Web-based Messaging Management Using
Java Servlets

G. Jones, E. Zeisler, L. Chen

The MITRE Corporation

1820 Dolley Madison Boulevard
McLean, VA 22102-3481

gbjones, ezeisler, lichen@mitre.org

Abstract

This paper explains the function and design of a prototype messaging management
station based upon leading-edge Java servlet technologies and the world-wide web.
Web technologies bring valuable cost improvements, flexibility, and security
enhancements to the fault management and performance management of electronic
messaging systems. Web technologies can also be used to provide an integrated
management function. This paper describes MITRE alpha-release software to deploy
in an operational environment, and is not an experiences paper as of yet.

Keywords

Distributed Systems, Applications and Messaging ManageJeerd, SNMP

1. Introduction
This paper explains the function and design of a lightweight messaging management
station based upon leading-edge Java servlet technologies and the world-wide web.

(c) 1999 IFIP

In the past, the service management of electronic messaging systems has been
accomplished either manually, using dedicated mini-computer "platforms", or
through purely proprietary means. Today service management must acknowledge
current, state-of-the art web technologies such as Internet web browsers, web
servers, and the Java programming environment.

Web technologies bring valuable enhancements to messaging management: not only
do these technologies provide security solutions, but they also come at little or no up-
front cost, and provide greater flexibility in implementing specialized functions.

Since secure, inexpensive, extensible web-based solutions are available today, the
reasons for web-based management are more than justifiable:

Cost: Free-use Java-based software libraries provide management-specific support,
including the Internet Simple Network Management Protocol (SNMP), topological
map display, performance management, and fault management.

Security: Public-key security mechanisms can be incorporated directly into
management applications, providing access control, confidentiality, and peer
authentication. In the case where web protocols are trusted, it becomes possible to
issue management operations across security perimeters called “firewalls".

Flexibility: Software development environments and APIs are readily adaptable to
suit custom requirements.

Evolution: There is a general industry migration trend towards secure, web-based
management. Web browsers are ubiquitous and have become a common user
interface to both the Internet and to management information; the tools for
developing web-based applications have likewise become abundant and inexpensive.
Management applications can evolve in concert with web-based management
solutions developed by individual messaging component vendors.

Performance: Information transfer over an unreliable network using web protocols is
superior in performance and reliability to the transfer of that information using the
SNMP protocol. Thus, connectivity between management domains can be improved.

2. Function

What does it mean to manage a messaging system? Exactly which management
requirements are met by the web-based management system? The following needs
are basic to managing a messaging system: (1) the percentage availability of the
messaging service over a unit of time, (2) an indication of whether the messaging
service is operating, and the ability to alarm when it is not, (3) the volume of queued
message data held by the messaging system, (4) the delivery status and end-to-end
delivery time for a specific message, and (5) the total message throughput per unit
time of the messaging system

Now we must explain where and how these requirements are fulfilled within the
larger system architecture. In Figure 1, users employ user agents (UAs) to compose

(c) 1999 IFIP

electronic messages that are transferred to their destinations by a network of
Message Transfer Agents (MTASs). Therefore, management of the MTAs is critical in
meeting the above list of requirements as the MTAs collectively implement the
messaging service. A human system manager uses a commercial web browser and a
management-enabled web server to access management informatiov BAthe

Management-
enabled Web

&i Server

Figure 1. MTAs, UAs, and Managers

In Figure 2, management operations are exchanged using the Internet Hypertext
Transfer protocol (HTTP). Web server hositestrumentatiorin Java provides

access to management applicationagentsat the MTAs using protocols such as
SNMP or the Internet Transmission Control Protocol (TCP). The agents execute
management-specific operations and return results to the instrumentation at the
server. In the case of SNMP, management information &lifi#es is stored in
standard Management Information Bases (MIBs) according to Internet Request for
Comments (RFCs) 1565 and 1566.

The Java instrumentation at the server implements the following four groups of
functions. MITRE selected varying functions that would illustrate Java's flexibility in
addressing messaging service management requirements:

Component Status Repofthe component status report displays the current outage
status of each messaging component or MTA. Components that are ‘up’ or
functioning properly are highlighted green on the browser display. Components that
are ‘down’ or not functioning are highlighted red and blink in an ‘alarm’ fashion.
When a component is down, the report distinguishes between a network (or
platform) failure and a component failure (the inability to establish network
connectivity to a platform is different from the inability to contact an application
running on that platform).

Performance StatisticThis function displays management data at the MTAs in

human-readable fashion: standard SNMP MIBs contain current queue sizes in bytes,
and contain the amount of message traffic for both inbound and outbound directions.

(c) 1999 IFIP

Commercial .
Web Browser _Commercial Web Server
“Management
“Management Server®
Client”
/ Instrumentation
HTTP/S \
SNMP \TCP
MTA MTA

Figure 2. Management of MTAs Using the Web

Outage History ReporThe outage history report displays the percentage of time

that messaging components were unavailable, due to network connectivity failures or
application failures. There are two types of displays: a histogram and an outage
record. The outage record displays the time and length of each outage up to the most
recent 50 outage events. The histogram displays the cumulative percentage down-
time in bar graph fashion for each application on a scale of zero to 100 percent.

Message Tracking Query and Respomdessage tracking provides the ability to
inquire about the status of individual messages and their attributes. The status of the
message might be ‘delivered’ or ‘rejected’ and the attributes might include
‘originator’, ‘recipient’ or ‘message identifier’. This function accepts the name of a
target MTA along with some of the previous attributes and returns a trace report of
that message for one MTA that includes the status of the message and the name of
the next MTA to take responsibility for the message, if any. The selection criteria
include any one of message identifier, originator, recipient, time range, or
combination of these. When multiple criteria are specified, the ‘logis&l’ of the
criteria is used to calculate the result. If the message was transferred onward to
another MTA, the user would issue a subsequent query against the next MTA.

3. Design

Let’s step back from the detail for a minute and look at the goal, scope, and related
project work, which provide context for our design.

3.1 Goals

The goal of a WEB browser that can extract network and application performance
statistics is primarily to validate intelligent management of WEB-centric

(c) 1999 IFIP

environments for DMS with a practical, field-able solution. The server building
blocks that contribute to the JAVA COTS solution work together to provide the
messaging management service itself so that e-mail as a distributed service can be
monitored for the state of the service.

Reliance on highly dynamic (“movable objects”) technologiésteroperability is

being driven by the growth of WEB-centric components that can be understood as
packages of data and software that are no longer required to reside on any one node
of a network, but rather, can be moved around as needed to help optimize network
and systems performance. This flexible model of application objects, as entities that
can be “executed” at the locations where they are most needed, affects
interoperability by changing the scope of what is being exchanged between
messaging platforms. Technology examples are seen in Java, which can move entire
objects around the network as byte code.

Impactsfor Scalability. As DMS expands it's subscriber community to encompass
external interfaces, a highly dynamic solution will enable growth, especially because
the solution enables measurement of service levels for multi-party agreements.

3.2 Scope and Related Work

The work for a mail message transfer agent Web Browser can be extended for
directory (directory service agents) as well as for access management for DoD Public
Key Interchange (PKI) (see Figure 3). Although these distributed services are
becoming widely available in tH2OD community, management of these services
end-to-end has just begun to be addressed. Furthermore, external domains will
benefit from any future interoperability agreements to use the Defense Message
System for either mail or directory interfaces, like the DMS NATO allies, ad-hoc
coalitions for non-NATO countries, Combined Communications Electronics Board
(CCEB), treaty-based alliances with other countries, inter-agency in CONUS. Other
projects like electronic data interchange are subjects for far-term (3 to 5 years)
integration with DMS.

User service links, as distinguished from middleware processes that are served by the
JAVA servlet and protocol translation software, must distinguish roles as an

extension of the concept prototype and filter the summarized performance statistics
for various consumers, such as a DMS database administrator, DMS directory
systems administrator, DOD or NATO security administrators, DMS and non-DMS
network operators and other external operations support systems. A Meta Model is
being developed which can address mapping to end-users by role; a significant
portion of our solution is identified as MIB meta-data (super-class structures).

(c) 1999 IFIP

Application
Mgmt

Service @ Network

Mgmt Mai Mgmt
(eaties C‘"
Correlation Gocusmy)

Web-based Mgmt

COTS
Integration

Figure 3. Design Context

Perhaps more importantly, difficulties arise with the potential deadlock between
threads for syntactic reasons if the system is designed without an ability to detect
deadlock at runtime. In general, large and distributed organizations, such as the DMS
virtual enterprise, typically have system environments with projects where work

must be managed so that people can do their work in parallel, share resources and
collaborate. A standards-based state model for the status checker is one means to
control concurrent access among multiple users competing for the same resources.

3.3 Technical Approach

The technical approach for a web-based management architecture consists of SNMP,
HTTP, a web browser, a web server, the Java Management Application

Programming Interface (JMAPI) SNMP Application Programming Interface (API),

the Java Server Development Kit (SDK), and the Java Web Server. The
instrumentation at the web server is manifested in a Java program csdiedea

In Figure 4, a servlet runs inside the server and implements messaging management
functions there. One might think of the browser and the server as Java-based
operating systems running management applications that are servlets (servlets often
run continuously inside the server and spawn multiple threads of execution). The
browser and the server communicate with one another using the HTTP protocol.
Using the freely available Java SerndK or "Servlet API" and JMAPI SNMP

API, it is possible to communicate with existing SNMP-based and TCP-based
management agents: e.g., an SNMP agent might provide key performance and fault
monitoring functions and a TCP agent might perform message tracking functions.

(c) 1999 IFIP

Server

Browser Java IMAPI

HTTP Serviet APl _SNMP _API

Server | SNMP | Message
Servlet | Tracking Servlet

Z AN

/SNMP \I’CP

Message
Tracking
Agent

MTA MTA

HTTP/S

SNMP
Monitoring
Agent

Figure 4. Servlets

The web server utilizes both the SNMP and TCP protocols to communicate with the
agents and then provide this information to a web browser using the HTTP protocol.
Any customization done for messaging is almost entirely contained within the servlet
and HTML files.

The Java clagdttpServlet exchanges HTTP GET and POST protocol

operations with the browser client. Inside clH#pServiet , the methodloGet
implements the HTTP GET operation, and the metlaRbst implements the

HTTP POST opeation. For example, when the browser invokes a servlet by
specifying the name of the servlet in a URL, this will causelti®&et method of

the servlet to be executed. This practice is suitable for commands that don't require
any user input to be passed to skeeviet. However, when the browser user enters
form data from a Hypertext Markup Language (HTMil§ which in turn invokes

the servlet, this causes ttlePost method to be executed.

The following Java code example demonstrates the ukeG#t to execute an
SNMP opeation.HttpServletRequest objects deliver the HTTP request from
the browser to the servlet. The server includes its response within
HttpServletResponse objects that are returned to the browser for display. The
classedttpServietRequest andHttpServiletResponse provide more
generic methods for the extraction and encapsulation of request and response data in
ASCII or binary form.
public class StatusServlet extends HttpServlet {
public void doGet (HttpServletRequest req,
HttpServletResponse res)
throws ServletException, IOException {
I/l load the messaging specific SNMP MIB variables
String mibSupplement [] [] = {
(“applName”, “.1.3.6.1.27.1.1.2", “S"),

(c) 1999 IFIP

(“applOperStatus”, “.1.3.6.1.27.1.1.6", “I") };
MibStore.loadMib(mibSupplement);
SnmpVar applName = new SnmpVar(“applName");
SnmpVar applOperStatus = new

SnmpVar(“applOperStatus™);
varBindList.addVariable(appIlName);
varBindList.addVariable(applOperStatus); ...
/lissue the SNMP get operation to the agent
SnmpRequest aRequest =

session.snmpGet(agentinfo, varBindList);}}

The following code fragment demonstrates the uslwBbst to execute an SNMP
operation only after the user inputs the IP address of the platform to be queried from
an HTML form:

public void doPost(HttpServletRequest req,
HttpServletResponse res)
throws ServletException, IOException
/I parse the HTTP request into a set of fields
table = parseMulti(boundary,
req.getinputStream());...
/l'look at each field type in the HTTP request
String IPAddr = null;
for (Enumeration fields = table.keys();
fields.hasMoreElements();) {
String name = (String)fields.nextElement();
Object obj = table.get(name) ; {
/l'look at the value of the field
String[] values = (String[]) obj;
for (inti=0; i < values.length && i < 1;
i++) ...
/I we are looking for a value of "IPAddr"
/I as this contains an IP adddress
if (name.compareTo("IP Addr") == 0}
/I save the value of the IP address
if (values]i].length() > 0)
IPAddr = values]i];}}}
/I now connect to that IP Address and get the
/I RFC1566 information as in the previous code
example
String mtas[][] = new String[MAXMTAS][MAXATTRS];
int numMtas = getMtaTable(IPAddr, "161", mtas);}

The following sections describe servlets that implement specific messaging
management functions.

Browser and Status ServletsThe browser and status servlets both access standard
SNMP MIBs for messaging. The status servlet displays both the current outage status

(c) 1999 IFIP

(up or down) of messaging components obtained using the SNMP variable
applOperStatus from RFC 1565. Components that are down blink in an "alarm"
fashion. If the SNMP agent is inaccessible, $tetusServlet distinguishes

between this case and the case where the agent is accessible but the application is
down.

The MIB browser servlets format and display SNMP information to the management
user in human-readable fashion. These are SNMP-intensive and implement the major
tables in RFCs 1565 and 1566. These servlets will provide on-demand polling and
presentation of SNMP variables specific to messaging and directory as a precursor to
a reporting capability. For example, the SNMP variamieVolumeStored

contains the MTA's queue sizes.

In Figure 5, the Java classewtusServlet andMtalnfoServlet inherit

from classHttpServlet . ThedoGet method of the&StatusServlet receives

an HTTP GET command which instructs the servlet to obtain the operational status
of all applications from the relevaBNMP agentsdoGet returns HTTP-

encapsulated HTML data to the browser user.

ThedoPost method of théMtalnfoServlet receives the name of a host from
the browser usedoPost then queries the agent at that host to obtain MTA-specific
information from the MIBs such as the MTA's queue sizes and recent message
throughputdoPost returns HTTP-encapsulated HTML data to the browser user.

Outage History Servlet The outage history servlet displays the cumulative outage
status (up or down) of messaging components as obtaine®&Mon® MIBs. This
includes percentage down-time histograms for each process and summary of recent
state changes with the date and time of the last change. The outageshrstety

uses the variablepplOperStatus to obtain the component’s status, but unlike

the status servlet it does not distinguish between the inability to contact the SNMP
agent and the component malfunctioning, since both events constitute an inability to
contact the component.

(c) 1999 IFIP

Commercial Web Server
StatusServlet

MtalnfoServlet

HTTP
SNMP
~ G
3
t
MTA
Web Browser DSA
HttpServlet
MtalnfoServlet java
StatusServlet java
MtalnfoServlet StatusServlef
doPost init
getMtalnfo doGet
init I ﬁk&%
| ApplConfig |
| Co'nfigEIem |

Figure 5. Browser Servlet, Status Servlet and CorresponBoarh Diagram

In Figure 6, the Java claSsitageReportServlet inherits from class

HttpServlet . A background process is implemented by cBtasusChecker
which inherits from clas§hread . StatusChecker periodically records the

outage status of individual applications using SNMP, records state changes in a
formatted outage log, and maintains an ongoing tally of the percentage uptime for
each application. Later, when tleGet method receives an HTTP GET command,
doGet returns both the 50 most recent events and the percentageéndevor each
application to the user in HTTP-encapsulated HTML data form to the web browser.
OutageReportServlet uses synchronized blocks of code to moderate bdtetn

and theStatusChecker run method in case these two methods try to access the
outage log simultaneously.

10

(c) 1999 IFIP

Commercial Web Server Outagh Thread HttoServiet
» Zv 0g
OutageReportServigt r - OutageReponServIet.jav}l"
StatusChecker
HTTP OutageReportServiet |

foasia
Q{AU

tus
plTableStatus
teOutageStatus

e
om|

wn
4
k
o
4
<
o

M IB: M IB:
NMP
ﬁg‘é\ﬁ? <7 Xgent <7
Web MTA MTA

Browser

ConfigElem

Figure 6. Outage Report Servlet and Corresponding Booch Diagram

Message Tracking ServletThe message tracking servlet provides a user interface

to TCP-based message tracking. This servlet accepts query criteria as input (message
identifier, originator, intended recipient, time range, or combination of these) and the
name of a target MTA. The output returned to the browser user includes the message
delivery status, time of delivery, and next-hop MTA in addition to the message ID,
originator, and recipient.

In Figure 7, the Java cla$sackServlet inherits from classittpServlet

ThedoPost method offrackServlet receives an HTTP POST command,

which causes the servlet to execute message tracking requests over TCP to query the
TCP-based message tracking agent at the MTA. When the TCP agent responds to
TrackServlet |, thedoPost method offrackServiet returns HTTP-

encapsulated HTML data to the browser user.

HttpServle]

TrackServlet “TrackServletjava’
init

Commercial Web Server
SockManager
TrackServlet gg%’gggﬁgg \] TrackConfig
ReadRespons Tra‘IRb‘bPU“ e TrackReques L
i TrackRequesf
TrackResponsgtoBuff ConfigElem
HTTP TV
I —
Web Browser]

Messagé
Kk

Messagé
Kk

Figure 7. Message Tracking Servlet and Corresponding Booch Diagram

11

(c) 1999 IFIP

In summary,TrackServlet , OutageReportServlet , StatusServlet ,
andMtalnfoServlet are examples of web-server-based instrumentation
providing an integrated management function that includes HTML-based user
interfaces, back-end SNMP or TCP protocol solutions, and legacy implementations.

4. Secure Management and Synchronization

Secure functions are provided by the Netscape Certificate Server (CS) and the
Netscape Enterprise Server (ES) which implement a public key infrastructure and the
Hypertext Transfer Protocol over Secure Socket Layer (HTTP/SSL or simply
HTTP/S). Server authentication, client authentication, and public key security
features have been implemented in the prototype using X.509-based RSA encryption
technologies. When integrated the above capabilities together provide a secure
management service. In Figure 1, the web browser and web server provide secure
management via HTTP/S; the transmission of management information between the
managed components and the commercial web server is unsecured. The connection
between the browser and server is secure and encrypted using HTTP/S. This
provides an effective “domain management” approach where firewalls protect the
domain from outside attacks and HTTP/S provides security between domains.

4.1 Server Authentication

Server authentication occurs when the web server negotiates a key exchange with the
web browser. The server creates a cryptographic token that is used to encrypt the
HTTP traffic between the server and the browser. This does not require the browser
user to provide his or her own credentials. Table 1 shows steps that are required in
order to install and configure a Netscape secure management server for server
authentication.

Once these steps are complete, the server will encrypt all HTTP traffic by generating
an encryption key on a session-by-session basis. As long as the CA is trusted by both
the client and server, this guarantees that information received from the server is
indeed from that server, has not been modified in transmission, and has not been
viewed or manipulated by outside parties.

In addition to the above encryption features, if the ES wishes to authenticate each
client on a client-by-client basis, the following additional steps ecessary:

12

(c) 1999 IFIP

Table 1: Client and Server Authentication

SERVER AUTHENTICATION

1. Identify a Certificate Authority (CA). If certificates are to be generated on-sit,
this will require installation and configuration of the Netscape CS or equivalent. The
configuration of the CS includes defining the CA.
2. On the Netscape ES, define a secure server. Each ES can define multiple web
servers using separate ports.
3. On the server platform, generate a symmetric private key and public key foffthe
server. This requires defining a password that will thereafter be required wheneyer the
secure server defined above is administered (e.g., started or stopped).
4. When logged into the ES, request a certificate from the CS. This will
automatically cause the ES to exchange its public key with the CS. The CS will gotify
an arranged recipient later via E-mail.
5. When logged into the CS, approve the certificate request and send the certfficate
to the electronic mail address specified earlier by the ES.
6. When logged into the ES, extract the certificate from the electronic mail megsage
and import it into the secure server previously defined.

7. Enable encryption at the ES for the specified secure server.

CLIENT AUTHENTICATION

1. A browser user must request a personal certificate from the CS. It is easies] if the
same CA that issued the server certificate for server authentication issues the
certificate.

2. When the browser user requests a certificate, the browser will generate a pl:blic

key and private key for the current user who is making the request if no keys hagl been
generated previously for that user.

3. The CS will inform that browser user via electronic mail that the user's key i

ready by providing in the message a Uniform Resource Locator (URL) where th¢ key
may be found.

4. The browser user connects to the indicated URL to import his or her key intp the
browser.

From this point on, whenever the user connects to the ES the ES will request a key
from the browser for the user signed by the same CA. The browser will either inform
the user that a key is required, requesting that the user transmit his or her key, or the
key may be transmitted automatically subsequent to the first time it is requested. In
this approach, not only is the interaction between the web browser and the web
server encrypted, but also the same CA as the server legitimizes each individual user.
Using this approach, an organization can issue certificates for those users it deems
legitimate, and only those users. It will soon be possible in the MITRE prototype to
provide access control on a user by user basis, but this item is left for future study.
Access could be used to assign different privileges to different levels of users.

4.2 Node Management

For the purpose of synchronization management, a state may be decomposed into
optional compartments for status as shown in Figure 8 state and status notations. At
the top of figure, the variable names are declared for passing special types of

transition status (queued and delayed) that are internal to the state machine for
management of multi-threaded operations. Status is a finer grained sub class of state

13

(c) 1999 IFIP

that reflects different situations for application and network faults. In the lower part
of the figure, an entry and exit state automatically tag the thread: the pseudo event
names are entry and exit. A nested state is used for the do operations that are
continuous, and are alternately performed as stand-alone sessions or in concert. A
nested state allows multiple status conditions to be partitioned, enables control to
ensure a thread completes without interference from other threads, and is a
lightweight approach for handling complexity. A do operation executes when the
JAVA application intercepts an incoming request. didetl operational,

administrative and usage states are identified in ITU-T standards [10165, parts I-1V].

State name Status name

State Variable Name Status Variable Name
Entry/Action expression Entry/Action expressiorn
Do/Action expression Transition String
Exit/Action Expressiony Exit/Action Expression

Incoming thread

) State
\({\'}},@\ >
do: doPost 3%
D
l R
A\ .
DS transition
ey
\‘g&z@
do:doGet ~ F inal sty

Figure 8. State and Status Modeling Notation

5. Conclusions

Not only are Java servlets an effective approach for managing messaging systems,
but Java has proven to be an effective mechanism for providing an integrated
management function. Java- and web-based management strategies offer flexibility
in addressing custom management requirements, security functions such as data
encryption, and noticeable cost advantages.

Future enhancements to the MITRE prototype might employ additional functions
such as topological map display, persistent database storage, and a fault notification
framework.

14

(c) 1999 IFIP

Bibliography

Chang, Phil Inje, Ihside the Java Web Server: An Overview of Java Web Server 1.0,
Java Servlets, and the JavaServer Architectupalo Alto, California: Sun
Microsystems Inc., October 1997.

"Java Management Programmer's Guidealo Alto, California: Sun Microsystems
Inc., May 1997.

T. Berners-Lee & D. ConnollyHypertext Markup Language - 2,0November
1995, RFC 1866.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-LElgpertext Transfer
Protocol -- HTTP/1.1,"January 1997, RFC 2068.

J. PostelTransmission Control Protocol'September 1981, RFC 793.
Kille, S., and N. Freed,The Mail Monitoring MIB? January 1994, RFC 1566.
Case, J., et al'Simple Network Management ProtocdVlay 1990, RFC 1157.

Jain, N., et al.,Messaging Management Implementor's Guide: Monitoring and
Message Tracking, Version 1,®rlington, Virginia: Electronic Messaging
Assogation, May 1995.

Jones, G'Managing the Message: Message TrackjdgEEE/IFIP 1998 Network
Operations and Management Symposium, 1998: The Institute of Electrical and
Electronics Engineers, Piscataway, NJ, pp. 743-747.

E. Zeisler, T. Bollinger “A Universal Service Manager ArchitecforeDistributed
Session Management”, Ninth IFIP/IEEE International Workshop on Distributed
Systems: Operations & Management, 0298, The MITRE Corporation

C. Cicalese. “A Multi-Protocol Test Bed for Management of Distributed Services”,
MITRE Corporation, IFIP/IEEE International Workshop on Distributed Systems,
October 1994.

Paul Allen and Stuart Frost, “Component-Based Development for Enterprise
Systems”, Cambridge University Press, 1998.

15

(c) 1999 IFIP

