
QoSockets: a New Extension to the Sockets
API for End-to-End Application QoS
Management

P. G. S. Florissi*
System Management Arts (SMARTS)
14 Mamaroneck Avenue, 3rd Floor
White Plains, NY
USA
patricia.florissi@smarts.com

Y. Yemini, D. Florissi
DCC Lab, Columbia University
500 West 120th Street, Room 450
New York, NY
USA
{yy,df}@cs.columbia.edu

Abstract
Distributed multimedia applications are sensitive to the Quality of Service (QoS)
delivered by underlying communication networks. The main question this work
addresses is how to adapt multimedia applications to the QoS delivered by the
network and vice versa. We introduce QoSockets, an extension to the sockets
mechanism to enable QoS reservation and management. QoSockets automatically
generates the instrumentation to monitor QoS. It scrutinizes interactions among
applications and transport protocols and collects in QoS Management Information
Bases (MIBs) statistics on the QoS delivered. The main advantages of QoSockets
are the following. (1) Support of single API for transport layer QoS negotiation,
connection establishment, and data transmission; and of single API for OS QoS
negotiation. (2) Support of a single QoS negotiation protocol. (3) Generality across
application QoS needs. (4) Automatic management of application QoS needs.
QoSockets are available for Solaris and Linux and support RSVP, ATM adaptation,
ST-II, TCP/UDP, and Unix native protocols.

Keywords
Quality of Service (QoS) management, management of distributed systems and
applications.

1. Introduction

Traditional network applications can operate under a broad range of network
performance behaviors. They can tolerate very large end-to-end latency,
accommodate greatly varying bandwidth, recover from loss, and endure dynamic
fluctuations in latency and bandwidth. In contrast, distributed multimedia
applications are very sensitive to the performance behavior of networks [12]. A
multimedia conference can be very sensitive to significant latency. Video streams

 * Work performed while Patricia was pursuing her Ph.D. degree in the DCC Lab at Columbia University.

(c) 1999 IFIP

require guaranteed bandwidth. Speech streams become incomprehensible under
excessive jitter (i.e., dynamic fluctuations of latency).

Recent studies of QoS delivery have focused on the design of network
mechanisms to assure QoS. These range from the design of Asynchronous Transfer
Mode (ATM) [4] protocols and switching mechanisms to the design of multimedia
transport protocols. Mostly, these mechanisms have focused on regulating
competition for network resources among traffic sources. They involve resource
allocation, flow, and admission control techniques used by packet/cell and transport
layers. References [1,10,14,18] cover some important contributions in this field.

This work uniquely focuses on the design of application-layer mechanisms to
support effective adaptation to and control of QoS delivery. We introduce
QoSockets, an unified set of extensions to the sockets Application Program Interface
(API) [17]. that hides the heterogeneity in transport protocols support of QoS
assurance. QoS support at the transport layer ranges from no QoS support (such as in
UDP [17]), to limited support (such as in TCP [17]), and up to intricate assistance
(such as in RSVP [1]). Even when providing considerable QoS support, protocols
disagree on the metrics for negotiation and on the negotiation mechanism supported
[11]. The lack of transport homogeneity renders development of portable
applications difficult in many ways. (1) Application programmers need to be aware
and handle the gap between the QoS needed and the one effectively supported by a
particular provider. (2) Applications must handle details of QoS negotiation
protocols. (3) Differences in the semantics of QoS assurance cause applications to
work differently under different system configurations.

Similar complexities in assuring QoS result from OS heterogeneity. For example,
if the OS does not support real time computations, an application may miss the
deadline to decode a video frame in time to display it. Such application needs to
know about OS performance behavior and react accordingly. These issues are
beyond the scope of this paper, but we refer the reader to [3,5,8,16] for a good
coverage on the subject.

QoSockets add to existing communication APIs (such as Berkeley sockets [17])
the ability to specify QoS constraints (e.g., delay or jitter) of a transport protocol.
The main contributions of QoSockets are: (1) Support of single API for transport
layer QoS negotiation, connection establishment, and data transmission. (2) Support
of a single QoS negotiation protocol. (3) Generality across application QoS needs.
(4) Automatic monitoring of the QoS delivered by the underlying system and
automatic detection of violations of QoS assurance. (5) Support of a flexible
mechanism to dynamically select most appropriate QoS transport providers given
specific application requirements.

QoSockets may extend most socket mechanisms, including Unix socket interface
or the WinSock interface.

This paper will concentrate on the design of QoSockets. The very important issue
of performance of QoSockets are left for a future publication due to space limitation.
Interested readers may want to refer to [6] for some early experimental performance
evaluations for some sample applications.

(c) 1999 IFIP

The reminder of this paper is organized as follows. Section 2 describes how an
application developer uses QoSockets to specify QoS constraints in a communication
and how QoSockets allocate underlying system resources. Section 3 discusses how
the QoSockets runtime hides from application developers the heterogeneity of
transport protocols. Section 4 shows the QoSockets mechanisms for application level
QoS management. Finally, Section 5summarizes.

2. Specification of QoS Constraints in QoSockets

This section overviews QoSockets QoS specification by using sample examples.
QoSockets supports two types of QoS metrics: resource level QoS metrics and
application specific QoS metrics. Resource level QoS metrics provide performance
measures of the underlying system in which an application operates. These include
universal communication QoS metrics and QoS metrics related to computations. The
universal QoS metrics are loss, permutation, rate, end-to-end delay, jitter, and
connection recovery time (they are formally defined in [6]). QoSockets use these
metrics to allocate and manage necessary underlying system resources. Application
specific QoS metrics are application dependent performance measures of
communications. For example, a video conference application may specify resource
level QoS metrics such as rate and delay to indicate how the runtime should allocate
communication resources. In addition, it may define application specific metrics that
indicate how synchronized its audio and video streams should be, that is, if each
video and corresponding audio frames arrive at the same time.

Resource level and application specific QoS metrics differ in purpose. Both
specify how to perform QoS monitoring but only the first specifies allocation of
system resources. For example, the delay metric specifies indirectly the strategy to
allocate bandwidth and buffers while rate of late messages only specifies how to
monitor the stream. It is left for future work mapping of application specific QoS
monitoring into resource allocation strategies.

QoSockets use a coercion mechanism to upgrade a less restrictive constraint until
it matches a more restrictive one. During binding time, it checks the QoS
specification in the communicating ports and tries to find a QoS allocation that will
satisfy the most stringent requirements. One simple example is a connection where
the sender specifies a minimum rate of 1 Mb/s while the receiver needs at least
500 Kb/s. The coercion mechanism will try to allocate at least 1 Mb/s for this
connection.

Figure 1 specifies the qos_ty data type that enables the declaration of universal
QoS metrics. For each universal metric, applications can specify a tolerable threshold
value (field value), windows over which the metric should be measured (field
window), and if the threshold can be coerced (field coercion) when binding with
other sockets.

Applications specify constraints on a per port basis by associating a different
qos_ty object with each port. For example, values 3 and 5 in the fields value and
window of delay for port p specifies that the average delay cannot have a value
higher than 3 ms over intervals of 5 s on communications over p. The runtime uses

(c) 1999 IFIP

size, when specified, to optimize resource allocation. Ports can support a maximum
of multiple concurrent connections at a time. A positive value in combined indicates
that the min_rate and rate QoS constraints refer to the rate of all the connections
combined. When combined is not specified, each connection generates the min_rate
and rate specified. The following section discusses how constraints can be associated
to ports.

/* Definition of a QoS metric */
typedef struct qos_metric {

int value /* Tolerable threshold for QoS metric */
int window; /* How often (in seconds) the QoS metric must be measured */
int coercion; /* If the threshold can be coerced at binding time */

} qos_met_ty;

/* Definition of Universal QoS Metrics in QoSockets */
typedef struct qos {
qos_met_ty loss; /* Loss not higher than 10 to the power -loss.value */
qos_met_ty permt; /* Permutation is tolerated (if value not 0) */
qos_met_ty min_rate; /* Mean rate measured in messages/s */
qos_met_ty rate; /* Mean rate measured in messages/s */
qos_met_ty peak; /* Peak transmission rate is not higher than peak.value */
qos_met_ty delay; /* End-to-end delay measured in ms */
qos_met_ty jitter; /* Jitter measured in ms */
qos_met_ty recovery; /* Any recovery must take less than recovery.value */
int size; /* Maximum message size */
int multiple; /* Maximum of multiple connections concurrently */
int combined ; /* Measure the QoS on all connections combined */
} qos_ty;

Figure 1: Specification of QoS metrics in QoSockets.

A NULL value for a qos_ty object field indicates that the application chooses not
to specify that particular constraint and leaves it up to the runtime. Alternatively, the
application provides QoS constraints and let the QoSockets runtime choose the best
service provided by the transport for the request. Such range of option provides a
rich set of semantic QoS negotiation possibilities for applicatios.

QoSockets runtime bridges the gap between the QoS assurance model chosen by
applications and the one deployed by a network. In addition, it automatically
monitors the execution of applications and dynamically re-negotiates QoS with the
network to match application demands. Section 4 discusses how data collected
during monitoring permits clever network management policies to adjust QoS
delivery according to observed QoS behavior. QoSockets provide a single API for
QoS specification that is independent of underlying transport mechanism details. The

(c) 1999 IFIP

runtime translates abstract QoS specifications into service requests specific to the
underlying transport.

The semantics offered by QoSockets are that (1) it negotiates QoS with the
network on a best effort basis and that (2) violations must be handled by
applications. In a best effort QoS delivery, networks multiplex their resources in an
effort to best fit the QoS requested without wasting resources. Stochastic models are
used to characterize data traffic sources and predict when and where resources are
needed. Nevertheless, there is no guarantee that violations will not occur during
transient overload periods. As a consequence, QoSockets applications must be
designed to handle violations and to adapt accordingly.

3. QoSockets Connection Establishment Protocol

QoSockets unify several connection establishment protocols in one, promoting code
portability and reuse. Figure 2 shows the time line for the typical communication
scenario using QoSockets and Figure 3 shows the QoSockets API system calls. In
Figure 2, rectangles represent QoSockets function calls and the straight arrows
represent execution flows. Time increases from top to bottom direction. Two
execution flows are depicted: the Sender application and the Receiver application.
The dashed arrows represent events handled by the QoSockets runtime concurrently
with the execution of other tasks. These events are triggered by the system call where
the arrow initiates. The balloon indicates when QoS negotiation happens.

Ports in QoSockets are identified by name (of type string) and do not need to be
bound to a specific transport level port number. This feature increases code
portability by preventing application failure due to conflicts on the allocation of
transport level addresses. The name of a QoSockets port and its QoS requirements
are defined at allocation time. Inports and outports are allocated, respectively,
through the qos_alloc_inport and qos_alloc_outport operators calls. In Figure 2,
Receiver calls qos_alloc_inport to allocate inport ma (short for Massachusetts) with
the QoS requirements expressed in the variable rqos of type qos_ty (Figure 1). At the
end of the call, variable rp points to a descriptor for the allocated port. The last three
arguments are optional and indicate the family (Unix internal protocol, Internet
protocol, etc.), type (stream socket, raw socket, etc.), and protocol (if a specialized
one like ICMP [17], SPP [17], etc., is needed). These arguments can have a NULL
value in which case the QoSockets runtime automatically selects them based on the
QoS requirements and on the protocols supported by the communicating machines.
Consider, for example, an application running on a distributed environment that
supports AAL and TCP. QoSockets runtime selects AAL when the application
specifies QoS constraints and TCP when it does not.

The binding mechanism in QoSockets incorporates QoS negotiation between
peer applications in the sockets mechanism. In Figure 2, the call to qos_export
publishes to other QoSockets applications all the information associated with inport
rp, such as its name and QoS requirements. QoSockets publish port related
information by using name servers [9] to store and access the information published.
On the sender side, qos_import binds outport sp with the inport ma available on

(c) 1999 IFIP

machine mit.edu. Operator qos_import first accesses the name server to retrieve
information on a particular inport. It checks the QoS restrictions of sp with the ones
retrieved from the name server and decides whether or not they are compatible (that
is, if there is a QoS allocation that can satisfy both ports). If they are, the ports are
bound and connection can be established any time after that. Otherwise, qos_import
returns an error and indicates why they are not compatible.

qos_alloc_inport(rp, "ma", rqos, family, type, protocol);

Receiver

qos_export(rp);

qos_connect(sp, add, len);

qos_import(sp, "ma", "mit.edu");

qos_send(sp, data, len);

qos_alloc_outport(sp, "ny", sqos, family, type, proto);

qos_receive(rp, &data, timeout);

Sender

connection
establishment

data
transfer

QoS
Negotiation

Figure 2: QoSockets function call sequence to establish a communication.

QoSockets establish connections as follows. Operator qos_connect triggers the
connection establishment at the sending side. It blocks until connection
establishment has been initiated. The last two optional arguments are used to identify
the connecting inport by its physical address, when necessary. The transport service
provider for the communication (if no transport was specified when the connecting
ports were allocated) is allocated by qos_connect.

At the receiver side, QoSockets runtime frees applications from servicing
connection requests and connection establishment details. The QoSockets runtime
process incoming requests, accepting or rejecting connections based on their QoS
needs and on the QoS offered by the transport service provider chosen for the
communication. At the sender side, QoSockets runtime manages connection
establishment confirmations or rejections without exposing applications to such
details.

In synchronous protocols [2], connection might have already been established by
the time qos_connect returns. In asynchronous protocols [18], connection
establishment has only been initiated when qos_connect returns.

(c) 1999 IFIP

Operators qos_send and qos_receive are for data transmission. Operator
qos_send sends through sp a message that is up to len bytes long stored in add.
Similarly, qos_receive blocks for up to timeout milliseconds waiting for a message to
arrive for rp. If a message arrives within the time period specified, qos_receive
retrieves it and stores it in the memory designated by data.

qos_alloc_inport(inport_ty *port_ref, qos_ty qos_ref,
 int family, int type, int protocol);

Allocates an inport with the QoS constraints specified
in qos_ref for transmission over a given
communication family, type, and protocol. Returns in
port_ref a reference to the inport created.

qos_alloc_outport(outport_ty *port_ref, qos_ty qos_ref,
 int family, int type, int protocol);

Allocates an outport with the QoS constraints
specified in qos_ref for transmission over a given
communication family, type, and protocol. Returns in
port_ref a reference to the outport created.

qos_export(inport_ty *port_ref, char *external_name); Publishes the QoS constraints and protocol specific
addresses associated with port_ref. The information
published is identified by external_name.

qos_import(outport_ty *port_ref, char *external_name, char *machine_name); Connects port_ref to the port identified by
external_name available on machine_name.

qos_connect(outport_ty *port_ref, struct sockaddr *addr, int addrlen); Connects port_ref to the address specified in addr.
addrlen has the size of the addr data structure.

qos_send(outport_ty *port_ref, char *data_ref, int len); Sends len bytes of data stored in data_ref through
port_ref.

qos_receive(inport_ty *port_ref, char *data_ref, struct timeval *timeout); Blocks for a maximum of timeout waiting for data to
arrive in port_ref. Saves in data_ref the first message
that arrives before timeout expires.

qos_wait_inport_connected(inport port_ref, struct timeval *timeout); Blocks for a maximum of timeout waiting for a
connection to be established in port_ref.

qos_wait_outport_connected(outport port_ref, struct timeval *timeout); Blocks for a maximum of timeout waiting for a
connection to be established in port_ref.

qos_bind(port_ty *port_ref, struct sockaddr *addr, int addrlen); Assigns the protocol level address specified in addr
to port_ref. addrlen has the size of the addr data
structure.

Figure 3: QoSockets API system calls.

Operator qos_send and qos_receive block until a connection is fully established
on the port transmitting data. Blocking may be avoided by using the operators
qos_wait_outport_connected and qos_wait_inport_connected before the first call to
qos_send and qos_receive, respectively. These operators block until connection has
been fully established, but do not transmit any data.

4. Managing QoS Delivery

The network management and the application QoS adaptation strategies will
accomplish better results through coordination. Network management may improve
the QoS in application streams by allocating alternative routes. Applications may
operate under QoS degradation by adapting their streams to the QoS received.
Without coordination, these activities may settle for unsatisfactory or unstable
operational points. For example, upon congestion at a switch, SNMP [13] managers
may decide to allocate alternative routes and, concurrently, applications may reduce

(c) 1999 IFIP

their transmission rates. Both applications and managers need to understand
requested and delivered QoS to coordinate their efforts.

Network

SNMP Manager

Application

Runtime System

Application

Runtime System

SNMP
Agent

QoS MIB

SNMP
Agent

QoS MIB

One of the main contributions of QoSockets is integrating application level QoS
management and underlying system management. The QoSockets management
architecture consists of QoS MIBs [15] and SNMP agents that provide QoS MIB
access to SNMP managers. The objects in these MIBs deal with application level
information, such as video frame delays and voice stream jitter. The information is
partitioned among MIB groups according to applications, outports, inports, and
programmable (application specific) metrics. The proposed architecture has the main
novel advantages:
• It includes a mechanism to disclose application level QoS performance to

underlying system managers. By accessing QoS MIBs, managers of transport
layer connections can identify, for example, the application that is using a
particular connection, the QoS the application requested, and the QoS that is
being delivered to it. This information may be used to decide alternative
allocation policies or to pin point applications that are overloading network
resources.

• It contains the necessary information to characterize application QoS behavior.
QoS MIBs store the QoS requested by applications and measurements on the
QoS being delivered to them. These measurements include the value of universal
metrics (such as end-end delay, jitter, loss, etc.) and application specific ones.

• It includes coordination of application and SNMP management activities. This is
useful when applications and managers detect violations and try to compensate
for them. They should coordinate their activities to avoid interfering with each
other’s decisions. For example, an SNMP manager may decide to allocate more
throughput in some network links to overcome congestion while applications

Figure 4: Overall architecture for instrumentation and access of QoS MIBs.

(c) 1999 IFIP

may decide not to decrease their transmission rates because they are aware of this
management decision.

4.1. Overview of the QoSockets Management Architecture

Figure 4 illustrates the architecture for QoS management through QoS MIBs using a
generic multimedia multi-application example. The applications sample input
devices (such as monitors, cameras, and microphones), broadcast them to other
participants, and finally display received samples locally. The runtime instances at
each site support interactions between applications and the underlying transport and
OS, and store in QoS MIBs information on the QoS effectively received. Examples
of such information are the amount of bandwidth allocated and received in the
communication. SNMP agents embedded in the architecture provide QoS MIB
access to SNMP managers.

Applications read QoS MIB fields to detect QoS violations and update them to
trigger corrective actions. Consider, for example, an inport receiving video data that
requires a delay not higher than 5 ms over windows of 1 s. The QoSockets runtime
automatically monitors delay variations and store them in MIBs. Video play-out time
may require adjustment when the average delay is lower than a certain threshold (for
example, 3 ms). Applications need to query QoS MIB objects to detect such
situations.

SNMP managers use QoS MIB data to manage QoS delivery based on
application needs. These managers may get information about the configuration of
applications running on the system and can customize their service management
accordingly. For example, when the delay on a communication is higher than the
application expected, a manager can initiate the establishment of an alternative
connection. Managers can also use information on other SNMP MIBs to aid the
analysis and control of QoS violations. For example, by monitoring ATM switch
MIBs, a manager can force communication establishment to bypass congested
switches.

SNMP managers use information on other SNMP MIBs to aid the analysis of
QoS violations. For example, an SNMP manager may monitor ATM switch MIB
values to understand the QoS in communications between applications. The SNMP
manager traces, for example, cases where unexpected transmission delays are due to
congestion in the switch. In such scenario, managers can automatically request the
establishment of an alternative connection that bypasses the congested switch.

QoS MIBs integrate application management within general network
management frameworks. This feature is important because it may become
inefficient or intractable to manage distributed application activities using only lower
layer information. This difficulty comes from the increasing gap between application
level abstractions and underlying system entities providing services. The architecture
presented provides a framework for dividing management responsibilities between
SNMP managers and applications. On one hand, authorized SNMP managers can
access QoS MIBs and manage the underlying system according to application needs.

(c) 1999 IFIP

On the other hand, applications can manage themselves, according to the received
QoS.

4.2. An Overview of the QoS MIB Design

The QoS MIB data belongs to one of the following groups (as depicted in Figure 5):
• Application (qApp for short): Consists of the table qAppTable that contains one

entry of type qAppEntry for each application running on the system. Each entry
indicates the QoS provided by the underlying OS and general information on the
response of the protocol stack to QoS demanding connection establishment
requests. For example, the application group object qAppLSchFl stores the last
time when the OS failed to schedule an application according to its timing
constraints and qAppLInCnnFl stores the last time when an application had a
connection establishment request rejected. This group can be seen as an
extension of the NSM MIB [7] to add information about application QoS.

• Outport (qOut): Consists of the table qOutTable which has one row of type
qOutEntry for each outport connection of applications in qApp. Each entry
indicates the QoS negotiated for the outport and how the outport is using the
connection. For example, the object qOutMaxRate indicates the rate negotiated
with the network at connection establishment time, qOutMsgSent indicates how
many messages have been sent so far, and qOutActTime indicates when the
connection became active. A manager can calculate the average transmission rate
effectively received by dividing qOutMsgSent by the time elapsed since
qOutActTime. It can then compare the result with qOutMaxRate which holds the
negotiated rate.

qos
qApp

qAppTable
qAppEntry

qAppLSchFl
qAppLInCnnFl

qOut ...
qOutTable

qOutEntry
qOutMaxRate
qOutMsgSent
qOut

qIn ...
qInTable

qInEntry
qInAccDelay
qInMsgRecv
qInDelayNeg

qProg ...
qProgTable

qProgEntry
qProgMet
qProgVal
...

• Inport (qIn): Consists of the table qInTable which has one row of type qInEntry
for each inport of applications in qApp, similar to qOutEntry. In addition, it
maintains measures on the QoS effectively delivered by the network. For

Figure 5: QoS MIB object groups.

(c) 1999 IFIP

example, the qInDelayNeg, qInAccDelay, and qInMsgRecv objects indicate the
transmission delay negotiated with the network, the sum of the transmission
delays of all messages received, and the number of messages received,
respectively. An SNMP manager uses these data to establish alternative paths for
connections that are experiencing a mean transmission delay much higher than
the one negotiated. The mean transmission delay is calculated by dividing
qInAccDelay by qInMsgRecv.

• Programmable (qProg): Consists of the table qProgTable which has one row of
type qProgEntry for each application programmed (application specific) QoS
metric. An entry in qProgTable indicates the metric that is being measured, the
application that requested the measurement, and the last value measured. For
example, the objects qProgMet identifies a metric and the object qProgVal
indicates the last value measured. Entries in this group are added or removed as
applications trigger or cancel monitoring of new QoS metrics. Metrics that use
the window mechanism to specify the measurement frequency are stored in this
table. For example, average delay is measured over a window of time that defines
what is the frequency at which such measure is to be computed.

Object Syntax Description
01 qOutProtocol OBJECT

IDENTIFIER
Identification of the protocol being used
for this connection

02 qOutLoss INTEGER Probabilistic message loss rate

(10(-qOutLoss))
03 qOutPermut “yes” | “no” Indication of tolerance to permutation
04 qOutMinRate INTEGER Minimum number of messages per second
05 qOutMaxRate INTEGER Maximum number of messages per second
06 qOutPeak INTEGER Peak number of messages per second
07 qOutDelay INTEGER Maximum propagation delay
08 qOutJitter INTEGER Maximum jitter
09 qOutRecTime INTEGER Maximum time tolerated for recovery
11 qOutMsgSize INTEGER Maximum message size in bytes
12 qOutManager OBJECT

IDENTIFIER
Entity currently controlling
communication QoS violations

Table 1: Configuration Outport Group Objects

4.3. QoS MIB Data per Outport

This section illustrated the QoS MIB data of output port group. The reader can refer
to [6] for other groups and for more details. The information stored by the columnar
objects of the MIBs presented here are classified in one of the following categories:
(1) Identification: used to describe a particular instance of an object; (2)
Configuration: used to identify how resources were allocated for a service; (3)
Operational behavior statistics: used to analyze the actual performance delivered by

(c) 1999 IFIP

the underlying system, and (4) Coordination: used to synchronize management
actions between applications and SNMP managers.

The goal of the outport group is to inform about outport connections, their QoS
requirements, how they are being utilized, and to coordinate management of their
QoS performance between applications and SNMP managers. This group also
includes information on connection problems and recovery performance.

Identification objects store the local and remote addresses of the communicating
machines, identifiers of the applications involved, and the transport layer port
numbers of the connection. If a connection is currently presenting problems,
managers use such objects to identify the applications involved and properly notify
them. Similarly, if an application terminates abruptly, managers can look in the
outport MIB for its connections and gracefully terminate them.

Configuration Outport Group Objects
Table 1 shows the configuration objects present in the outport group. SNMP
managers use configuration objects to guide the allocation of communication
resources per outport connection. The qOutMsgSize object indicates the maximum
size of messages transmitted on a connection. The qOutProtocol object identifies the
transport protocol serving the connection. The qOutLoss, qOutPermut,
qOutMinRate, qOutMaxRate, qOutPeak, qOutDelay, qOutJitter, and qOutRecTime
objects identify the QoS constraints negotiated for the outport. These data enable an
accurate analysis of the resources allocated per connection.

Object Syntax Description
01 qOutCnnFail Counter32 Total number of connection failures
02 qOutAccRecTime INTEGER Total time spent recovering
03 qOutEstTime TimeStamp Time of connection establishment
04 qOutActTime TimeStamp Time when the traffic became active
05 qOutMsgSent Counter32 Total number of messages sent
06 qOutVolume Counter32 Total volume of data sent in kilobytes
07 qOutLstMsg TimeStamp Time when the last message was sent

through the connection
08 qOutLstFail TimeStamp Time of last connection problem
09 qOutStatus “up” | “down” Status of the connection

Table 2: Operational Behavior Statistics Outport Group Objects

Consider, for example, an application that receives radiology images and
occupies most of the communication resources on a machine. If other applications
are unable to open connections, a local SNMP manager can use qOutMaxRate,
qOutPeak, and qOutMsgSize object instances to calculate how buffering resources
are currently distributed. The manager may then realize that the amount of
bandwidth negotiated by the radiology application corresponds to a great percentage
of the resources the machine has available. A manager might force the radiology
application to downgrade the QoS negotiated making possible for other applications

(c) 1999 IFIP

to communicate concurrently. The qOutManager object enables management
coordination between applications and SNMP managers.

Operational Behavior Statistics Outport Group Objects
Table 2 illustrates operational behavior outport group objects. QoS managers use
qOutCnnFail and qOutAccRecTime object instances to estimate recovery time from
connection failures and manage QoS performance accordingly. For example, the
average recovery time can be calculated by dividing qOutAccRecTime by
qOutCnnFail. Thus, an application unable to send data over a connection due to a
failure can decide whether to open an alternative connection or to wait for recovery
based on the mean recovery time.

SNMP managers use operational behavior objects, such as qOutMsgSent, and
qOutVolume, to evaluate how much of the resources allocated by an application are
actually being used, and to re-negotiate QoS if the utilization ratio is low. An SNMP
manager reduce a communication allocation from 30 frame/s video to 15 frame/s if
the application has not sent more than 15 frames/s recently. By detecting under-
utilization, managers can allocate resources more efficiently.

5. Conclusions

This paper presents the QoSockets APIs that promote code portability and reusability
by sheltering heterogeneity in the QoS functions offered by several transport
protocols. The main contributions of such approach are: (1) A single API that is
independent of transport layer specifics. The same application can use services from
several transport protocols without any modification. (2) The runtime offers a single
QoS negotiation mechanism which automatically bridges gaps among different
transport protocol providers. (3) Upgrades to support new protocols or new OSs can
be accomplished by extending the runtime with the interface to the new architecture
components. (4) The QoSockets runtime can automatically select the most
appropriate transport given QoS requirements. (5) The runtime can automatically
monitor the QoS delivered with low overhead. The collected data may be accessed
by other local applications as well as external SNMP managers.

QoSockets also include an architecture for QoS management using QoS MIBs.
QoS MIB data identify how communication and processing resources are allocated
and utilized by applications. Applications use QoS MIB data to detect QoS violations
and adapt accordingly. SNMP agents in the architecture provide QoS MIB access to
SNMP managers that may use this information to manage resources according to the
QoS delivered to applications. QoS MIB objects also include control information to
coordinate QoS management between applications and SNMP managers.

Multiple experiments have been conducted using QoSockets, which are reported
in [6]. As expected, they simplified many aspects of the implementation of such
applications, including multiple protocol support, automatic QoS monitoring, and
portability. It was shown that the overhead introduced by QoSockets is not negligible
(200 µsec in a SPARC 20) but it is constant for any message size. The throughput is
not considerably affected because the typical time to generate a message is much

(c) 1999 IFIP

larger than the time to process QoSockets API and protocols. For more details on the
overhead, we refer the readr to [6].

A partial prototype of QoSME has been released for public access. It runs on
Solaris 2.5 and Linux and supports communication on RSVP, ATM adaptation layer,
ST-II [18], UDP/IP, TCP/IP, and Unix internal protocols.

References

[1] R. Braden, L. Zhang, D. Estrin, S. Herzog, and S Jamin. Resource ReServation
Protocol (RSVP) -- Version 1 Functional Specification. Internet Draft, 1995.

[2] D. E. Comer and D. L. Stevens. Internetworking with TCP/IP Volume 1.
Prentice Hall, NJ, 1991.

[3] G. Coulson, A. Campbell, and P. Robin. Design of a QoS Controlled ATM
Based Communication System in Chorus. IEEE JSAC, May 1995.

[4] M. De Prycker. Asynchronous Transfer Mode: solution for Broadband ISDN.
Ellis Horwood Limited, Second Edition, 1993.

[5] D. Feldmeier. A Framework of Architectural Concepts for High Speed
Communication Systems. Technical Report, Bellcore, Morristown, May 1993.

[6] P. G. S. Florissi. QuAL: Quality Assurance Language. PhD Thesis, Computer
Science Department Columbia University, New York, NY, 1995.

[7] N. Freed and S. Kille. Network Service Monitoring Management Information
Base. Internet Draft, 1995.

[8] R. Govindan and D. P. Anderson. Scheduling and IPC Mechanisms for
Continuous Media. In Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles, USA, SIGOPS, vol. 25, pp 68-80, 1991.

[9] F. Halsall. Data Communications, Computer Networks and Open Systems.
Addison Wesley, 1992.

[10] D. B. Hehmann, R. G. Herrtwich, W. Schulz, T. Schuett, and R. Steinmetz.
Implementing HeiTS: Architecture and Implementation Strategy of the
Heidelberg High Speed Transport System. In Proceedings of the Second
International Workshop on Network and Operating System Support for Digital
Audio and Video, IBM ENC, Heidelberg, Germany, November 1991.

[11] S. Keshav. Report on the Workshop on Quality of Service Issues in High Speed
Networks. ACM Comp. Comm. Review, vol. 22, no. 1, pp. 6–15, January 1993.

[12]A. Lazar. Challenges in Multimedia Networking. In Proceedings of the
International Hi-Tech Forum, Osaka, Japan, February 1994.

[13]M. T. Rose. The Simple Book. Prentice-Hall, 1993.
[14]H. Schulzrinne and S. Casner. RTP: A Transport Protocol for Real-Time

Applications. Internet Draft, draft-ietf-avt-rtp-05, 1995.
[15]W. Stallings. SNMP, SNMPv2, and CMIP.Addison Wesley, 1993.
[16]Stankovic. Implications of Classical Scheduling Results for Real-Time Systems.

IEEE Computer, Issue on Scheduling and Real-Time Systems, June 1995.
[17]W. R. Stevens. UNIX Network Programming. Prentice-Hall, New Jersey, 1990.
[18]C. Topolcic. Internet Stream Protocol, Version 2 (ST-II). Internet Requests for

Comments (RFC) 1190, October, 1990.

(c) 1999 IFIP

