Integration of WBEM-based Management
Agents in the OSI Framework

O.Festor, P.Festor,N.Ben Youssef Laurent Andrey

LORIA - INRIA Lorraine BULL - DYADE ~ LORIA

Technopéle de Nancy-Brabois 615, rue de Jardin Botanigue - B.P. 101
Campus scientifique 54600 Villers Lés Nancy Cedex,

615, rue de Jardin Botanique - B.P. 101 France

54600 Villers Lés Nancy Cedex, andrey@loria. fr

France

{festor,benyou}@loria.fr
Abstract

In this paper, we propose a set of mappings and an implementation of an integration
agent allowing WBEM-based agents implementing a CIM information model to be
managed by OSI-based management platforms and applications. Extending existing
integration approaches, this paper provides three original items that are the support of
the CIM meta-model in an OSI agent, the mapping of relationships onto GRM
specifications as well as a full Java-based implementation of the Q.adapter.

Keywords

CIM, CMIS, Gateway, GDMO, GRM, Java, Management Integration, OSI, TMN,
WBEM

1. Introduction

Despite many years of standardization, systems, network, and service management,
hereafter called management, still has to focus on integrating heterogeneous
management approaches. Should standardization be blamed for this? Certainly not.
First, the standardization efforts have contributed to reduce drastically the number of
proprietary approaches to management. Second, standardization has enabled the wide
acceptance of the main paradigms, which form today’s basis of management
architecture, i.e. the manager/agent paradigm, the notion of resource independent
management information model,

Reasons that motivate the survival of multiple approaches in the management field
are manifold. First some approaches are better suited to some management levels than
others in terms of complexity, expressive power, available development tools, costs
and available information models (e.g. SNMP in the domain of equipment and
Internet management, OSI in the domain of telecommunication network
management). Second, the large investments, both financial and human, made on all
these approaches make them become tomorrow’s legacy systems. Third, the rapid
growth of distributed object technology opens promising perspectives to the

(c) 1999 IFIP

management community. Especially the combined use of CORBA and Java
technologies seems particularly appropriate for the deployment of tomorrow’s service
management solutions.

Current TNM architecture copes with integration using mediation devices and any
kinds of Q.adaptor [1].

One of the approaches that are subject to integration is Web-Based Enterprise
Management (WBEM) [2, 3]. Launched in 1996, this approach gains acceptance in
the desktop and LAN management community and agents based on this paradigm
start to become available on several systems (NT 4.0 SP5, NT5.0)..

In this paper, we present a Q.Adapter (also called integration agent) which allows
WBEM-based agents to be managed by OSI-based management systems. A WBEM-
based agent is defined here as an agent that implements the Common Information
Model (CIM) and which is accessible through the Hyper-Media Management
Protocol (HMMP [3]). WBEM-based agent and CIM-agent are used synonymously in
the remainder of this paper.

So far, few efforts have been ported on integrating those approaches and most
existing proposals are concerned with accessing TMN-based management systems
through WBEM managers. This integration way is needed when a virtual private
network is managed using WBEM (end stations, management stations) but long
distance links management comes as a TMN operator service.

In our approach, we look at the dual problem: accessing WBEM-based agents from
TMN-based management. This scenario occurs when a service provider manages
parts of a customer network or when a TMN-based Management System of an
enterprise has to address some CIM-based systems of its own information system (i.e
NT database servers). To this end, we propose mappings for information models,
naming issues and services from WBEM to TMN. We also present an implementation
of the Q.adapter in a full Java environment using especially a Java CMIS interface as
well as information model management tools developed in our group.

The remainder of this paper is organized as follows. Section 2, provides a short
summary of the tremendous work already achieved on management integration.
Section 3 compares the features of the WBEM and OSI approach that are relevant in
our integration proposal. Section 4 details the information model and Management
Information Base (MIB) architecture mappings for the Q.adapter. Section 5 presents
the CMIS/HMMP service mapping. Section 6 provides a description of the
implementation of the Q.adapter that realizes the integration. After a short description
of the CMIS Java API developed in our group and the MOF to GDMO translator, it
details the architecture of the agent and outlines encountered problems. A conclusion
summarizes the paper then sketches some open issues and future work.

2. Related work on management integration

Within the last years, many efforts have been spent on analyzing integration methods
and providing various types of management gateways. [4] gives a classification of the
various methods and related implementation choices.

Several architectures and algorithms for combining SNMP and OSI-based
management have been proposed. In [S], a SNMP/OSI gateway is proposed. In this

(c) 1999 IFIP

approach, a mapping from SNMP Structure of Management Information (SMI) to
GDMO is advocated and a global network information model is proposed. The
concept of stateless and stareful agent presented in this approach is reused in our
proposal. A generic approach to SNMP and OSI management integration is also
presented in {6]. In [7], an integration mechanism is proposed at the agent level
allowing an agent to respond to both CMIS and SNMP-based requests. An
implementation of an OSI/SNMP Q.Adapter based on the IIMC [8-10] translation
algorithms and providing useful information on the agent architecture is detailed in
[7.

In the domain of legacy systems integration, [11] addresses issues in managing TL.1
devices through SNMP.

A big work on management integration was achieved by the JIDM [12]. There the
focus was placed on mapping both SNMP and OSI-management paradigms (i.e.
specifications and services) to CORBA IDL and conversely. In our approach, we have
reused some of the principles defined in this proposal, especially some of the naming
conventions.

In the domain of WBEM and OSI integration, very few documents have been
published so far. The main contribution is Vertel’s white paper on WBEM and TMN
[13]. In this proposal a two way mapping is envisaged but the emphasis is made on
accessing OSI-based agents from WBEM-based managers.

As we will point out in the next sections, many of the concepts developed in the
above proposals have been reused in our work and new ones will be outlined.

3. A comparison of OSI and WBEM-based
Management

WBEM and OSI management have many common concepts, despite their realizations
differ both in terms of denomination and details. Both approaches use a
Manager/Agent paradigm. One agent maintains a MIB: a set of Managed Objects
(MO), abstraction of the actual resources. A management service and protocol give
access to the agent’s MOs.

Both approaches use an object-oriented paradigm for information modeling. However
the information model approaches differ on several points summed up in Table 1.

Points OS1 DMTF

Specification languages | -Guidelines for the Definition | Managed Object Format
of Managed Object (GDMO) (MOF) [17] (MOC, MO
[14] (MOC, MO instance) instance, data-type)
-General Relationship Model
(GRM) [15]

-Abstract Syntax Notation 1
(ASN.1) [16] (data-type)

Specification unit Module (with OSI global naming) Schemas
Inheritance Multiple Simple
Attribute scope Outside MO class Directly defined in MO

(c) 1999 IFIP

Grouped in packages optionally
added to class

class context

Data- type (attributes,
parameter, reply)

All possibilities of ASN1 (list,
sequence...)

Limited set of basic data-
type (integer, boolean
string)

Basic containment
relation and naming

Hierarchical Name binding
between MO instances using
one attribute per instance
Instance Distinguished Names

Name-space (Hierarchical
directory structure) for
MOC and MO instances.
Many key attributes per
instance

Relationship between

- pointer attribute

-special managed objects

MOs - GRM class & instance containing references to
- management action and/or | other objects (association
operation qualifier)
Specifications Dedicated MIB definition and | MOF MOC definition are
Repository agent [1] stored in name space
Management CMIS/CMIP [18] HMMP
service/protocol Basic service for instances: Basic service for instances
manipulation, creation, and and classes manipulation,
deletion. creation, deletion.
Most of the services can apply | SQL like query language
on set of instances specified by | (HMQL)
scoping rules and filters.
Event GDMO specification
Management service available
(Event Report service)

Table 1. OSI vs. DMTF approaches comparison.

4. Information model mapping

In order to provide an automated translation from CIM-based specifications expressed
in the MOF notation to GDMO/ASN.1 specifications, one must define mapping rules
for all components of the CIM model. In this section, we detail those mapping rules.
After a description of the chosen mapping philosophy, we focus on the generic
GDMO templates necessary for the translation. We then detail the mapping
algorithms for managed object class specifications. These algorithms are refined with
the consideration of MOF qualifiers and MO instances as well as meta-model
constructs found in CIM-specifications. Finally a short example of an automated
translation is given.

4.1 Mapping Goals

The goal of the integration agent is to provide an OSI view of CIM-based agents to
OSI-based management applications and managers as illustrated in Figure 1.

(c) 1999 IFIP

The integration agent must be able to handle multiple CIM-agents and for each CIM-
agent, mappings must be able to allow the visible OSI MIB to offer a hierarchical
view of the MO’s similar to the hierarchy based on namespaces in the CIM-agents. An
illustration for this requirement is given in Figure 1 where we have expanded a CIM-
agent (CIM-Agent 2) whose MIB contains a three level hierarchy of namespaces, i.e.
root, default and pc. In each level, MO classes as well as instances can be found.
We have shown the expected associated OSI MIB in the WBEM-OSI integration
agent. There, MOs are organized in a similar way using a name-binding containment
relationship.

CIM-Agent
WBEMOS!] W-Agont 1

integration Agent
agentld =2 —I Ijganl!d=1 J ".MMP.

CiM-Agent 2

s R

Manager cMIS
-~ -

frootidefanlt
classi

i §inme Binding (1) Inatance

oidx "diski*. did:z "disi*

Instarce of s MOF_Namespace inatance of a Cikd-aystem GDMO Clsss
aQDMO Class GDMO Clase

——— Nam Binding (2) Instance

e Name Binding (2) inatance

1) tnatance of a MOF_MetaMOG Instance of 8 MOF_MOC subciass

The main objective of our work was to define the algorithms and validate them
through an implementation allowing automated generation of the integration agents.
Referenced GDMO classes, name-bindings, realization details are presented in the
next sections.

4.2 Generic GDMO constructs

To define our mapping we have specified three generic GDMO classes and associated
Name-Bindings. These MO classes are illustrated in Figure 2.

The first generic GDMO class used in our mapping is the cIM_system class. It
derives from the ' *Is0 10165-27:Top class. This class contains one package which
itself contains two attributes. One attribute defines the corresponding CIM-agent
name or [P address, the second attribute defines the status of the agent (up, down).
This class is similar to the snmpsystem class defined in the IIMC SNMP to OSI
translation [8-10]. This class is instantiated every time a CIM-agent is registered
within the integration agent.

The second generic class used in our approach is the MOF_NameSpace class. This class
represents an item of a namespace in the CIM approach, i.e. one basic component of a
namespace. This class contains only one attribute, which is the name of the
component, e.g. Root or Default namespaces from the example in Figure 1.

(c) 1999 IFIP

The third generic class is the MoF_Metamoc class. This class contains attributes that
represent a MOF MOC specification, i.e. qualifiers, attributes, methods. This class is
used in a similar way as the Management Knowledge Management Function [19] in
the OSI framework enabling MOF MOCs to be accessible by management
applications. In other words we implement MOF class model using GDMO templates.

" Name-Binding
2 . | GDMOClass

Figure 2. Generic GDMO classes and associated Name-Bindings

Between these three classes, three name-bindings have been defined. Name-binding
(1) links a superior MOF_NameSpace to a subordinate MOF_NameSpace. This name-
binding reproduces in the OSI MIB the containment relation between to intermediary
directories of the CIM MIB. Name-binding (2) is defined between the MOF_NameSpace
class in the subordinate role and the c1M_system class in the superior role. In the OSI
integration MIB this name-binding links the representation of a CIM agent to the root
of the representation of its name space. The last predefined name-binding (3) links
one MOF_MetaMoC class in the subordinate role to a MOF_NameSpace class in the
superior role, reflecting that MOF specifications in the CIM-agent are logically found
within name spaces. In other words this name-binding links CIM leaves (classes,
instances) representation to name space representation.

4.3 Implementation of MOF classes using GDMO

Mapping a managed object class defined using the MOF notation into a set of GDMO

templates is straightforward. This is due to the fact MOF constructs are simpler than

GDMO ones except for the qualifier constructs. Basically, the algorithm works as

follows:

¢ A MOF schema is mapped onto a GDMO module and all definitions found in
this schema are labeled by the associated name in GDMO ;

e To each class defined in the MOF framework, a GDMO MOC having the same
name and one GDMO package which contains all attributes, actions and
notifications defined for this class into the corresponding MOF template are
defined ;

e To each MOF class, one associates a name-binding (3), with the corresponding
GDMO class as the subordinate object and the MOF_NameSpace class as the
superior object ;

s To each attribute in a MOF class, a GDMO attribute template is built and the
MOF type is mapped onto a corresponding ASN.1 type. This attribute is then
added to the above mentioned class package. Naming of the attribute, i.e. its

(c) 1999 IFIP

label, is the concatenation of the class name and the attribute label, avoiding
conflicts between attributes with the same name defined in several MOF
classes ;

e FEach method is translated into a GDMO action. The method parameters and
return type are translated into corresponding fields and reply in the GDMO action
information syntax.

Mapping of MOF data types to ASN.1 is also straightforward since MOF data-types

are basic compared to the power of ASN.1. For this task we have used the same

mappings as those defined in [13]. These mappings have however been extended with
the support of constraint qualifiers (e.g. maximum string size) which are mapped to

ASN.192 constraints.

4.4 Mappings for qualifiers

The CIM Structure of Management Information (SMI) allows the definition of
qualifiers, which can be associated to specification components to extend their
semantics. These qualifiers have a direct impact on our mapping algorithm. In our
approach, we cope with three basic qualifiers: key, read, writes. These apply to
attributes.

Key qualifier marks which attributes are used to uniquely identify instances in a CIM
name space. For a given MOF MOC if only one attribute is a key then this attribute is
used in the with attribute clause of the name-binding (2) generated for the class. If
multiple attributes are key in a MOF class, the mapped GMOD MOC is featured with
an extra attribute: concatenation of all mapped key attributes. This new attribute is the
one used in the name-binding (2).

Table 2 shows read, write attribute qualifiers mappings. An absent read/write
qualifier is assumed to be true.

MOF qualifiers GDMO attribute properties
read write
true true GET-REPLACE
true false REPLACE
false true GET
false false Warning. Ensure “private” attribute in OSI
agent implementation.

Table 2. MOF qualifiers mappings.

We also handle association class qualifier. This qualifier allows a MOF class to use
reference attributes to implement association between instances. Each time an
association qualifier is found in a MOF class definition, we create a GRM
relationship and the regular Mor_MetaMoc GDMO class. Reference attributes
(attributes with distinguished name as type) are freely used in GMDO class definition.
All other MOF qualifiers are integrated to the quite informal GDMO behaviour
template.

(c) 1999 IFIP

4.5 Dealing with MOF instances and MOF specifications in the
MiB

As already mentioned in section 3, each CIM agent maintains within its management
information base both MO instances and MO class definitions, e.g. the MOF
specification of the class DiskClass is maintained in the root/Default/PC namespace
of the CIM-Agent 2 in Figure 1. To provide the same feature in the associated
Q.Adapter, every time a MOF specification is found in a CIM-agent, an instance of
MOF_MetaMocC is created in the integration agent. Within this instance, one finds all
components of the class specification, i.e. its qualifiers, name, attributes, operations.
This approach is similar to the Management Knowledge Management Function [19]
in the OSI approach where one can instantiate in the OSI-agent the GDMO
specifications of the contained objects and components (GRM specifications, name-
bindings...).

Each time an instance of a MOF class specification is found in the CIM-MIB (e.g.
diskl, disk2 of class DiskClass in Figure 1), a corresponding instance of the
associated GDMO class is created. As it will be shown in the next sections, this can
be achieved in two ways: generating CMIS Create calls, which will be invoked on the
integration agent or by implementing this function directly in the integration agent
together with a discovery facility.

4.6 A mapping example

Based on the algorithms presented in the previous sections, we illustrate here the
result of an automated mapping for the MOF-based Managed Object class
specification given in Example 1. For size reasons, we took a simplified version of the
ManagedsSystemElement (line 3} class from the CIM Core schema as specified in line
2. This class has two attributes, one used for naming (attribute Name line 8) and one
used to state if the element is installed or not (attribute Installed of type boolean on
line 10).

1 [Description ("The ManagedSystemElement class is the
base class ..."),

Schema ("Core")]

class ManagedSystemElement

{

[Description ("The Name property defines ..."),

Key(true),

Write(false)]

string Name;

[Description ("A boolean")]

10 bool Installed;

11};

W ~J O Ui WN

Example 1. A simple MOF class.
Example 2 shows the GDMO mapping of Example 1. There is one description
qualifier defined for the class (Example 1, line 1 clause Description(**...’’)).
According to the mapping of qualifiers, the content of this description qualifier, is
mapped onto the behavior clause of the package associated to the GDMO class
(Example 2, lines 26,27).

(c) 1999 IFIP

Since the MOF specification is made in the context of a schema called core, the
corresponding, GDMO specifications are grouped in a GDMO module, which has the
same name (Example 2, line 1).

The MO attributes defined in the ManagedSystemElement class are mapped onto
GDMO attributes {Example 2, lines 16 to 24) and those attributes are registered in the
GDMO package associated with the MOC (Example 2, lines 12 and 13). To define
which operations are allowed on the attributes, a parsing of the attribute’s qualifiers is
required in the MOF specification.

MODULE ‘‘'Core’’;

1
2
3 ‘‘Core’’:MOF_Core_ManagedSystemElementClass MANAGED OBJECT CLASS
4 DERIVED FROM MOF_MOC;

5 CHARACTERIZED BY ‘'‘Core’’:MOF_Core_ManagedSystemElementPackage;
6 BEHAVIOUR

7 ‘*‘Core’’:MOF_ManagedSystemElementBehaviourPackage;

8 REGISTERED AS { schemas(2) classes 1 };

10 Core:MOF_ManagedSystemElementPackage PACKAGE
11 ATTRIBUTES
12 ‘‘Core’’:MOF_NameAttribute GET,

13 ‘‘“Core’’:MOF_InstalledAttribute GET-REPLACE;
14 REGISTERED AS { Schemas(2) packages 1 };
15

16 *‘Core’’:MOF_NameAttribute ATTRIBUTE
17 WITH ATTRIBUTE SYNTAX GraphicString;
18 BEHAVIOUR ‘‘Core’’ :MOF_NameAttributeBehaviourPackage;
19 REGISTERED AS { Core attributes 1 };

21 ‘‘Core’’:MOF_InstalledAttribute ATTRIBUTE

22 WITH ATTRIBUTE SYNTAX BOOLEAN;

23 BEHAVIOUR ‘‘Core’’:MOF_InstalledAttributeBehaviourPackage;
24 REGISTERED AS { Core attributes 4 };

26 ‘‘Core’’:MOF_ManagedSystemElementBehaviourPackage BEHAVIOUR
27 DEFINED AS "Description: The ManagedSystemElement class ..." ;

Example 2. GDMO mapping of example 1.

As explained in §4.5 a name-binding (3) must be created to anchor the class
specification in the containment tree. Example 3 outlines such a binding.

‘‘Core’’ :nameBindingl NAME-BINDING

SUBORDINATE OBJECT CLASS ‘'‘Core’’:MOF_Core_ManagedSystemElementClass ;
NAMED BY SUPERIOR OBJECT CLASS ‘‘Core’’:MOF_NameSpace;

WITH ATTRIBUTE ‘‘Core’’:MOF_NameAttribute;

BEHAVIQUR

‘‘Core’’ :nameBindinglBehaviour;

REGISTERED AS { schemas(2) name-binding 1 };

W oo~y i Wi

Example 3. Generated name binding for example 1.

(c) 1999 IFIP

The class is defined as the subordinate and the superior class in the name-binding is of
type MOF_NameSpace. The attribute used for naming instances of the subordinate class
is the MOF_NameAttribute chosen because the key qualifier was associated to the
attribute definition in the MOF specification.

5. Service mapping

This section presents the mapping of CMIS operations onto corresponding HMMP
requests through the Q.Adapter MIB. Due to the stateful nature of the Q.Adapter, Get
operations are either mapped onto corresponding HMMP Enumerate, Get or Query
operations or not propagated to the CIM-Agent at all. This depends on the nature of
the MOs selected in the scope of the CMIS Get operation. If operations related to the
retrieval of MOF classes, then the request is not propagated to the CIM-agent and the
response is built directly from the OSI MIB. If the CMIS Get operation addresses
only MO instances, then depending on the scope and filters, the agent issues a
combination of HMMP Enumeratelnstance and GetInstance HMMP operations to
the CIM-agent.

All CMIS Set operations are mapped to HMMP Put operations. For each affected
MO in the OSI MIB, if the MO represents a MOF class, then a HMMP PutClass is
issued, otherwise, a PutInstance operation is built and sent to the CIM-agent
Invocation of actions through the CMIS Action request, are mapped onto HMMP
ExecuteMethod service invocation. CMIS Delete and Create service operations are
mapped respectively onto HMMP Delete and Create operations. The subtype of
HMMP operation chosen for the operation Class or Instance depends on the type of
the concerned OSI MO in the MIB. If one wants to create or delete an instance of a
MOF_MetaMOC class, then an HMMP class operation is built. Otherwise, a
Createlnstance respectively DeleteInstance HMMP request is built. Note that one
CMIS Create request always results in one HMMP Create operation and that one
CMIS Delete operation may generate several HMMP Delete operations depending on
the CMIS scope and filters.

6. Mapping the other way around

The main goal of our project was not concerned with accessing OSI-based agents
through WBEM managers, which requires the full mapping of GDMO/ASN.1 to
MOF. This can be achieved in the same way it is done within the JIDM for the
GDMO/ASN.1 to IDL mapping. Considering the GDMO to MOF mapping,
translation rules should be similar to the GDMO to IDL ones with a first parsing
phase in the GDMO specification whose goal is to resolve multiple inheritance and a
second phase of MOF specification generation. There an extensive use of new
qualifiers such as package<label> who tells to which package an attribute belongs
should be made.

At the service level, mapping is also quite easy, Basic HMMP operations have their
counterparts in CMIS and more sophisticated operations such as Query can be
mapped to basic CMIS services enhanced with scoping and filtering selection
facilities.

(c) 1999 IFIP

7. Implementation experience

In order to validate the mappings proposed so far, we have implemented a full
Q.Adapter. In this section, the whole software developed for this purpose is presented.
Figure 3 shows the overall architecture of the integration agent environment.

As illustrated in the architecture, several tools and APIs are used from which most
have been developed in our group for this project. The whole tool-set is available in
Java and most of the components are already freely available on the WEB [20].
Building a WBEM/OSI integration agent requires the availability of the MOF
specifications defined in the CIM-agent. These specifications are given to the
MODERESJava toolkit that is responsible for building the associated GDMO, GRM
and CMIS scripts according to the mapping principles.

GRM

Specifications.
MODERES.Java)]
MOF to GDMO - |-l ngnl;s
tranglator.

GDMO -

Generic Specifications [|
GDMO

Definitions ASN 1
Definitions

MODERESJava
GDMO/ASN.1 to Java
transiator.. -

Instance Discovery

Figure 3. Initialization and operation of the Q.Adapter

The resulting GDMO and GRM specifications are again given to the MODERESJava
toolkit, which builds associated Java classes. Those classes are bound to the generic
Java classes of the Q.Adapter to form the final integration agent. In the next sections,
we will focus on three features of this toolkit, namely the Java CMIS communication
interface, the MODERESJava information model toolkit suite and the integration
agent itself.

7.1 The communication interfaces

In order to implement the Q.adapter in Java, we needed two Java-based
communication interfaces: one offering an HMMP client (manager) role API and one
offering an agent-sidle CMIS API The first (HMMP) API was once upon a time

(c) 1999 IFIP

provided within the WBEM SDK distribution and provides a set of packages allowing
the manipulation of CIM-based classes and instances as well as HMMP operation
invocations.

Concerning the CMIS Java API, none was available when we started the project. We
thus decided to build a CMISJava API for this purpose. The result, called
CMISoverJava is a full object-oriented CMIS API (both manager and agent service
interfaces are defined). CMISoverJava is close to the TMN/C++ [21] specification
except for the asynchronous event model built over the Java AWT event model.

Each CMIS invocation (Request, Indication, Response, Confirm) is defined as a Java
class. To each operation invocation, the programmer can associate a listener, which
will be informed when a response or a framework error arises. On the manager side,
an application which wants to issue CMIS request, first binds to the framework (a
partial abstraction of the OSI association), creates request instances, sets the request
parameters and issues the request by calling the doIt () method (see a Get Request
example on the left side of figure 4).

public class testGet public class MyGetListener
{ implements GetListener
public static void main(String[] args)
{ public void complete(GetCompleteEvent pCe)
//defining the request {
GetRequest get = new GetRequest; System.out.println("End of responses");
// defining a listener }
MyGetListener myGetListener public void reply(GetReplyEvent pGr)

= new MyGetListener(); {
// Defining ASN.1 values if (pGr.getReply().getFMKErrors() == null &&
OctetString str = new OctetString("21.3.2"); pGr.getReply().getCMISErrors() == null)
RDN = new RelativeDistinguishedName(); { // printing all attributes received in the
..... response
// assigning the request parameters AttributeList list =
get.setBaseObjectClass(pGr.getReply().getAttrList();

new ObjectClass(oid1)); for (Enumeration e = list.getElts() ;
get.setBaseObject(oi); e.hasMoreElements() ;)
get.setScope({ System.out.println(e.nextElement().toString());
Scope.BASE_TO_NTH_LEVEL(2)); 1}

get.addGetListener(myGetListener); } // MyGetListenener
try{ // sending the request over the stack
get.dolt();
}

catch (RuntimeException e){
System.out.println(e.getMessage());
System.exit(1);

}1} / testGet

Figure 4. A sample CMIS Java code

The right part of Figure 4 contains an example of a listener defined for the Get

Request. Each listener contains two methods:

e The reply method, which is called each time a response to a previously issued
request, is received. The response event contains the received decoded CMIS
response ;

(c) 1999 IFIP

e The complete method that is called when a CMIS call is complete, i.e. all
responses have been received, no confirmation was required or a framework error
occurred.

An application or agent developer cans subclass all listeners to define their own
treatment of incoming confirmations (manager side) or indications (agent side).
Notifications are handled on the manager side on an application subscription basis.
Each application, which wishes to receive notifications, builds a notification listener
and registers this listener by the CMISoverJava manager handler. On the agent side,
event-report issuance is done in the same way as request invocations on the manager
side.
ASN.1 types and values are predefined classes in the CMISoverJava package. Each
Java ASN.1 class inherits from a generic CMISType and provides several access
methods. In the RMI implementation, virtually any ASN.1 type is supported, since
transport is realized through object serialization. In the OSI stack implementation, we
have defined all ASN.1 types supported by the underlying framework, i.e. simple
types (boolean, all string types, integer,) and basic constructors (sequence, set, set of,
sequence of, choice...). For all these types, Java classes are present, allowing the
manipulation of ASN.1 values.

CMISoverJava provides two implementations: one is made over a full OSI stack and

implemented over the OpenMaster Framework from BULL using the Java Native

Interface. A second implementation of CMISoverJava is made using the Java Remote

Method Invocation facility. Every application or agent developed in Java over this

interface can use transparently any of these implementations.

7.2 MODERESJava MOF/GDMO ASN.1 translator

The MODERESJava environment exists since 1995 [22]. Initially used to allow the
parsing of extended GDMO specifications, i.e. with formal behavior clauses, the
toolkit was first extended to support the parsing and manipulation of GRM
specifications [23] and was enhanced with various facilities such as pretty printers,
semantics checkers and new information model loaders for MOF, SNMP SMI and
TINA Q.GDMO/GRM [24-26]. The toolkit is freely distributed on the Web [20].

In the WBEM/OSI Q.Adapter environment, MODERESJava is used at two levels. A
first one allows MOF specifications to be parsed and, based on our specification
mapping algorithm, associated GDMO and GRM specifications to be generated
(arrows J and 2 in figure 3). MODERESJava is also used to translate Generic GDMO
definitions, ASN.1 types, generated GDMO specifications and GRM specification
into Java classes (arrows 3 and 4).

In the first release of the Q.Adapter, MODERESJava was also used to build CMIS
Create Requests each time a MO instance or a MOF specification was found in the
MOF file. These requests where used by a CMIS Manager to initialize the agent
(arrow 5). In the last release of the Q.Adapter, this function is obsolete in this way and
is implemented directly in the agent, which performs automated discovery of CIM
MO instances.

Later on, in the operational phase of the Q.Adapter, MODERES is used to parse
incoming HMMP responses to extract MO related informations and translate them
into ASN.1 values (arrow 5 on the right part of figure 3).

(c) 1999 IFIP

7.3 The Q.Adapter

The Q.Adapter as well as the whole software environment which realizes the mapping

has been developed using the Java environment. It is designed as a stateful agent,

which maintains mirrored information from the CIM agents it is associated to. The
stateful information is in fact the GDMO mapping of the CIM classes defined in the

CIM agents. Since these classes are supposed no to change very often in deployed

agents, the corresponding cIM_MetaMoc class instances do not change either and thus

represent the stateful part of the agent.

The Q.Adapter is a self-complete entity, which carries two main features:

e Automated discovery of a CIM agent MIB and instantiation of associated GDMO
instances in its MIT, i.e. the Q.Adapter is able, given a CIM-agent address and
translated MOF specifications, to dynamically discover its content (classes,
namespaces, and MO instances) and build the corresponding part of the OSI
MIB ;

e A traditional gateway approach, accepting CMIS operations on its MIB and
propagating these requests to the associated CIM agent through HMMP and
doing the opposite operation for incoming HMMP responses and/or events
translated into either CMIS responses or notifications.

The main drawback of the current release of the Q.Adapter, is the fact that we do not

take completely advantage of all the Java features, e.g. dynamic class loading. The

first version of the Q.Adapter is quite basic and has to be recompiled every time one
wants to add new GDMO associated Java classes. The dynamic and extensibility
features of the Q.Adapter are under development and should be available within the
next release. A second major drawback in the current implementation comes from the
incomplete implementation of the Java HMMP API provided in the beta-releases of

WBEM SDK. Now the problem is solved, since the API is no longer available and

requires a native port of our calls.

8. Conclusion and future work

In this paper, we have presented the results of a project dealing with the integration of
WBEM-based agents into an OSI Management Framework. Focusing on managing
CIM-based agents through a TMN manager, we have shown that the integration in
this way is feasible and quite easy to implement. The implementation was facilitated
by the availability of both the CMISoverJava CMIS APl as well as the
MODERESJava toolkit, those tools providing well defined APIs for heterogeneous
information model and CMIS requests as well as notification handling. For the
mapping, we have chosen a recast mapping technique which seems more appropriate
than a domain mapping because both approaches and available information models
mainly address different resources and they are few intersections on modeled
managed elements.

Several directions can be followed from this point. The first one consists in
developing the other direction within the integration, i.e. GDMO/ASN.1 to MOF in a
WBEM manager/OSI agent context and making the adaptor compatible with CIM 2.0
and the new COM communication interface. As already mentioned in the paper, some
work is already ongoing on this subject in our group. Another approach may address

(c) 1999 IFIP

the integration WBEM in the same way it is done for OSI, SNMP and CORBAL-IDL
in the JIDM approach but this is not yet addressed in the group.

Based on the developments we have made for building the Q.Adapter in a full Java
environment also enables us to start experimenting the use of Java-based mobile
agents in an OSI-based Management Environment. This is the main purpose within
which we expect to use our environment, i.e. the TMN Java agent, MODERESJava
and CMISoverJava communication API in the near future.

9. Acknowledgments

This work was partially funded as part of the ANTARES project between the
RESEDAS research group and the OpenMaster division of BULL. The authors wish
to thank all members of our research group who have contributed to parts of the
prototype. Especially Eric Dillon, Serge Lassabe, Emmanuel Nataf and Didier Zhang
who have been actively involved in the development of the CMISoverJava API used
in this environment. The authors also wish to thank all contributors referenced in this
paper for their contribution to the definition of integration approaches. All their
proposals have contributed to facilitate our work.

10. References

1] ITU-T, “Principles for a Telecommunications management network,” ITU-T,
International Standard M.3010, January 1996.
[2] M. Janders, “Web-based Management: Welcome to the revolution,” Data

Communications International, vol. 25, pp. 38-56, 1996.
3] S. Todd, “HMMP Overview,” Microsoft Corp., Experimental RFC May 1997.

4] A. I Riviére and M. Sibilla, “Management Information Models Integration: From
Existing Approaches to New Unifying Guidelines,” JNSM, vol. 6, pp. 333-356, 1998.
[s] S. Abeck, A. Clemm, and U. Hollberg, “Simply Open Network Management: An

Approach for the Integration of SNMP into OSI Management Concepts,” presented at
ISINM'93, San Francisco, 1993.

[6] P. Kalyanasundaram and A. S. Sethi, “An Application Gateway Design for OSI-
Internet Management,” presented at ISINM'93, San Francisco, 1993.

7 S. Mazumdar, S. Bradly, and D. W. Levine, “Design of Protocol Independent
Management Agent to Support SNMP and CMIP Queries,” presented at ISINM'93,
San Francisco, 1993.

[8] NMF, “- Translation of Internet MIB-II to ISO/CCITT GDMO MIBs, Issue 1.0,”
Network Management Forum Forum027, 1996 1996.

9] NMF, “ISO/CCITT to Internet Management Proxy, Issue 1.0,” Network Management
Forum Forum028, 1996.

[10] NMF, “- Translation of Internet MIBs to ISO/CCITT GDMO MIBs, Issue 1.0,”
Network Management Forum Forum026, 1996.

[11] A. Clemm, “SNMP and TL-1: Simply integrating management of legacy systems,”
presented at IM'99, San Diego, 1997.

[12] N. Soukouti and U. Hollberg, “Joint Inter Domain Management: CORBA, CMIP and
SNMP,” presented at IM'97, San Diego, 1997.

(c) 1999 IFIP

[13] Vertel, “Accessing TMN Through Web-based Entreprise Management,” Vertel,
White Paper 1997.

[14] ISO, “Structure of Management Information - Part 4: Guidelines for the Definition of
Managed Objects,” ISO, Intemational Standard 10165-4, 1992 1992.

[15] ISO, “Structure of Management Information - Part 7: General Relationship Model,”
ISO, International Standard 10165-7, 1995.

[16] ISO, “Specification of Abstract Syntax Notation Number One (ASN.1),” ISO,
International Standard 8824, 1990.

[17] DMTF, “Common Information Model (CIM) version 1.1,” DMTF September 1997.

[18] CCITT, “Common Management Information Service Definition,” ITU-T,
International Standard 1991.

[19] ISO, “System Management - Part 16: Management knowledge management
function,” ISO, International Standard 10164-17, 1997.

[201 O. Festor, “The RESEDAS Free Java Management Software Homepage,” INRIA,
http://www.loria.fr/~festor/JTAM/JAM.html 1997.

[21] T. R. Chatt, M. Curry, J. Sepp4, and U. Hollberg, “TMN/C++ An object-oriented API
for GDMO, CMIS, and ASN.1,” presented at IM'97, San Diego, 1997.

[22] O. Festor, “MODE: a development tool for managed objects,” presented at IM'95,
Santa Barbara, 1995.

[23] E. Nataf, O. Festor, and A. L., “RelMan: a GRM-Based Relationship Manager,”
presented at IM'97, San Diego, 1997.

[24] O. Festor, “The GDMO and GRM Modules Semantic Checker of the MODERES
Java Toolkit,” INRIA, Technical Report RT-208, 1997.

[25] O. Festor, “MODE-PP HTML: A GDMO/GRM to HTML translator -Release 1.0-
Reference Manual,” INRIA, Technical Report RT-199, 1997.

[26] O. Festor, “The Managed Object Format specification parser of the MODERES Java
Toolkit,” INRIA, Technical Report RT-218, 1998.

Biography

Olivier Festor has been actively involved in network management research and
development since 1991. Currently he is a senior researcher at the French National
Institute for Research in Computer Science and Control (INRIA) where he leads a
group on new technologies for network and service management in the TMN
framework. He has published about a dozen papers in the domain of network and
service management and holds a Ph.D. in computer science from the University Henri
Poincaré in Nancy.

Paul Festor is probably the youngest author ever contributing to IM. Born on October
31st, 1998. Paul participated actively to the finalization of the paper in keeping his
father awake late at night during the first weeks and letting him work on indecent
hours to complete the contribution.

Laurent Andrey is a research engineer at BULL Corp. He is currently working in
Nancy within the RESEDAS research group on both WBEM integration and the
development of a Java CMIS APL

Nizar Ben Youssef is currently a Ph.D. student at the University Henri Poincaré
Nancy 1. His current interests are in management integration and the design of
cooperative management architectures for managing active networks.

(c) 1999 IFIP

