
Minimizing the Monitoring Cost in
Network Management

J. Jiao, S. Naqvi D. Raz, B. Sugla
Bell Labs, 600 Mountain Ave, Bell Labs, 101 Crawfords Corner Road,
Murray Hill, NJ 07974 Holmdel, NJ 07733
USA USA
fjia, shamimg@research.bell-labs.com fraz, suglag@research.bell-labs.com

Abstract

Many rapidly-changing environments need to be monitored to ensure that
they stay within acceptable parameters. The monitoring consists of measuring
properties of the environment, and of inferring an aggregate predicate from
these measurements.

In many cases it is too complex, or too expensive to conduct explicit mon-
itoring at all times. In these cases, information (integrity constraints) on the
evolution of this environment can often allow us to use past measurements to
infer the future behavior, thus reducing the monitoring cost.

We provide a formal description of the problem of monitoring rapidly-
changing data, which we call the monitoring problem. We then classify this
problem in terms of the integrity constraints that govern the evolution of the
environment, and propose di�erent algorithms for each of these classes. For the
most restricted case, we can �nd a greedy algorithm which is optimal, while for
the more general cases we use competitive analysis and show that optimal worst
and average case cost measuring algorithms exist. We then present heuristics
for low cost low complexity measuring algorithms. We believe that the results
of this paper can serve as a framework for further studies.

Keywords: Monitoring, polling, competetive analysis

1 Introduction and Motivation

Monitoring forms the basis of control and management systems. Continuous
monitoring is essential to determine the current state of the managed system.
A typical set of the activities that are required to determine the current state of
the monitored system are as follows. First, a set of state variables are de�ned
(e.g. SNMP MIBs [10]). Second, intervals at which these state variables need
to be sampled are determined based upon the granularity of the control actions

(c) 1999 IFIP

that are required. Finally, all the samples that are collected are processed
continuously for interpretation and action. Therefore, the volume of data that
is collected directly impacts the performance of the network used for collection,
and the demands on the collector that does the processing. Hence any technique
that helps reduce the volume of data that needs to be collected is useful and
important.

The question of how to monitor integrated networks was addressed by the
work of Mazumdar and Lazar [6, 7]. They mainly considered the problem
of how to decide which variables should be monitored, and how to specify
the appropriate ranges, so that the information required to achieve a certain
management goal is available. More recent works deal with the problem of
achieving high level management goals while maintaining the amount of system
resources used for management purposes as small as possible [8, 2]. However,
while these methods may reduce the amount of resources used for polling in
certain scenarios, they lack a theoretical framework that will allow comparing
the actual (or worst case) cost of using them.

In this paper we propose and analyze novel schemes to reduce the volume
of data necessary to determine the state of a system. The fundamental notion
that is exploited here is that typically many state variables have constraints on
their evolution. Given the present value of a state variable(s), these constraints
limit the range of values the state variable(s) can take at a future time. For
example, consider the case that a 1-directional highway is partitioned into cells,
and some mobile phones are moving from the left to the right (see Figure 1).
Let x be the number of phones that are present in cell A and y be the number

AB

Figure 1: The mobile cell example

of phones that are present in cell B. If we know that the speed limit is 60mph,
the length of a cell is 10 miles, and our time interval is one minute, then we
can de�nitely say that the number of phones that will be present in cell A in
the next time step is no more than x+ y. This information can be used to save
monitoring cost.

In network management, the manager may need to conduct polling of some
network elements, and often management information base (MIB) �les are used
to store a signi�cant number of current parameters to be probed by the manager

(c) 1999 IFIP

during the polling process [10]. By utilizing certain constraints regarding the
parameters, we may be able to reduce the polling cost. Such cost reduction
could be very bene�cial, both in reducing the load on the network, and reducing
the CPU usage at the routers.

It should be mentioned that when we talk about monitoring and measure-
ment, we are assuming the polling model, i.e. the value of any variable can
be obtained only through polling instructions issued by the monitoring station.
It is well-known, however, that in practical applications such as network man-
agement, asynchronous traps can be de�ned on devices, so that a noti�cation
can be generated without explicit polling. This can be more e�cient since the
trap is generated only when the alarm condition occurs. If the variable to be
monitored is local to a device, then it would be in general more bene�cial to
set a trap on the device for the variable threshold, instead of explicit polling as
discussed in this paper. However, if the variable can not be obtained locally but
is a function of some parameters from multiple devices, it would not be possible
to set traps on the global variable, and a polling method must be used. Note
that setting a trap may require more CPU resources from the network element,
as the value of the variable at hand should be constantly monitored (locally),
and in many cases CPU is the bottleneck resource.

In addition, the basic assumption we make is that the integrity constraints
are given to us so we can utilize them to reduce the monitoring cost. But in re-
ality, these predictive rules are not readily available, and it is highly non-trivial
to discover them, if they exist. In our simple example of mobile cells, since we
have enough domain knowledge, we can derive the constraints through analyt-
ical methods. For more complex domains however, this may not be feasible,
we may have to use statistical methods to obtain certain bounds based upon
historical behavior of the variables. This aspect of the work is still on-going,
and it is out of the scope of this paper. For this paper, we can assume that
the constraints are provided by the user without considering how they can be
obtained.

Competitive analysis of on-line algorithms was used to address a somewhat
similar problem of moving data by S. Kahan [4]. He gave provably optimal
on-line algorithms for a restricted family of functions, and for linear constrains.
For the monitoring problem, as far as we know this is the �rst formal study of
the problem, and many of our results are preliminary in nature. We are still
carrying out on-going work on many of the issues, including: the evaluation of
the cost for di�erent on-line monitoring algorithms and the relationship to the
cost of o�-line algorithms, and the di�erent ways the probabilistic nature of the
constrains can be used. We believe that the results of this paper can serve as a
framework for further studies of this important problem.

The rest of the paper is organized as follows: Section 2 gives an overview of
our approach while Section 3 provides a formal framework. Section 4 expans this
framework in the spirit of competetive analysis. Section 5 describes practical

(c) 1999 IFIP

algorithm for the general case. Finally, in section 6 we brie
y describe our
conclusions.

2 Overview of the Approach

In the monitoring problem, there are a number of variables, each having an
associated measurement cost. The optimization problem being considered in
this paper is how to detect certain conditions, called alarm conditions, with
minimum measurement cost. The con�guration of variables in the system can
be represented by an evolving state, and we must report alarm conditions at
the earliest time. If the evolution is completely random then we must measure
all the variables at each time step. However, there are usually predictive rules
that restrict the evolution of the system.

Example 1 Suppose we are monitoring the number of mobile users x in a
single cell, and the alarm condition is x � 100. And suppose the following rules
hold due to constraints on the mobility of the users, which set the upper bound
of the net increase in the value of x from t to t+ 1.

� If x < 90 at time instant t then x < 100 at time t+ 1.

� If 90 � x < 100 at time t then it will either stay between 90 and 100 at
t+ 1 or go above 100 at t+ 1.

� Once x is above 100 it will stay there.

We can use Figure 2 to model the evolution of the mobile users over time.
In the �gure, an edge represents a possible transition from time t to t+ 1.

x<90 90<x<100

x>100 ALARM STATE

Figure 2: State Transition Graph for the Mobile Cell Example

Now assuming that x < 90 at time t, we see that we can wait until time
t+2 to measure again. It is not necessary to measure at t+1 because the alarm
condition can not be true. On the other hand if we wait until t+3 we may fail
to detect the alarm at the earliest time.

(c) 1999 IFIP

This example has only a single variable. When multiple variables are present,
we need to examine if there exists interdependence among them. For instance,
if there is a second variable r, representing the ratio of the users in the cell
that actually are using their mobile phone at a given time, and it is known
that r will not a�ect x, then it is not necessary to measure r. If variables are
independent, non-required variables need not to be measured.

However, a more complex scenario occurs if the variables are interdependent.
If some non-required variables could a�ect the future measurement time, then
it might be bene�cial to measure them as well. For example, suppose y is
the number of mobile users in an adjacent cell. Since it is known that users
are moving between the cells, although y will not trigger an alarm condition
by itself, if we measure y together with x we may be able to wait longer to
measure x again in case y is very small. On the other hand, if y is big then the
measurement cost will only be higher. So for such general cases, the best we
can do is trying to reduce the average case cost. We will address such general
cases in Section 5.

3 General Framework

We are given n real-valued variables x1; : : : ; xn. Time t is an integer, beginning
at t = 1. Let xit denote the value of xi at time t.

De�nition 3.1 A history line from time 1 to time t is a sequence < s1; ::; st >,
where sj is an assignment of values to all the variables, i.e., fx1j = a1; x2j =
a2; :::; xnj = ang. Intuitively, a history line represents one possible sequence of
values for the xi's at times 1; 2; 3; : : : t. A history line is said to be legal if it
satis�es all the integrity constraints.

We can now formulate the monitoring problem as follows:
Each variable xi has a �xed, positive cost ci, representing the cost of mea-

suring it at any time, and its value lies in a partition of the real line into
non-intersecting ranges ri1; : : : ; riki . The intuition is that we are not interested
in the value of each variable, but only in the range of which it is a member.
(The reason behind this is that if we allow variables to take on continuous real
values the problem can be undecidable). A predicate is an expression of the
form xit 2 rij , where rij is a range. We are also given a set I of integrity
constraints on the evolution of the xi's, each of them is of the form:

p1;t1 ^ p2;t2 ^ ::: ^ pm;tm ! pr1 _ pr2:: _ prl

where pr1; pr2; ::prl are predicates regarding a single variable at time t + k

for some k, and each pi;ti is a predicate regarding some variable at time ti where
t � ti < t+k'; i.e., each integrity constraint restricts the value of some variable

(c) 1999 IFIP

at time t+ k, if certain conditions hold for the values of some variables at time
steps t; t+ 1; :::; t+ k � 1.

The alarm condition q is de�ned by a special rule whose body is purely
disjunctive:

_

1�i�nf

Fit 2 RFij1 _ : : : _ Fit 2 RFijki
! qt

where Fit is the value of the function Fi which is determined by its sup-
porting subset of variables at time t only, and RFij is a range of the function
Fi.

A monitoring algorithm is an on-line algorithm that, given the past partial
history line < p1; ::; pt > and the integrity constraints, determines Vt+1, the set
of variables to be measured at the next time step.

A monitoring algorithm is correct if for any legal history line, the algorithm
detects the alarm condition at the �rst time the alarm condition becomes true.
The algorithm may terminate after detecting the alarm condition.

The monitoring problem is to construct correct e�cient monitoring algo-
rithms for any given set of variables, integrity constraints and alarm conditions.
The e�ciency of such an algorithm is measured by the total measuring cost.

Example 2 We formalize Example 1 with the following set of rules.

R1 : xt < 90 !xt+1 < 90 _ 90 � xt+1 < 100
R2 : 90 � xt < 100 ! 90 � xt+1 < 100 _ xt+1 � 100
R3 : xt � 90 ! xt+1 � 100

And
xt � 100 ! qt

In this simple example, it is easy to see that the following strategy is at least
as good as any other. We assume that the time t is initially 1.

1. Measure xt.

2. If xt < 90, wait until time t+2 and then goto (1). If 90 � xt < 100, wait
until time t+ 1 and then goto (1). If xt � 100, report \alarm" and exit.

3.1 Problem Classi�cations

We can classify the problem into di�erent categories. The variables are inde-
pendent if the alarm functions are just variables themselves, i.e. fFi = xi; i =
1; ::; nfg, and each integrity rule involves only a single variable. Otherwise, we
say the variables are interdependent. The integrity rules are memoryless if for
each rule Rj of the form Bj ! Hj , the expression Bj only involves variable
values at time t and Hj involves only variables at time t+ 1. Otherwise it has
memory (�nite by de�nition).

(c) 1999 IFIP

Example 3 In Example 2, variables are independent (there is only one vari-
able) and rules are memoryless. But if we add the following rule with memory:

R4 : xt < 90 ^ xt+1 < 90 ^ xt+2 < 90 ! xt+3 < 90
i.e., if the number of mobile users stays below 90 for 3 successive time

instants then it will stay below 90 for the next time instant (thus below 90
forever). Now the problem belongs to a di�erent class.

Example 4 There are two variables x1; x2. The range of x1 is (�1; 0]; (0; 1]; (1;1),
the range of x2 is just (�1; 0]; (0;1). We de�ne the rules informally as:

� x1 can never increase by more than 1 from t to t+ 1.

� if x1;t > 1 then x2;t+1 > 0 _ x2;t+1 < 0. Otherwise x2;t+1 < 0.

� the alarm condition q becomes true when x2 > 0.

The measurement cost of both x1 and x2 is one unit.

Here the rules are memoryless, but the variables are interdependent, because
x2 at time t+ 1 depends on x1 at time t.

By introducing new auxiliary variables, we can eliminate memory as shown
by the next Proposition. The proof is omitted here.

Proposition 1 Any problem containing rules with memory can be transformed
into an equivalent problem with only memoryless rules.

3.2 A Model of System Evolution

Given that the variable values fall into a �nite number of ranges, we can de�ne
the variable con�guration as distinct States. Let the state S at time t be the
complete range distribution of variables (x1 2 Ri;i1 ; x2 2 R2;i2 ; :::; xn 2 Rn;in).
The total number of states is the cross product of the number of ranges of each
variable.

De�nition 3.2

A State Transition Graph can be constructed as follows:

� Each node in the graph represents a single state.

� There is a directed edge from node Si to Sj i� it is possible to go from Si

to Sj in 1 time step (t to t+ 1).

� A node is a terminal Node of level 0 with regard to a particular alarm
function Fi, if the evaluation of Fi based on the state triggers the alarm.
A node is a terminal node of level k with regard to Fi if all its successors
are terminal nodes of level k � 1 with regard to the same function. It
is not necessary to measure any more when a terminal node of level k is
reached, since we can determine that the alarm function will become true
in exactly k steps. We also call a terminal node of level 0 an alarm node.

(c) 1999 IFIP

If no rules are present, the graph will be complete. There is no edge from Si

to Sj only if some rule forbids it. Notice that if the variables are independent
then the evolution of each variable is isolated, and we can consider the state
transition graph for each individual variable separately.

The state transition graph describes the inherent transition of the system.
However, at any point during the measurement, we may not have complete
knowledge of all the variable values, only partial information is available, there-
fore we may only know a subset of the nodes that contains the actual state.
Thus, any state of knowledge corresponds to the subset of node SN in the State
Transition Graph in which the present state is contained.

Measuring a variable xi will result in more speci�c knowledge, narrowing
down the node set SN . Given the state of knowledge at time t and the cor-
responding node set SNt at time t, even with no additional measurements, we
can deduce that the set of nodes SNt+1 that contains the system state is the
set of nodes reachable from SNt in precisely 1 transition step. By repeating
the deduction, we can �nd SNt+k at time t+ k for any k.

4 A Competitive Analysis Framework

4.1 The Optimal Algorithm

When a system contains only independent variables and memoryless rules, each
variable can be considered separately. To �nd the optimal algorithm we only
need to reduce the number of times each variable gets measured.

Given the current value of x, we can uniquely determine the corresponding
state Sxt in the transition graph for x. Let l be the length of the shortest path
from Sxt to an alarm node (i.e., terminal node of level 0). Then for any t

0

between t and t+ l, x will not trigger an alarm.
An algorithm called GREEDY will delay the measurement as much as

possible, i.e., starting from the initial state, after measuring x at time t, if x
has entered a terminal node of level k, we stop the measurements and report
the alarm at time t+ k. Otherwise, we wait until time t+ l to measure again.

Theorem 1 The GREEDY algorithm is correct and optimal for any system
with independent variables and memoryless rules.

Proof The correctness follows from the observation that for any time step t, if
GREEDY does not measure x then it is not possible for x to satisfy the alarm
condition at time t, since it is not possible to reach any alarm state regarding
x.

We only need to show that GREEDY measures each variable no more
than any other correct algorithm. Let A be any correct algorithm. For any
single history line and any variable xi, suppose GREEDY measures xi at time
instants g0; g1; g2:: and A measures at a0; a1; a2::. with a0 = g0 = 1.

(c) 1999 IFIP

Let the state at time i be Si. We then show ak � gk by induction. If
ak�1 � gk�1 then at time ak�1 the shortest path to an alarm node is no more
than gk � ak�1 since Sgk�1 is reachable from Sak�1 , and the shortest path
from Sgk�1 to an alarm node is gk � gk�1 by the de�nition of the GREEDY
algorithm, so ak � gk since otherwise A may not be correct.

Suppose GREEDY does not terminate at time gk, then xgk is not in a
terminal node of any level. Since ak � gk, xak can not be in a terminal node
either, so A can not terminate at ak. Therefore GREEDY measures x no more
than A for the same history line. 2

For more general classes of the monitoring problem no algorithm is optimal.
In particular GREEDY is non-optimal in the general case.

Example 5 No Algorithm is optimal for all inputs on Example 4. Consider
the case where x1 > 1, x2 < 0 at time t. Suppose O is the optimal algorithm
then it either measures x1 at time t + 1 or it does not (x2 must be measured
by any correct algorithm). If O measures x1, for the case where x1 > 1 for
any t0 > t, it has to measure both x1 and x2 at each step. Another algorithm
which measures only x2 at each step yields a lower cost than O. If O does not
measure x1 at time t+ 1, then in case x1 < 0 at time t+ 1 and stays negative,
O will not be able to know that, so it measures x2 at each time step. Another
algorithm that measures x1 every other time step thereafter has a lower cost.

Therefore in general no algorithm that is optimal for all input history lines may
exist and we need to relax the optimality condition.

4.2 A competitive analysis formal framework

We now attempt to analyze the complexity of measurement in the spirit of
competitive analysis of on-line algorithms introduced in [11]. First, the integrity
rules can be augmented with transition probabilities. Then we introduce the
following de�nitions, which are along the line of de�ning competitive ratio of
on-line algorithms. The usual de�nition of the competitive ratio of an online
algorithm is the ratio of the cost of the online algorithm to the cost of the best
o�-line algorithm. But here the best o�-line algorithm can simply pick the �rst
alarm condition on a time line without any measurement so it can not be used
for comparison purpose. Instead, we use the algorithm that measures all the
variables at all time steps as the o�-line algorithm to compare with. We call
this obvious algorithm, which has the highest cost, Ob.

De�nition 4.3

The cost ratio of algorithm A with respect to a speci�c problem is r if there
exist a constant c such that Cost(A) � r�Cost(Ob) + c for any history line of
the problem.

(c) 1999 IFIP

This is a worst case de�nition. If the transitional probabilities are known,
we can also de�ne the average cost ratio.

De�nition 4.4

The average cost of algorithm A on the history lines of length n , ACostn(A)
is the weighted average cost of A on all history lines of length n which do not
contain an alarm state except perhaps for the last time step, according to the
distribution.

The average cost ratio of algorithm A on a given problem is r if there exists
a constant c such that for any n, ACostn(A) � r �ACostn(Ob) + c.

A monitoring algorithm is worst case optimal (WCO) if it is correct and its
cost ratio is no larger than the cost ratio of any other correct algorithm. Notice
that an algorithm that isWCO does not necessarily have a lower cost than other
algorithms on a particular history line. It merely has the best upper bound of
the cost ratio. A monitoring algorithm is average case optimal (ACO) if it is
correct and its average cost ratio is no larger than that of any other correct
algorithm. Both can be shown to exist using game-tree analysis method. We
omit the details here.

5 More Practical Algorithms

Although the procedures of �nding WCO and ACO exist, they have double
exponential complexity in the size of the problem. Thus, computing WCO

and ACO even for moderate n is infeasible. So we resort to �nding algorithms
that may not be provably optimal but try to minimize the cost ratio in a greedy
fashion and can be derived in polynomial time. We use the Cost Per Step (CPS)
criterion, which is maintained dynamically through the process of measurement.

De�nition 5.5

For a variable xi, at any time t, let Costxi be the total cost of measuring xi
so far, then

CPS(xi) =
Costxi

t

and CPStotal =
P

i=1::n CPS(xi).

The CPS value is essentially the measurement cost amortized over each
time step. If we divide it by the sum of cost of measuring each variable, we get
the ratio of the cost of the algorithm to the algorithm Ob on the input history
line up to a certain point in time. The Expected Cost Per Step (ECPS) value,
which we will discuss later, will be based on the probabilistic distribution of the
outcome of measurements.

(c) 1999 IFIP

5.1 The NEXT value and the Cost Per Step criterion

Recall from section 3 that any state of knowledge Kt corresponds to a subset
of node SNt in the State Transition Graph. So we can de�ne Kt alternatively
as the subset SNt in which the present state is contained. Given the state of
knowledge we de�ne NEXT (xi) to be the next scheduled measurement time
for variable xi.

De�nition 5.6 NEXT (xi) is the next time instant that xi must be measured
in order to have a correct algorithm. Given some state of knowledge Kt and the
corresponding node set SNt, let Dmin be the minimum distance between any
node in SNt and the set of alarm nodes with regard to xi, then NEXT (xi) =
t +Dmin. Notice that: (1) NEXT (xi) is monotonically increasing, and (2) if
Kt is more speci�c that K 0

t, then NEXT (xi) derived using Kt is no less than
that derived using K 0

t.

At time t, there are some variables that must be measured by any correct
algorithm, we call this the REQUIRED set. In addition we may choose to
measure more variables. Although this carries extra cost, it will result in more
speci�c knowledge, possibly increasing the NEXT values. Therefore we need
to �nd the best subset of variables to measure at time t.

We have de�ned the Cost Per Step (CPS) criterion, and we want to use this
criterion to guide the execution of our algorithm. We must decide, for each
time instant t where some variables are required to be measured, the additional
non-required variables that should be measured together. Let Vt be the set of
variables to be measured, then di�erent Vt results in di�erent NEXT (xi) values
after the actual measurement, and therefore di�erent CPS values. However it
is not possible to predict the actual NEXT (xi) and CPS values because the
values of the variables in Vt is not known in advance. Depending on di�erent
outcomes of measuring variables in Vt, di�erent NEXT (xi) will be generated.

Before measuring Vt, we have a state of knowledge Kt, which was derived
from previous time steps. Let SN be the set of nodes in the state transition
graph that corresponds to Kt. After measuring variables in Vt, we obtain a
more speci�c knowledge K 0

t, and a corresponding set of nodes SN 0 � SN . Let
SN

0

1
; SN

0

2
; ::SN

0

k be all the possible subset obtained from all possible outcomes
of measuring SX . For each subset SN 0

j , we can derive NEXT (xi)j , and let
Costxi;NEXT (xi)j�1 be the cost of measuring xi up to time NEXT (xi)j � 1,
then the predicated CPS(xi) value is

CPS(xi)j =
Costxi;NEXT (xi)j�1

NEXT (xi)j � 1
; and CPS(predict)j =

NX

i=1

CPS(xi)j :

is the overall predicted CPS value for this subset of nodes SN 0

j .

(c) 1999 IFIP

Assume that we know the probability that SN 0

j is obtained from SN after
the measurement of SX , and call this probability pj , then the expected CPS

of measuring SX is:

EPCS(Vt) =

kX

j=1

CPS(predict)j � pj :

ECPS is a reasonable criterion to compare the performance of di�erent
subset of variables to measure. Our goal is to minimize ECPS by selecting the
optimal SX for each time step.

We describe our algorithm next. For the sake of simplicity we �rst assume
that all alarm functions are just individual variables. It is fairly easy to extend
the result to general alarm functions.

5.2 Description of the algorithm

At a particular point in time, the up-to-dateNEXT values are maintained. Let
T = min(NEXT (xi)) for all xi, our strategy is greedy in the sense it will not
do any measurement before time T . However we may measure more variables
than the REQUIRED set at time T .

%%main()

Let K= initial state of knowledge.

For i=1 to n NEXT(X_i)=1;

while (measurement not terminated)

{

Let T=min(NEXT(x_i)), i=1...n

Deduce the state of knowledge at time T and the

corresponding node set SN in State Transition Graph.

Let SR be the set of all rules that may be satisfied at T

Let SX be the set of variables involved in bodies of rules in SR

Pick an optimal subset SX' of SX according to ECPS.

The variable set V_T to be measured at T is then SX'+REQUIRED

Wait until time T to measure variables scheduled.

Update NEXT values according to the outcome.

}

Next we determine how to pick the optimal subset SX 0. First, it is not necessary
to check every subset of SX . For example, if there is only one applicable rule,
which involves x, y and z in the body, then it is not necessary to check x; y

without z. We thus use the satis�able rules to guide the selection of variables.
We de�ne a hierarchical structure among the rules according to the re�nement
relation: Let R1 and R2 be two rules that are both potentially satis�able given

(c) 1999 IFIP

the state of knowledge, and sx1 and sx2 be the set of variables appearing in
R1 and R2, then we say that R1 re�nes R2 if sx1 � sx2. Here the super
set relation is strict, i.e., if sx1 = sx2 we don't consider this as a re�nement
relation. The motivation behind the de�nition is that if R1 re�nes R2 then we
have a choice of either measuring only the variables involved in the body of
R2, or measuring the extra variables contained in the body of R1. We can
use a recursive procedure to extract all choices of SX 0 that may impact the
NEXT values, and pick the one with the lowest ECPS. This is done based
on a re�nement graph of all the rules involved. A set called CHOICES will
be generated which represents all distinct ways of selecting SX 0. We omit the
details here. After obtaining the set CHOICES, we compute the ECPS value
of each subset of variables to be considered. We pick the subset of variables
with the minimum ECPS value. The algorithm just described can be reduced
to GREEDY if variables are independent. In fact GREEDY tries to minimize
CPS by delaying measurement as much as possible.

6 Discussion

We proposed a formal framework for studying the monitoring problem. Our
goal is to use previous knowledge about the variables, in order to reduce the
monitoring cost. Except for the simplest case where the greedy algorithm is op-
timal, it is not feasible to �nd optimal cost algorithms. We thus used techniques
from competitive analysis of online algorithms to compare between di�erent
monitoring algorithms. Many of the issues need to be further investigated. In
particular, it is very important to �nd real network variables for which some
well behaved constraints apply, and use our framework to save resources when
monitoring a real network. Another interesting question is the best adaptation
of the competitive analysis techniques for cases where the o�-line algorithm
may do without any cost. Instead of comparing to the obvious algorithm, as we
did, one may try to expand the ideas of [4] and compare the monitoring cost
to the cost of the best possible online algorithm for a speci�c history line. We
expect that improvements to our methods can be made in the future, and the
framework can be applied to many network management applications.

Acknowledgments

Shamim Naqvi thanks T. Imielinski and Y. Saraiya for early collaboration on
this set of ideas. The authors are grateful to J. Chomicki for suggesting several
extensions and improvements to this work.

(c) 1999 IFIP

References

[1] Ben-Artzi, A. Chandna, and U. Warrier, Network Management of
TCP/IP network: Present and Future, IEEEmanagement magazine,
pages 35-43, 1990

[2] P. Dini, G. V. Bochmann, T. Koch and B Kramer, Agent Based
Management of Distributed System with Variable Polling Frequency
Policies 1997 International Symposium on Integrated Network Man-
agement, pp. 553

[3] J.E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Language, and Computation, Addison-Wesley, 1979.

[4] Simon Kahan, A Model for Data in Motion Proc. of the 23th ACM
symposium on theory of computing, (STOC91), pp. 267{277, 1991.

[5] Asawaree Kalavade and Pratyush Moghe, Terminal QoS of Adaptive
Applications and its Analytical Computation IWQoS'97, Columbia
University, New York, May 1997.

[6] Mazumdar, S., and Lazar, A.A., "Modeling the Environment and the
Interface for Monitoring Integrated Networks," Presented at ICC'91,
Philadelphia, May, 1991.

[7] Mazumdar, S., and Lazar, A.A., "Monitoring Integrated Networks
for Performance Management," Presented at ICC/SUPERCOM'90,
Atlanta, April 16 - 19, 1990.

[8] Pratyush Moghe and Michael Evangelista, An Adaptive Polling Al-
gorithm, Proceedings of Network Operations and Management Sym-
posium (NOMS 98), New Orleans, Feb 1998.

[9] R. B. Myerson,Game Theory, Harvard University Press, Cambridge,
MA, 1991

[10] Marshall T. Rose, The Simple Book: An introduction to Manage-
ment of TCP/IP-based Internets, Prentice Hall, 1991, ISBN 0-13-
812611-9

[11] D. Sleator and R. Tarjan. Amortized E�ciency of List Update and
Paging Rules. In Communications of the ACM, 28(2):202-208, 1985.

Jia Jiao received a B.S from TsingHua University, Beijing,China in 1990,
an M.S from Rutgers University in 1993, and a Ph.D from Rutgers in 1996,
all in Computer Science. His research interests include network management,
network performance analysis, parallel and distributed systems, and algorithms.

(c) 1999 IFIP

Shamim Naqvi is head of the Network Computing Research Department at
Bell Labs, Murray Hill, NJ. His research interests include Internet Telephony,
network management, database systems and wireless computing.

Danny Raz received his doctoral degree from the Weizmann Institute of
Science, Israel, in 1995. From 1995 to 1997 he was a post-doctoral fellow at the
International Computer Science Institute, (ICSI) Berkeley, CA, and a visiting
lecturer at the University of California, Berkeley. Since October 1997 he is
with the Network and Service Management Research Department at Bell-Labs,
Lucent technologies. His primary research interest is the theory and application
of management related problems in IP networks.

Binay Sugla is currently Department Head, Network and Services Manage-
ment Research Department at Bell Labs, Lucent Technologies. Presently he is
working on tools and techniques for IP management. His past work produced
tools like the Network Flight Simulator{a real-time simulator for networks, and
CAPER{a concurrent application programming environment.

(c) 1999 IFIP

