
Formal Specification of SNMP MIB’s
Using Action Semantics: The Routing
Proxy Case Study

Elias Proćopio Duarte Jr., Martin A. Musicante
Federal University of Parańa, Dept. Informatics
Caixa Postal 19081 Curitiba PR 81531-990
Brazil
felias,mamg@inf.ufpr.br

Abstract
The usual way to describe the semantics of MIB objects is just to give an infor-

mal English text explaining each object’s behavior. Informal descriptions are vague
and incomplete. They are open to misinterpretation and may lead to inconsistent
implementations. In this work we propose the use of Action Semantics as a simple
and powerful tool for the formal description of the behavior of MIB objects. Formal
descriptions may be used as the basis for systematic development, verification, and
automatic generation of implementations. In our approach, operations for each MIB
object can be simply added to the existing ASN.1 MIB descriptions, without imply-
ing in any modification of current standards. We initially define the semantics of the
core SNMP server, as well as the snmpget and snmpset applications. This descrip-
tion is extensible, allowing the inclusion of any MIB. As a case study, we define the
semantics of the experimental SNMP Routing Proxy MIB.

Keywords
Formal Methods, SNMP MIB Semantics, Network Fault Monitoring

1. Introduction

The Internet StandardSimple Network Management Protocol(SNMP) Frame-
work defines aManagement Information Base(MIB) as a collection of related man-
agement objects which anagentkeeps in order to allow management applications to
monitor and control the managed entities [7]. TheStructure of Management Infor-
mation(SMI) defines the rules for describing management information [6]. The SMI
uses a a subset of theAbstract Syntax Notation One(ASN.1) language to define MIB
modules and objects. In this framework, ASN.1 is also used to define the formats of
the packets exchanged by the management protocol.

The current way to describe thesemanticsof SNMP MIB objects is just to give an
informal English text explaining each object’s behavior. These semantic descriptions
can be added either in the form of comments, or in theDESCRIPTIONfields of SMI
definitions. Informal descriptions are usually vague and incomplete. They are open

(c) 1999 IFIP

to misinterpretation and may lead to inconsistent implementations.
In this work, we propose the use ofAction Semantics[1] as a simple and power-

ful tool for the formal description of the semantics of MIB objects. Action Semantics
is a formal framework for semantic description, developed to provide readable de-
scriptions of real-life languages. Action Semantics descriptions map abstract syntax
to semantic entities, which are defined inductively using semantic equations. These
equations defineactionsrather than higher-order functions, used in other formalisms,
and the essence of actions is much morecomputationalthan that of pure mathemat-
ical functions.

In our approach, actions for each MIB object can be simply added to the exist-
ing ASN.1 MIB descriptions, in the DESCRIPTION field, without implying in any
modification of current standards. These formal descriptions are precise and allow
MIB descriptions to be expressed in a well-defined, established notation. They may
be used as the basis for systematic development, verification, and automatic gener-
ation of implementations [8, 9]. Furthermore, a formal MIB description supports
verification and tractable reasoning about equivalence and other features [10].

Action semantic descriptions are inherently modular. They are easily extended or
modified [11]. It is straightforward to reuse parts of the specification. In this paper,
we demonstrate these features by creating a core SNMP server specification, which
can be extended to include any MIB.

We initially describe the semantic entities that are common to all SNMP MIB’s.
They include the SNMP server, i.e. the agent that keeps the MIB – and client actions,
including the operations get and set, which are used to access MIB objects. Then,
as a case study of MIB description, we define the semantics of an experimental
MIB: the SNMP routing proxy [3]. This proxy can be used by an application to
reach an agent through an alternative path, whenever the route given by the network
layer is not working properly. Its deployment has been shown to improve the overall
dependability of the network management system [4].

The rest of the paper is organized as follows. Section 2 makes a review of Action
Semantics and those features that will be used to describe MIB object’s behavior. In
section 3 the semantic entities that describe the core SNMP server are defined. In
section 4 the Proxy MIB is introduced and then described using Action Semantics.
Section 5 concludes the paper.

2. Action Semantics

Action semantics[1] is a formal framework for semantic specification, developed
to provide “readable” descriptions of real-life languages [12, 13, 14]. Action seman-
tic descriptions arecompositional, i.e. they define semantic functions to map abstract
syntax objects to semantic entities. Semantic functions are defined inductively using
equations. The semantic entities areactions, ad-hoc entities which provide a natural
way to describe computations.

Action semantics uses a special notation to describe actions. This notation is
calledaction notation, and it is used in action semantic descriptions very much in

(c) 1999 IFIP

the same way as the�-notation is used in denotational semantics [15]. The symbols
used in action notation are intentionally verbose, so that English-like phrases can be
used—completely formally—to express most of the concepts present in computing.

Action semantics has features that are similar to other semantic formalisms. It
is similar to denotational semantics which uses semantic functions to describe the
meaning of objects. However, actions have a more operational flavor than functions.
In this sense, action semantics bridges the gap between denotational and operational
semantics [16].

Actions are used to describe the meaning of computation. Actions can beper-
formedto processinformation, with various possible outcomes: normal termination
(performance of the actioncompletes), exceptional termination (itescapes), unsuc-
cessful termination (itfails) or non-termination (itdiverges). Action notation pro-
vides some primitive actions, and variouscombinatorsfor forming complex actions,
corresponding to the main fundamental concepts of programming languages.

A data notationis used to describe the information processed by actions. The
standard data notation (included in action notation) provides a collection of alge-
braically defined abstract data types, including numbers, characters, strings, sets,
tuples, maps, etc.; further data may be specifiedad hoc.

There is also a third class of entities in action notation, calledyielders. A yielder
represents unevaluated data, whose value depends on the current information avail-
able to the primitive action in which it occurs. Yielders areevaluatedto yield data.
An example of a standard yielder isthe data bound to I , which depends on the
current bindings that are received by the enclosing primitive action.

Actions can represent pure control, or can process different types of information.
The so-called ‘facets’ of an action represent the behavior of the action. Each facet
deals with one aspect of the information processed by the action. There exists five
facets of each action:

Basic: This facet deals with pure control flow, without reference to information pro-
cessing issues.

Functional: This facet deals withtransientdata, which is given to or by an action.
For example, when the primitive actiongive the successor of the given
natural is given a natural numbern as transient data, it completes, giving
n + 1 as a transient. The compound actionA

1
then A

2
performs the action

A
1

first; all transient data given byA
1

is passed on toA
2
, which is performed

afterA
1

completes. The primitive actionchoose D, whereD is a sort of data,
makes a non-deterministic choice of an individual of sortD, giving the chosen
datum as a transient.

Declarative: This facet deals with the manipulation ofscopedinformation, repre-
sented by associations oftokensto bindable data. For example, performance
of the primitive actionbind “max-length” to 256 completes, producing a
binding of the token“max-length” to the natural number 256.

(c) 1999 IFIP

Imperative: This facet is concerned withstoragehandling. A storage in action
notation is simply a mapping from memory cells to storable data. For example,
consider the actionallocate a cell then store 26 in the given cell, which
combines features of the functional and imperative facets.

Communicative: This facet provides a system ofagents, which can each be ‘con-
tracted’ to perform particular actions. Initially only a special ‘user’ agent is
active. Agents can communicate using asynchronous message passing. Each
agent has its owncommunication buffer, in which all the messages sent to the
agent are placed. Arbitrary data can be contained in messages.

3. SNMP Semantic Entities

In this section, we specify the basic building blocks that will allow any MIB to
be formally specified using Action Semantics. The semantic entities defined here
are common to all SNMP MIB’s. They include the SNMP server, i.e. the agent that
keeps the MIB, and client actions, for instance snmpget and snmpset, which are used
to access MIB objects.

In the definitions below, equations are followed by comments. The comments
are written between horizontal lines.

3.1 Client Side

This part of the specification details the actions used to request an SNMP service,
i.e. snmpget and snmpset are specified.

The shape and behavior of snmpget is described in the next two expressions. The
functionality (typing) of snmpget is declared first. The snmpget function takes the
identification of a station (in which the SNMP server is running), a community (to
validate the access to the requested object) and the identification of the requested
object. The community is defined to be an item of data belonging to the sortDis-
playString. The result of the semantic function is an action, whose behavior is stated
by item(1), and it is explained below.

� snmpget(, ,) :: IpAddress, DisplayString, OBJECT IDENTIFIER ! action

(1) snmpget(A:IpAddress, C :DisplayString, O :OBJECT IDENTIFIER) =
send a message[to A][containing (“get”, C , O)]

then
accept a message[from A][containing a datum “wrong community”]

then
give the rest of the given tuple

The semantics of snmpget is stated as follows: a message containing the request
is sent to the server (A). Thesend primitive sends a message to the specified station,
A. The contents of the message is detailed in thecontaining field.

The client will then wait for a reply, which can contain the requested object value,
or an error message (in the case a wrong community was given). The symbol “”
means set union. Theaccept action is defined in section 3.4 below. It waits for a

(c) 1999 IFIP

new message, returning the tuple formed by the sender of the message, followed by
the contents of the message.

The basic actiongive and the combinatorthen were explained in section 2. They
belong to the functional facet of Action Notation. The actiongive the rest of the
given tuple receives the tuple given by the previousaccept. This action simply
drops the identification of the sender, returning the contents of the last received mes-
sage (recall the explained behavior ofaccept above).

The semantics of snmpset below is similar to that of snmpget. In order to set an
object’s value, a message is issued to the serverA. After the attribution of the new
value, the server replies to the client a message containing the object identifier and
the value set, if the message is accepted.

� snmpset(, , ,) :: IpAddress, DisplayString, OBJECT IDENTIFIER, datum ! action

(2) snmpset(A:IpAddress, C :DisplayString, O :object-ID, V :object-value) =
send a message[to A][containing (“set”, C , O , V)]

then
accept a message[from A][containing (O , V) “wrong community”]

then
give the rest of the given tuple

3.2 Server Side

This part of the specification deals with the actions relative to the server side of
SNMP. TheSNMP-MIB-Daemon action represents the behavior of the server. It is
described by aunfolding . . . unfold construction, which is used in Action semantics
to represent loops. The performance of an actionunfolding A performs theA, but
wheneverunfold is reached, actionA is performed instead. In other words, the
dummy actionunfold is behaves like a macro, which is replaced by actionA itself.

The semantic definition of the server action below treats coming snmpget and
snmpset messages in separate actions, given byservice-get and service-set re-
spectively. There are other possible approaches to define that server; the present one
was chosen for simplicity: all we need for the moment is to reply to client requests.

The or combinator was used in defining theSNMP-MIB-Daemon action.
This combinator represents a choice between alternative actions, in this case,service-
get andservice-set.

� SNMP-MIB-Daemon :: action

(1) SNMP-MIB-Daemon =
unfolding

service-get
or

service-set
and unfold

Next, the snmpget service is specified. The server receives a message from a
client, containing a triple. This triple is formed by the token“get”, a community and
the object identifier which value is wanted. The actionaccept returns a tuple, which

(c) 1999 IFIP

will be passed to the action that follows thethen combinator. In our case, the tuple
given byaccept has four elements: a station address (the sender of the message),
the token“get”, a community and an object identifier.

The actioncheck completes whenever its parameter evaluates totrue. In the case
of our specification,IS-OK will result in true if the community is valid for read-
ing the value of the requested object; otherwise, it results infalse. Notice that the
components of a tuple are numbered in Action Semantics. The expressionthe Dis-
playString#3 refers to the third component of the tuple given to the action, which,
in this case must be a community.

After checking the community, theget operation can be started. This is per-
formed by the actionget(), which will be defined for each MIB, in thesemantic
functionspart of the MIB specification. An object value must be given as the result
of eachget() action.

This combinatorand represents the (possibly) interleaved performance of both
its component actions. In the functional facet, theand combinator returns the tuple
formed by the concatenation of the tuples returned by its component actions.

� service-get :: action

(2) service-get =
accept a message[from any IpAddress][containing (“get”, a DisplayString,

an OBJECT IDENTIFIER)]
then

check IS-OK(the DisplayString#3, “get”, the OBJECT IDENTIFIER#4)
and then

give the IpAddress#1 and get(the OBJECT IDENTIFIER#4)
then send a message[to the IpAddress#1][containing the datum#2]

or
check not IS-OK(the DisplayString#3, “get”, the OBJECT IDENTIFIER#4)

and then
send a message[to the IpAddress#1][containing “wrong community”]

The specification ofservice-set is similar to that ofservice-get. However, there
are two main differences between them:(i) The received message must include all
the data in the previous case, and contain the new value, to be assigned to the MIB
object; and(ii) the operationset(,) is used to set the MIB object to the new value.

As in the previous case, theset(,) operation must be specified in the semantic
functions part of the description. It will receive an object identifier and a value as
parameter. It will return the same object identifier and its value.

� service-set :: action

(3) service-set =

(c) 1999 IFIP

accept a message[from any IpAddress][containing (“set”, a DisplayString,
an OBJECT IDENTIFIER,
a datum)]

then
check IS-OK(the DisplayString#3, “set”, the OBJECT IDENTIFIER#4)

and then
give the IpAddress#1 and set(the OBJECT IDENTIFIER#4, the datum#5)
then send a message[to the IpAddress#1][containing rest of the given tuple]

or
check not IS-OK(the DisplayString#3, “get”, the OBJECT IDENTIFIER#4)

and then
send a message[to the IpAddress#1][containing “wrong community”]

3.3 Values

We have not included here the detailed formal definition of values, such as dis-
play strings, object identifiers and data values. Values can be defined in a similar
manner as in [2]. The formal definition of these families of values is straightforward,
being just a translation from those defined in the ASN.1 standard.

The notation2 used in the specification below means that the left-hand side of
the equation is not defined at this stage.

(1) Simple Type = INTEGER OCTET STRING OBJECT IDENTIFIER BIT STRING

(2) INTEGER = 2

(3) OCTET STRING = 2

(4) OBJECT IDENTIFIER = 2

(5) BIT STRING = 2

(6) Application Wide Type = 2

(7) Simply Constructed Type = 2

3.4 Auxiliary

This section is devoted to the definition of auxiliary semantic entities and actions
that are used in the rest of the description.

Theaccept action is defined as follows:(i) a messageM is received and(ii)
the tuple formed by the identification of the sender of the message and its contents is
returned.

� accept :: message ! action

(1) acceptM =
receive a message

then
give h the sender of the message, the contents of the mesage i

The Action Notation sortagent is used in action semantics to identify the ma-
chinery responsible for the performance of an action. The sortagent is loosely
defined in [1, Appendix B] as a sub-sort of individual data. In this work we special-
ize this specification, defining action semanticsagent as IP addresses, which is the
natural choice in our case.

(c) 1999 IFIP

(2) agent = IpAddress

4. The SNMP Routing Proxy

The standard framework for Internet management is comprised of a network
management station (NMS) which communicates with agents using the Simple Net-
work Management Protocol (SNMP) [7]. The NMS queries the agents for manage-
ment information describing the state of links, devices, protocol entities and nodes.
Agents may also send event information to the NMS by using traps. The NMS takes
decisions related to fault diagnosis, performance management, and network config-
uration, among others, based on the collected information.

There is a pressing need for network management systems capable of handling
errors. Although network management systems are in principle responsible for fault
diagnosis and management, current systems often become partially non-operational
as a consequence of the faults they should instead be helping to solve. If a commu-
nication link along the path from the NMS to an agent or to a managed network is
down, there will be a collapse of network management, as the NMS won’t be able to
determine the state of part of the managed network.

To make the network management system resilient to network failures there has
to be alternative means of accessing agents. The network, in general, possesses mul-
tiple potential paths between two communication nodes. However, since network
management systems are application layer entities, these have little or no control
over the paths that will be chosen by the network layer for routing the management
queries. So, alternative paths for management communication have to use applica-
tion layer entities which relay the management queries and replies along adequate
communication routes.

Using the concept of aproxy, the NMS has a simple application routing engine
to implement a fault tolerant routing system [4, 5]. An SNMP proxy is an entity used
by the NMS to access another device, i.e., the proxy receives the query, transmits it
to the agent, gets the reply and sends it back to the NMS.

4.1 Application Routes

Consider the simple network topology in figure 1, where the NMS is connected
to an agent (Ag) and also to two gateways, G1 and G2. Considering communications
involving NMS and Ag, suppose that routing is such that the direct link is used to
communicate the queries and replies, as shown in part A of the figure. If the link
between the NMS and agent fails, network management queries will be delayed until
the network layer recovers from the failure. The delay may be significant as a new
route for the agent must be discovered. A proxy could promptly relay the queries
from NMS to AG and the corresponding replies from Ag to NMS, as shown in part
B of the figure. The condition to obtain this solution is that the routes used by the
proxy be available when a failure occurs in the network route between manager and
agent. In the example, G2 can be used as proxy in such situation.

(c) 1999 IFIP

 NMS Ag G1 NMS Ag

 G2

 G1

 G2

A: Normal operation. B: Fault recovery.

Figure 1: Management communication routes.

An application routeis a concatenation of one or morenetwork routes, which are
joined by an application. Thus, the network route from the NMS to the proxy and
the network route from the proxy to the agent result in an application route from the
NMS to the agent when concatenated. Network routes are not transitive, so if there
is a network route from node A to node B, and another network route from node B
to node C, the concatenation of these two network routes may be different from the
network route from node A to node C. Thus, the application route can be used as an
alternative when there is a fault along the corresponding network route.

4.2 Locating Proxies

For a simple network topology like that of figure 1 the position of the proxy
is quite obvious, but for a more complex network, like that of figure 2 it is not a
simple decision. Considering the scenario where the NMS is attached to Kyoto and
there are agents attached to all other nodes. If any network route from the NMS to
an agent is not available, the agent will become unreachable to the NMS. A set of
proxies should be determined such that whenever an agent becomes unreachable an
application route will be established to reach that node.

In [3] an algorithm is presented to determine a set of proxies that allows applica-
tion routes to be activated whenever network routes between the NMS and an agent
is faulty.

For example, consider the network of figure 2. Table 1 gives the results after the
candidate proxies are selected based on the number of alternative paths and on the
sizes of these paths. For example, for nodeku there are three possible proxiestokyo,
tu, tisn. In the second step the algorithm deals with the selection of one of these
three candidates. For each candidate there is a counter of the number of agents for
which it is a candidate, the one that may be a proxy for the largest number of agents
is selected. In this case,Tisn is a candidate for 7 agents;tokyo is a candidate for 5
agents;tu is a candidate for 6 agents;tisn is then selected as proxy for ku. Table 1
also showsrisky nodes, for which it is not possible to determine an alternative route
to reach.

4.3 Dependability Evaluation

(c) 1999 IFIP

Fukuoka

HiroshimaSapporo

Sendai

Tokyo Kyoto

T.U. K.U.

TISN Osaka

Fujisawa

Figure 2: Dotted lines indicate network routes.

Agents Candidate Proxies
ku tokyo, tu, tisn
sapporo ku, fujisawa, tokyo, tu, tisn
fujisawa ku, tokyo, tu, tisn
tohoku.u ku, fujisawa, tokyo, tu, tisn
tokyo ku, tu, tisn
tu ku, tisn
hiroshima risky node - no candidates
fukuoka risky node - no candidates
osaka tisn
tisn tokyo, tu

Table 1: Proxies selected for the example network.

To allow an evaluation of the impact of using proxies on network management,
we define a measure calledvulnerability. TheLink Vulnerability, vi, for a given link
li, is the number of nodes that become unreachable to the NMS ifli is faulty. Net-
work Vulnerability, V , for a given network is the summation of link vulnerabilities,
for all links in that network, i.e.:V =

PL

i=1
vi. The fault coverage,c, of a system

gives the probability that the system will recover given the occurrence of a failure
in the network. In this context it refers to the probability that the network manage-
ment system will stay operational if one link fails throughout the network. It can be
directly obtained from the previously introduced vulnerability. For the example of
figure 2, if one link fails, the probability that the management queries are delivered
is approximately 70%. For the network management case, whenever an alternative
route exists as an option for the communications that use a given link, the coverage
of the system is improved, as the system remains operational.

4.4 Routing Proxy Implementation

The proxy was implemented as a conventional SNMP MIB: a simple and flexible

(c) 1999 IFIP

approach that allows any agent to become a proxy at virtually no cost.
The MIB contains the following objects:

agentAD OBJECT-TYPE
SYNTAX IpAddress
...

mgmtOBJ OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
...

commPXY OBJECT-TYPE
SYNTAX DisplayString
...

resultPXY OBJECT-TYPE
SYNTAX DisplayString
...

Figure 3: SNMP Routing Proxy MIB Objects.

The NMS sets the address of the agent to be queried in variableagentAD, the
object identifier to be queried inmgmtOBJ, and the community that should be used
in commPXY. After that, by querying theresultPXYobject, the proxy will issue an
snmpget on the agent whose address isagentAD, for the object whose identifier is
mgmtOBJand usingcommPXYas the community. The result of the query is sent
back to the NMS.

4.5 Routing Proxy Specification

The proxy is specified as a conventional SNMP MIB, using the primitive se-
mantic entities given in section 3. This definition is intended to be included in the
DESCRIPTION field of the ASN.1 description of the routing proxy MIB.

The action that specifies the routing proxy isRouting-Proxy-Agent below. This
action has two main blocks:(i) the initialization of the objects, and(ii) the daemon,
which waits for and service incoming messages. This daemon is actually an SNMP
agent, described bySNMP-MIB-Daemon (section 3.2).

The routing proxy must allocate memory space for three of its four objects: the
three first objects of figure 3. This situation is reflected in theInitialize-Proxy action,
where memory cells are allocated to store the values:

� Initialize-Proxy :: action

(1) Initialize-Proxy =
allocate a cell then bind “agentAD” to it

and
allocate a cell then bind “commPXY” to it

and
allocate a cell then bind “mgmtOBJ” to it

� Routing-Proxy-Agent :: action

(c) 1999 IFIP

(2) Routing-Proxy-Agent =
Initialize-Proxy

before
SNMP-MIB-Daemon

The next equations describe the dynamic behavior of the routing proxy. This
behavior is defined as a collection ofget’s andset’son the objects of the routing
proxy. The three variables“agentAD”, “commPXY” and“mgmtOBJ” are set in the
functions below.

� set(,) :: token, datum ! action

� get() :: token ! action

(3) set(“agentAD”, V :IpAddress) =
store V in the cell bound to “agentAD”

then
give h “agentAD”, V i

(4) set(“commPXY”, V :DisplayString) =
store V in the cell bound to “commPXY”

then
give h “commPXY”, V i

(5) set(“mgmtOBJ”, V :OBJECT IDENTIFIER) =
store V in the cell bound to “mgmtOBJ”

then
give h “mgmtOBJ”, V i

After the three objects above are set, aget can be done on“resultPXY”. This
operation causes an snmpget to be sent to agent whose IpAddress is stored in“agen-
tAD”, asking for the object whose identifier is stored in“mgmtOBJ”, using what
is stored in“commPXY” as the community. The snmpget operation is defined in
section 3.1.

(6) get(“resultPXY”) =
snmpget(the IpAddress bound to “agentAD”,

the DisplayString bound to “commPXY”,
the OBJECT IDENTIFIER bound to “mgmtOBJ”)

then give the given tuple

5. Conclusion

In this paper we have proposed the use of Action Semantics to describe the be-
havior of SNMP MIB objects. Action Semantics is a formal yet simple tool, that of-
fers many advantages over the current practice of describing MIB objects informally
using English sentences. The main advantage of our approach is that it enhances the
understanding of MIB semantics.

Action semantic descriptions are inherently modular. They are easily extended or
modified [11]. It is straightforward to reuse parts of the specification. In this paper,
we demonstrate these features by creating a core SNMP server specification, which
can be extended to include any MIB.

(c) 1999 IFIP

The formal descriptions of get and set operations over each object can be sim-
ply added to theDESCRIPTIONfield of ASN.1 definitions. There is no need to
modify current standards. As a case study we formally describe the experimental
SNMP routing proxy MIB. This proxy MIB has been shown to drastically improve
the dependability of network management systems [3].

This work is the basis for further experiments on the formal specification of man-
agement objects and applications, which include verification, and automatic genera-
tion of implementations.

References

[1] P.D. Mosses,Action Semantics,Cambridge Tracts in Theoretical Computer Sci-
ence 26, Cambridge University Press, Cambridge, UK, 1992.

[2] M. A. Musicante, “The Sun RPC Language Semantics,” inProc. PANEL’92, Las
Palmas de Gran Canaria, Spain, 1992.

[3] E.P. Duarte Jr.,Fault Tolerant Network Monitoring,Ph.D. Thesis, Dept. Com-
puter Science, Tokyo Institute of Technology, 1997.

[4] E.P. Duarte Jr., G. Mansfield, T. Nanya, and S. Noguchi, “Improving the De-
pendability of Network Management Systems,”International Journal of Net-
work Management, to appear in 1998.

[5] E.P. Duarte Jr., G. Mansfield, S. Noguchi, and M. Miyazaki, “Fault-Tolerant
Network Management,” inProc. ISACC’94, Monterrey, Mexico, 1994.

[6] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser, “Structure of Manage-
ment Information for Version 2 of the Simple Network Management Protocol”,
Request for Comments 1902, Jan 1996.

[7] M.T. Rose,The Simple Book - An Introduction to Internet Management,2nd ed.,
Prentice-Hall, Englewood Cliffs, NJ, 1994.

[8] J. Palsberg,An automatically generated and provably correct compiler for a sub-
set of Ada, In ICCL’92, Proc. Fourth IEEE Int. Conf. on Computer Languages,
Oakland, pages 117–126. IEEE, 1992.

[9] D.F. Brown, H. Moura, and D.A.. Watt,Actress: an action semantics directed
compiler generator, In CC’92, Proc. 4th Int. Conf. on Compiler Construction,
Padeborn, volume 641 ofLecture Notes in Computer Science, pages 95–109.
Springer Verlag, 1992.

[10] M.A. Musicante,On the Relational Semantics of Interleaving Constructors,
Ph.D. Thesis, Dept. Computer Science, Federal University of Pernambuco,
Brazil, 1996.

(c) 1999 IFIP

[11] P.D. Mosses and M.A. Musicante.An action semantics for ML concurrency
primitives, In Proc. FME’94 (Formal Methods Europe, Symposium on Industrial
Benefits of Formal Methods), number 873 in Lecture Notes in Computer Science,
Barcelona, Spain, October 1994. FME, Springer-Verlag.

[12] J.U. Toft.Feasibility of using RSL as the specification language for the ANDF
formal specification, Technical Report 202104/RPT/12, issue 2, DDC Interna-
tional A/S, Lundtoftevej 1C, DK–2800 Lyngby, Denmark, 1993.

[13] J.P. Nielsen and J.U. Toft.Formal specification of ANDF, existing subset, Tech-
nical Report 202104/RPT/19, issue 2, DDC International A/S, Lundtoftevej 1C,
DK–2800 Lyngby, Denmark, 1994.

[14] B.S. Hansen and J.U. Toft.The formal specification of ANDF, an application
of action semantics, In Peter D. Mosses, editor,Proc. First Intl. Workshop on
Action Semantics (Edinburgh, April 1994), number NS-94-1 in BRICS Notes
Series, pages 34–42. BRICS, Dept. of Computer Science, Univ. of Aarhus, Den-
mark, 1994.

[15] D.A. Schmidt.Denotational Semantics: A Methodology for Language Devel-
opment. Allyn & Bacon, 1986.

[16] G. Winskel.The Formal Semantics of Programming Languages: An Introduc-
tion. Foundations of Computing Series. MIT Press, 1993.

(c) 1999 IFIP

