer provides a graphical display of the network hierarchy with color icons
representing the status of respective devices. All applications can be started using
context-sensitive menus associated with the icons.

6.3 Cost-Benefit Analysis

By using off-the-shelf software (DBMS and platform), the amount of custom
software has been reduced by about 50%, leading to substantial savings in multi

(c) 1999 IFIP

person-year projects. The reduction in software size was estimated by comparing
the NMS developed using this approach with a similar NMS that was developed
earlier using proprietary techniques. The biggest savings were observed because of
the applications that are bundled with the NM platform and with the use of
configuration and download rules that could now be coded within the DBMS.

The use of off-the-shelf software introduces recurring software licensing costs
for each deployed network. This cost, however, is a small fraction of the
development labor costs that are saved with the off-the-shelf software. The number
of NMS nodes in a satellite network is rather small compared to the nodes that carry
traffic. Thus the recurring costs because of the use off-the-shelf software in the
NMS is manageable.

The benefits for the various phases are summarized below. All these savings
can ultimately be traced to a simple application of the systematic reuse initiative. A
reusable architecture facilitates more functionality with less software!
• Marketing : The use of an NM platform with SNMP and CMIP compliance

provides an additional marketing edge to the networks.

• Prototyping: New networks typically take a few weeks for a demonstrable
prototype with significant fault, performance and configuration management
features. This used to require several months where large number of source
code files had to be modified.

• Time-to-Market : A data-driven approach and significantly less software
development has allowed us to deploy a networking product faster.

• Testing: Testing is reduced since several application such as alarm manager,
event manager, and viewer with features such as rules engine, transactions,
multi-user support, caching, replication etc. are off-the-shelf.

• Maintenance: An architecture-driven approach allows a common maintenance
of product-independent features of the NMS.

7. Conclusions

The network management systems for satellite networks can directly leverage
computing standards in the following areas: operating system, GUI, databases, inter-
process communication, object architectures, and programming languages. These
managers can use advanced network management platforms as well. However, the
data-centric configuration management requirements require the use of DBMS. A
replication-oriented integration of the platform with a DBMS allows leveraging both
sets of technologies for significant cost and time savings. We have validated our
approach by accommodating two network management platforms (Sun Solstice
Enterprise Manager [3] and HP OpenView [8]). The DBMS selection has been
Oracle, but with our use of the CORBA and SQL standards for the integration
software, other DBMSs can easily be accommodated.

It is likely that gradually the platform vendors may appreciate the importance of
lean protocols, data-centric configuration management, and versioning, and
ultimately may even incorporate them in the platforms. Recent initiatives undertaken
by the IP networking equipment manufacturers, termed Directory Enabled Networks

(c) 1999 IFIP

.

(DEN), have some similarities to data-centric management and are promising under
this context. Some networking and software vendors have shown interest and are
slowly migrating towards a scenario where configuration data is obtained from
centralized places. New protocols are being developed so that management systems
can use such directory-based data. A wide spread use and subsequent incorporation
into network management platforms may still take some time.

For foreseeable future custom satellite network management systems will
continue to be developed because of the deficiencies in the NMS platforms.
However, the development of such systems can benefit from the availability of off-
the-shelf platforms and other computing technologies such as DBMS. Besides the
use of DBMS, other areas such as visualization and intelligent processing look more
promising since the ongoing improvements in computing technology can also be
leveraged. General purpose visualization tools, Web technologies (Java, VRML,
XML, HTML, HTTP) for universal GUI and remote access, CORBA services, and
expert system toolkits, etc. are available today for their incorporation into network
management systems. An integration of off-the-shelf software instead of
development from scratch is in itself a promising start with significant cost and time-
to-market advantages.

Acknowledgments

This paper is based on the work done by the past and current members of the
Software Technology department and the various product lines of HNS.

References

[1] Goli, S. K., Haritsa, J., Roussopoulas, N., ICON: A system for implementing
constraints in object-based networks, Integrated Network Management IV,
Chapman and Hall, 1995.

[2] Gopal, R., Web interface for network management systems, Network
Management Forum Bulletin, Fall 1996.

[3] Huntington-Lee, J., Terplan, K., Gibson, J., HP Open View: A manager’s guide,
McGraw Hill, 1997.

[4] ISO/ITU, Principles for a telecommunications management network,
International Telecommunication Union Recommendation M.3010, 1992.

[5] OMNIpoint documents (Overview, procurement guide, development guide,
conformance requirements), Network Management Forum, 1994.

[6] Rose, M., The Simple Book: An introduction to Internet management, Prentice
Hall, Englewood Cliffs, NJ, 1994, 2nd edition.

[7] Stallings, W., SNMP, SNMPv2, and CMIP: The practical guide to network-
management standards, Addison-Wesley, Reading, Massachusetts, 1993.

[8] Sun Solstice Enterprise Manager Overview, SunSoft, 1996.

(c) 1999 IFIP

