
Adaptive Network/Service Fault Detection
in
Transaction-Oriented Wide Area Networks

L.L. Ho, D.J. Cavuto, M.Z. Hasan,
& F.E. Feather
Bell Labs, Lucent Technologies
101 Crawfords Corner Road
Holmdel, NJ 07733
USA
{llho, cavuto}@bell-labs.com

S. Papavassiliou, & A.G. Zawadzki
AT&T Labs, AT&T
200 Laurel Avenue South
Middletown, NJ  07748
USA
{spapavassiliou, doose}@att.com

Abstract
Algorithms and online software for automated and adaptive detection of
network/service anomalies have been developed and field-tested for transaction-
oriented wide area networks (WANs). These transaction networks are integral parts
of electronic commerce infrastructures. Our adaptive network/service anomaly
detection algorithms are demonstrated in a commercially important production
WAN, currently monitored by our recently implemented real-time software
system—TRISTAN (Transaction Instantaneous Anomaly Notification). TRISTAN
adaptively and proactively detects network/service performance degradations and
failures in multiple service-class transaction-oriented networks, where performances
of service classes are mutually dependent and correlated, and where external or
environmental factors can strongly impact network and service performances. In this
paper, we present the architecture, summarize the implemented algorithms, and
describe the operation of TRISTAN as deployed in the AT&T Transaction Access
Services (TAS) network. TAS is a commercially important, high volume, multiple
service classes, hybrid telecom and data WAN that services transaction traffic in the
US and neighboring countries. It is demonstrated that TRISTAN detects
network/service anomalies in TAS effectively. TRISTAN can automatically and
dynamically detect network/service faults, which can easily elude detection by the
traditional alarm-based network monitoring systems.

Keywords
Network fault detection, anomaly detection, fault management, transactions oriented
networks, electronic commerce, wide area networks.

(c) 1999 IFIP



1. Introduction
Proactive detection of network failures and performance degradations is a key to
rapid fault recovery and robust networking, and has been receiving increasing
attention lately [1–3]. The past few years have witnessed much progress in path
failure detection (including break faults) [4–6], billing fraud detection in
telecommunication voice networks [7], anomaly detection in Ethernet [8,9], anomaly
and performance change detection in small networks [10,11], and network alarm
correlation [12–15]. With the advent and explosive growth of the global Internet and
electronic commerce environments, adaptive/automatic network and service
anomaly detection in wide area data networks and E-commerce infrastructures (e.g.,
transaction-oriented networks and services) is fast gaining research and practical
importance [16,17]. In these cases, being able to proactively detect performance
degradations (termed “soft” faults as opposed to the “hard” alarms/failures of
networks and their elements [8,9]) and “hard” network faults in wide area networks
is becoming crucial for speedy fault recovery and for preventing the onset of
network/service failures. As communication infrastructures are evolving into
multiplexed and multiple service-class networks, network resource sharing by
multiple service-classes correlates the performances of all classes that are supported
in logically partitioned networks (e.g., VPNs, ATM networks, and transaction-
oriented networks). Hence, performance degradation in one set of service classes can
impact negatively the performances of the rest. This again demands anomaly
detection of network and service faults [17]. Finally, faulty elements that are outside
the jurisdiction of network monitoring systems can degrade the performance of the
monitored network proper (see Figure 1). In this case, anomaly detection can infer
the presence of these non-monitored failures (i.e., no MIB nor trap information
access) from the monitored performance data of the networks, and enable timely
fault recovery. Together, these considerations motivate our research in using
network performance data to detect network/service anomalies in wide area
communication infrastructures. Our research and software apply to fault
management of the following networking environments:

• Wide area networks and E-commerce infrastructures (as opposed to local
area networks or small campus networks [8–11]),

• Wide area networks where proactive detection and timely recovery of
service performance degradations (or “soft” faults) are important
(compared with generating and processing “hard” network alarms [12–
15]),

• Multiple service-class networks where resource sharing is significant and
service-class performances are correlated (e.g., in a multiple service-class
transaction network, or a virtual private networking infrastructure), and
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• Networks where the non-managed parts and environmental components
(e.g., customer-site equipment, and attached networks) can fail and
consequently degrade the performance of the managed network proper.

To detect network/service faults effectively and automatically, software should be
developed such that statistical signatures of network/service anomalies can be
recognized algorithmically. This in turn implies that expected network and service
performances have to be measured and generated from historical network data as
networks function. And that historical performance data and alarm logs (and their
problem resolution) of representative wide area data communication and E-
commerce networks should be analyzed statistically and visually to draw
conclusions that can be implemented in anomaly detection algorithms and software.
To this end, we investigated the performance dynamics of a variety of telecom and
data networks, and developed methods and algorithms for automatic detection of
network/service anomalies from its performance data [17,18].

In this paper, we describe proactive anomaly detection in transaction-oriented WANs
by presenting the algorithms, architecture, and application of an on-line software
system we developed—the TRISTAN (Transaction Instantaneous Anomaly
Notification) system. TRISTAN implements the anomaly detection algorithms we
developed [17,18]. We also describe the application of TRISTAN to anomaly
detection in a commercially important transaction-oriented wide area network (the
AT&T Transaction Access Service network).

TRISTAN is currently being tested as an on-line fault detection system for the
commercially important AT&T Transaction Access Services (TAS) network. In this
context, the TRISTAN system, as currently implemented, is capable of

• Adaptively sampling the TAS transaction records in real-time with
dynamically defined sampling windows and on a per service class basis.
This algorithm is partly designed to highlight transactions that have high
probability of being anomalous,

• Automatically building dynamic thresholds for all TAS service classes to
baseline their individual performances and the overall network
performance. These thresholds are updated periodically and automatically
to account for the performance evolution of the TAS service classes,

• Detecting network and service anomalies of TAS as dynamically defined
violations of the baselined performance characteristics and profiles. In
addition to being applicable to faults originated within the TAS network,
this also applies to anomaly and faults that may occur outside the
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jurisdiction of the TAS monitoring system. Environmental and external
failures that impact the performance (or threaten total failure) of TAS are
inferred by TRISTAN for timely damage control and fault/performance
management, and

• Detecting TAS faults reliably and proactively, as will be illustrated by a
concrete example. Some of these faults originated from the non-managed
part of the network, and had historically led to TAS service degradations.
Being able to detect these faults in the early stage before problem escalation
enables early recovery and is a key feature of TRISTAN.

Section 2 concerns network anomaly detection algorithms and processes. Section 3
concerns the AT&T TAS network, and its relevance to network anomaly detection.
Section 4 concerns the architecture and implementation of the TRISTAN system,
and service-class enabled anomaly detection by TRISTAN. Section 5 provides a
real-life example of TAS anomaly detection by TRISTAN, and section 6 provides a
summary.

2.  Network Anomaly Detection
A network anomaly detector is a real-time software that adaptively analyzes
performance data of managed networks to detect “abnormal” changes (relative to
some historical baselines or “expected” behavior) in network traffic and
performances, which are signatures of soft and hard network faults. The three steps
of adaptive network anomaly detection are:

1. Preferential sampling of transaction records
This self-consistently and preferentially samples the network (e.g., transaction
records generated by network switches) to detect transactions that have high
probabilities for being anomalous. The sampling scheme strikes a balance
between sampling frequencies and performance resolution [17].

Each transaction “i” in a transaction-oriented network is characterized by a 3-
tuple: (1) starting time of transaction, ti, (2) duration of transaction, ∆ti, and (3) a
service-class identifier. Transaction durations (time-stamped by ti) are computed
to form traffic intensities at discrete time interval for every service class. The
traffic intensity of a service class provides a measure of the total number of
circuits dedicated to that service class in real-time. For a service class “s”, its
traffic intensity Is(Tn,s) at discrete time Tn,s (n is an integer, where its maximum
value Ns determines the total number of daily time intervals) is
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where transactions within a time bin (defined by the sampling time δTs, which is
service-class dependent) for the service class are summed; and
Ns=(24×60×60)/δTs (in this case, the unit of δTs.is second) is the daily number
of time bin of “s”. The sampling time δTs is adaptive and dynamically
determined from historical transaction records. It is related to the historical
“average” and “upper-limit” transaction duration of a service class, and is so
determined that transactions with high probability of being anomalous are
preferentially highlighted. Depending on the historical transaction pattern of a
service class, abnormally long (defined by historical data) transactions are
highlighted by its sampling time in the traffic intensities (see Figure 1). From
data analysis and verification, this method has been shown to be capable of
effectively highlighting potentially anomalous transactions.
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Figure 1:  A typical histogram of transaction duration of a service class. Potentially
anomalous transactions (as indeed they are) are highlighted

2. Temporal-based performance thresholds
By exploiting the temporal performance regularities of networks, performance
thresholds of each TAS service can be classified into 4 classes: weekdays,
Saturdays, Sundays, and holidays. Historical data of service classes are used to
construct these adaptive thresholds for each TAS service. Expected
performances of TAS services are predicted through these thresholds [17,18].
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For each of the 4 threshold groups, a set of adaptive thresholds are built to
predict the expected performance of TAS services on weekdays, Saturdays,
Sundays, and holidays, respectively. Each set of dynamic thresholds (upper and
lower thresholds) is composed of a predicted baseline ( )sns TI ,

~  and tolerance

( )sns T ,
~σ  (note: “~” denotes “predicted”) as follows

The baseline ( )sns TI ,

~  and tolerance ( )sns T ,
~σ  are computed from historical

transaction data through one-dimensional time series analysis and are classified
into the “weekday”, “Saturday”, “Sunday”, and “holiday” classes [17,18]. The

( )sns TI ,

~ s represent the predicted “average” traffic intensities of service classes,

while the ( )sns T ,
~σ s represent the predicted “average” fluctuations of the

corresponding traffic intensities. Both ( )sns TI ,

~ s and ( )sns T ,
~σ  are updated

periodically to account for the evolution in network traffic.

3. Anomaly detection
Expected performances of TAS services are predicted through the above
thresholds, and deviations (in both magnitude and duration, as defined by a set
of fault criteria) from the expected are indications of network/service anomalies
[17,18].

In anomaly detection, an alarm is sounded that signals the arrival of a
network/service anomaly if (1) the measured (in real-time) traffic intensity
Is,measured(Tn,s) at time Tn,s deviates from the thresholds by more than a from the
predicted baseline, and (2) the previous condition persist and for more than
Tpersist, i.e.,
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As will be explained in the following sections, the choice of the parameters in
the above criterion (a and Tpersist) are determined experimentally. Finally, the
detected anomaly is mapped to an diagnosis log that identifies the “guilty”
service class(es) and the possible cause(s) of anomaly. This information is
presented to network operators through a graphic user interface (GUI).

A generic architecture of a transaction anomaly detection system is shown in Figure
2. In this system, network performance data are accumulated on-line by the sampler
for analysis. The sampler outputs performance measures (e.g., traffic intensities, or
circuit utilization, for service classes in a transaction-oriented network) in which
potential anomalous data are highlighted. The historical network performance data
output by the sampler are analyzed by the rule generator to build adaptive and
dynamic (i.e., temporally based) performance thresholds. These performance
thresholds are updated periodically to account for the evolution network traffic. The
detector compares real-time network performance data output by the sampler with
performance thresholds and predefined fault criteria for anomaly detection. The
outputs of the detector are typically sent to a graphic user interface (GUI) to alert
network operators of network anomalies and faults, or are sent directly to network
control modules for automatic feedback and control (e.g., circuit breaker, rerouting
module, etc.).

Figure 2:  Generic architecture of a network anomaly detection system.
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3.  The AT&T Transaction Access Service Network
The AT&T Transaction Access Service (TAS) network is a hybrid POTS-and-data
wide area network (WAN) that provides ubiquitous dial-to-packet services for
carrying short-duration transaction traffic in the United States, Canada, and the
Caribbean countries [19]. Average usage of the TAS network amounts to millions of
transactions on a non-busy and typical day, and is growing rapidly. The network
supports tens of service classes. Typical transactions support point-of-sale
applications/services (e.g., credit/debit card authorization and settlement), health
care applications, banking and vending applications, and other data-driven sales
applications.

The TAS network is selected as the testbed for the TRISTAN system for three
reasons. Firstly, TAS services a relatively large number (tens) of mutually dependent
service classes, which is a multi-service-class environment where performances of
service class are strongly correlated with one another and with the overall network
performance. Secondly, the shear traffic volume (averages many millions of
transactions per day) supplies a statistically rich data set for anomaly detection.
Thirdly, the presence of external devices that are not monitored/managed by TAS
(e.g., credit card servers) enables the testing and demonstration of TRISTAN’s
ability to detect and infer environmental (non-monitored) impact on the network and
its service classes.

The physical topology of the TAS Network consists of three major components—the
AT&T 800 Network, the TAS nodes (for POTS-to-packet protocol conversion), and
the AT&T Packet Service, as illustrated in Figure 3.

Figure 3.  The AT&T TAS Network physical architecture
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The central function of the TAS network is to enable transaction-oriented
communication between terminal devices (e.g., credit card scanners) scattered across
the United States and their designated processing hosts (e.g., credit processing
servers). Device access to TAS is accomplished through the AT&T MEGACOM
800 Network, which is terminated at a set of TAS nodes (modems) that act as
protocol converters. These nodes use the DNIS (Dialed Number Identification
Service) digits provided by the 4ESS switches in the 800 network to establish SVCs
in the AT&T packet network. Finally, the packet network is used to complete the
connection between the customer devices and their destined host processors. In a
typical transaction, call originated in a terminal device is processed by the 4ESS
switches in the AT&T network, and is routed to a geographically proximate TAS
modem pool. A virtual connection is further set up between the modem and the host
processor through a set of packet switches. The result is an end-to-end circuit that
connects the E-commerce terminal device and its processor for the duration of the
transaction. This circuit is dropped as soon as the transaction is completed.

4.  The TRISTAN System
Currently, an on-line network anomaly detection system has been implemented for
the AT&T TAS network. This software system is called TRISTAN (Transaction
Instantaneous Anomaly Notification). TRISTAN possesses three functional
modules: the sampler, the threshold generator, and the detector, in addition to a GUI.

The TRISTAN sampler analyzes the real-time and historical transaction records of
TAS to generate traffic intensities on a per service class basis. TAS generates
transaction records for every TAS transaction on a 15 minutes and daily basis for
delivery to TRISTAN. The 15-min data feeds constitute the real-time performance
data while the daily data feeds are used as historical data for threshold generation. In
either case, each transaction record is possessed to yield the service-class based
traffic intensities. The sampling interval of each service class is unique, adaptive,
and dependent on its historical “average” transaction duration. In the current
implementation of TRISTAN, the 15-min data feeds are inserted dynamically into a
relational database (Oracle). The sampler retrieves records from the database to
compute the real-time traffic intensities for all TAS service classes, based on the
sampling intervals of the individual service classes. For anomaly detection, these
real-time traffic intensities are compared in real-time with the dynamic threshold
templates for all TAS service classes. The daily feeds are stored as flat files, which
are analyzed by the sampler to yield thresholds and baselines for all service classes
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Specifically, for each TAS service, the dynamic thresholds are classified into 4
groups: (1) weekdays, (2) Saturdays, (3) Sundays, and (4) holidays, as explained in
Section 2.

In the TRISTAN detector, an alarm is sounded that signals the arrival of a
network/service anomaly if the measured (in real-time) traffic intensity Is,measured(Tn,s)
at time Tn,s deviates from the thresholds by more than 50% (i.e., 5.0=a ) of the
predicted baseline and for more than 15 minutes, i.e.,

The choice of the parameters in the above criterion (15 minutes and 0.5) are TAS-
specific, and are determined empirically. Through our field testing of TRISTAN,
they have been demonstrated to work well in the TAS environment.

The overall architecture of TRISTAN-TAS as currently implemented is shown in
Figure 4. TRISTAN is currently implemented on a computing infrastructure
composed of a client-server system running NT4.0 and a Sun Ultra 2 workstation
running Solaris 2.6. During operation, real-time transaction records are inserted into
the Oracle database for comparison with the stored threshold rules that are generated
by the rule generator. Rules are computed on the Ultra 2 workstation which analyses
the daily transaction feeds. The anomaly detection engines retrieved data from the
Oracle database for anomaly detection.
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Figure 4:  TRISTAN architecture.
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The TRISTAN graphic user interface (GUI) consists of (1) a control panel, (2) an
alarm log, and (3) a traffic visualizer. The control panel displays information
concerning performance of the service classes and the numerical values of their
respective dynamic thresholds, in addition to providing a debugging window for
database-SQL programming. The alarm log summarizes and classifies the detected
anomalies and their severity. The traffic visualizer presents a graphical
representation of the service-class based traffic intensities in real-time.

The TRISTAN GUI enables real-time visualization of service-class based traffic
intensities. The control panel and traffic visualizer of the TRISTAN GUI is shown in
Figure 5.

Figure 5:  The control console (left) and the alarm log (right) of TRISTAN’s GUI.

5.  Anomaly Detection with TRISTAN: A Real-life Example
One major class of network failures in the AT&T TAS network is due to server
failures in the customers’ sites (e.g., credit card processing servers). These servers
are situated in the customers’ premises, and are not monitored by the TAS network
management system. These server failures can not be detected directly (e.g., through
server alarms or traps), but must instead be inferred from their negative impact on
the performance of the TAS network proper. Moreover, these server failures have
led to major outages in TAS services, due mainly to the excessive buildup of real
and virtual circuits within the TAS network. Thus, server failures originated from
one or more service class can potentially degrade the performance and availability of
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TAS. On a certain holiday day in late 1997, the transaction servers of a credit card
processing service-class crashed in the afternoon, and persisted in a “down” state for
more than 2 hours before being completely rebooted. As time progressed, this
service class started to tie up network resources unfairly (physical circuits in the
telecom network, and virtual circuits in the data network). TRISTAN detected a
service-class anomaly in the first 15 minutes (as limited by TAS’s rate of delivering
real-time transaction records) of the server failures, and identified the “guilty”
service class through mapping the anomaly to the TRISTAN log. This fault escaped
detection by conventional alarm-based network management system. Thus, this
example illustrates that TRISTAN can proactively and adaptively detect TAS
network faults.

The visualization instance of the incident described above is shown in Figure 6. In
the figure, the traffic intensity of service class “A” started to deviate significantly
from the predicted dynamic thresholds as the server crashed, signifying that network
resources were unfairly dominated by this “guilty” service class. This failure, as
shown in Figure 6, persisted for about 2 hours and 15 minutes. TRISTAN detected
and diagnosed this network fault in the first 15 minutes of the server failure.

Figure 6.  Traffic intensities of a faulty service class (server failures). TRISTAN
detected this fault within the first 15 minutes.

onset of server failures

problem resolution
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6.  Conclusions
A software system (TRISTAN), which implements a set of network anomaly
detection algorithms, performs automatic and adaptive network anomaly detection
for the AT&T Transaction Access Service network is described and analyzed in this
paper. It is demonstrated that TRISTAN can detect network anomalies that elude
traditional (alarm-based) network management system. Specifically,

1. The AT&T TAS network is a high-volume and multi-service-class hybrid
telecom-data wide area network. This provides high statistics for testing and
developing a network anomaly detection system. The presence of non-
trivial network faults, both inside and outside the network proper (e.g. non-
managed server failures), further enables the testing and development of
TRISTAN.

2. TRISTAN is demonstrated to be able to detect non-trivial network
anomalies originated both within and outside the TAS network. This is
attributed to: (1) an adaptive and service-class enabled sampler that
highlights TAS transactions that are potentially anomalous, (2) a threshold
generator that builds dynamic performance thresholds for TAS service
classes, and (3) a detector that performance anomaly detection on-line.

Ongoing and future research and development items include:

1. Combining the TRISTAN anomaly detector with the alarming system (also
an anomaly detector) of the data network in AT&T TAS to enable more
accurate and efficient detection of a wider range of TAS faults, including
the low-level physical faults in the TAS network.

2. Implementing and testing different thresholding schemes in the anomaly
detection system to optimize the fault detection probability of TRISTAN.

3. Extending and field-testing the anomaly detection techniques to a wider
range of networking environments, such as IP and wireless wide area
networks, where service performance degradations and faults can severely
impact quality-of-service (QoS) and network availability.
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