
Experiments with Data Mining in
Enterprise Management

A. Knobbe, D. van der Wallen Lundy Lewis
Syllogic B.V. Cabletron Systems Inc.
Postbus 2729 40 Continental Blvd.
3800 GG Amersfoort Merrimack, New Hampshire
The Netherlands USA
{a.knobbe,d.van.der.wallen}@syllogic.com lewis@ctron.com

Abstract
This paper describes experiments in applying data mining techniques to historical
data collected by network monitoring agents. Large amounts of performance data,
including network, system, and application performance data, are collected and
stored by monitoring agents. Data mining algorithms analyze the data and codify it
into usable knowledge. We show, via experiments, that the knowledge contains
useful and unexpected suggestions for improving the effectiveness of business
processes and for reducing management support effort. Four experiments are
discussed: three preliminary lab experiments and one large, real-world experiment
at a major airline company.

Key Words
Case Studies and Experiences, Management Tools and Applications

1. Introduction

As enterprise networks become larger and increasingly heterogeneous, it becomes
difficult to manage the complex interaction between different components such as
hosts, devices, databases, and applications. Each of these components can affect the
operation of the other components, and ultimately affect the performance of the
services and business processes they support.

Some events that cause a degradation of the performance in a computer
application or business process are simple and can easily be solved or prevented by
a human troubleshooter. However, with the increasing complexity of modern
computer systems, it becomes quite hard to pinpoint the exact cause of some
degradations. In many cases bad performance is not caused by a single, sudden
event, but by a subtle interplay between several performance parameters that causes
a gradual change in performance. Thus, application management becomes a
complex diagnostic problem instead of a set of simple reactive operations.

Although it is hard for human beings to get clear insight into the dynamics and
mutual influences among the components of a complex application, it is relatively

(c) 1999 IFIP

easy to monitor the different components in a computer system with current
monitoring packages, and to collect raw performance data into a data repository.
The Spectrum Enterprise Management Platform and the Spectrum Data Warehouse
are good examples of this. Now, given the availability of such historical data, the
application of Data Mining techniques in order to extrapolate usable management
information is an obvious step [2, 6, 7 10, 16, 17, 18].

The goal of data mining in enterprise management is to transform large
amounts of raw data into information, or knowledge, that can be comprehended and
used by network administrators. For example, such knowledge may take the form of
discovering cause-and-effect relationships among several components in a system,
or being able to discover network parameters which distinguish a healthy service
from an unhealthy service.

Below we discuss and evaluate results from four experiments using data
mining to solve problems in enterprise management.

2. Terms and Concepts

In this section we lay groundwork, describing the notions of monitoring agents,
knowledge representation, and domain knowledge. In addition, we describe three
data mining tools.

2.1 Monitoring Agents

The first requirement for a data mining application is to collect and store data that
describes the state of a system at regular intervals. The data can include
configuration data, events and alarms, and, importantly, performance data. Below is
a sample of commercial monitoring agents that may be used for this purpose.
• Network Agents have a focused view of the connection nodes in the network

infrastructure, for example bridges, hubs, and routers. Service parameters
typically include port-level statistics. Good examples in the industry include
Cisco’s CiscoWorks and Bay Network’s Optivity.

• Traffic Agents have a focused view of the traffic that flows over transmission
media in the network infrastructure. Examples of service parameters include
bytes over source/destination pairs and protocol categories thereof. An example
in the industry is NDG Software’s Programmable RMON II+.

• System Agents have a focused view of the systems that live in the enterprise.
Typically, these agents reside on the system, read the system log files, and
perform system queries to gather statistics. Good examples are Metrix
WinWatch, BMC Patrol, Tivoli TME, and CA TNG. Service parameters
include CPU usage, disk partition capacities, and login records.

• Application Agents have a focused view of business applications that live in
the enterprise. These agents also reside on the system that hosts the application.
Good examples are Optimal Application Expert, Metrix WinWatch, Platinum
ServerVision, and BMC Patrol. Some applications offer agents that provide
indices into their own performance levels. Service parameters include thread
distribution, CPU usage per application, and file/disk capacity per application.

(c) 1999 IFIP

• Special-Purpose Agents can be built to monitor parameters that are not covered
by any of the above. A good example is an agent whose purpose is to issue a
synthetic query from point A to point B and (optionally) back to point A to
measure reliability and response time of an application. Note that the synthetic
query is representative of authentic application queries. An example is an email
agent that monitors the response time and jitter of emails from one user domain
to another. A good example in the industry is Optimal's Application Expert,
which offers agents specifically designed for application monitoring and
control.

• Enterprise Agents have a wide-angle view of the enterprise infrastructure,
including connection nodes, systems, and applications that live in the
enterprise. These agents are also cognizant of relations among the components
at various levels of abstraction, and are able to reason about events that issue
from multiple enterprise components. This is called event correlation or alarm
roll-up. Service parameters that are accessible by enterprise agents are
numerous, including router and hub statistics, ATM services, frame relay
services, and link bandwidth usage. Examples in the industry are the Cabletron
SpectroServer, HP OpenView server, and IBM Netview server.

The data collected by a set of agents is organized into a time-ordered set of
parameter vectors. The set of monitoring agents produce a vector of measurements
periodically to reflect the state of the system at a particular time increment, or over
the interval between the previous and current measurement.

For example, consider Service Level Agreements (SLAs). If we consider a
month’s worth of parameter vectors at ten minute intervals, where some particular
parameter has been designated as the service level metric, then we can apply data
mining algorithms to discover how other parameters influence the behavior of the
service level metric.

2.2 Knowledge Representation: Propositional and First-Order Logic

We distinguish between two primary knowledge representations: propositional
logic and first-order logic (a.k.a. predicate logic, or quantifier logic) [19].

In propositional logic, the unit of what we can say is a whole sentence, and we
may use the usual Boolean operators to create complex sentences. In first-order
logic, our language is more fine-grained, and thus more expressive. Our units of
description are objects and predicates, and we are allowed to use universal and
existential quantifiers to talk about sets of objects.

For example, consider the simple sentence “The cat is on the mat.” In
propositional logic this fact is represented by single variable P, whereas in first-
order logic it may be represented as Mcm (where M stands for the predicate “is on”
and c and m stand for objects “cat” and “mat”). Further, we may say things in first-
order logic such as “All cats are on the mat” -- (x) (Cx > Mxm) -- which cannot be
expressed in propositional logic.

Most data mining algorithms discover propositional knowledge, although
recent algorithms learn first-order knowledge. Clearly, the latter is preferable
because it is more general and thus has more predictive power.

(c) 1999 IFIP

Decision Tree Induction Algorithms

Decision tree induction algorithms produce a hierarchical organization of the
dependencies among historical data. By starting at the root of the tree we can
examine important dependencies, and go into further detail by proceeding towards
the leaves of the tree. Popular algorithms of this kind are ID3 and C4.5 [14].

Decision trees suffer from the fact that particular dependencies among
parameters may be overlooked. Suppose that the behavior of one parameter
describes the behavior of a target parameter. Then the remaining parameters may be
overshadowed although they also affect the behavior of the target [9, 10]. We will
see an example of the overshadowing phenomenon later in our experiments.

Top N Algorithms

The overshadowing problem is quite clear when two parameters are considered of
which one is some increasing function of the other. Unfortunately this is often the
case in the networking domain. Therefore it may be useful in most cases to produce
one primary decision tree, and also a ranked list of the top parameters that are
possible explanations of the target parameter behavior.

Rule Induction Algorithms

Rule induction algorithms may be used to produce overlapping rules that will show
multiple dependencies between a target parameter and remaining parameters. Also
many parameters can be expressed as arithmetic functions of other parameters.
Roughly linear dependencies between parameters are quite common. Simple
statistical techniques such as correlation and linear regression can also be very
effective to produce a top N.

Inductive Logic Programming

A shortcoming of the three data mining algorithms described above is the
propositional nature of the inferred knowledge – for example: If parameter X on
machine Y > 5 then Performance is low. The statement is indeed useful; however,
one is inclined to ask further questions: Are there other machines for which this rule
holds also? How many classes of machines are there to which this rule is
applicable? Do there exist instances of such classes in my enterprise?

Inductive logic programming (ILP) offers an approach to data mining that
produces general knowledge expressed in terms of first-order logic [4, 11, 12, 13,
15]. ILP incorporates special knowledge in the form of a logic program which
specifies the links and relationships already known to be in the domain of the
application. In our experiments this background knowledge consists of a
component-wise relational model and a hierarchical decomposition of components
into subcomponents.

Domain knowledge is used by ILP to infer more general knowledge. The
algorithms can discover propositional knowledge such as diskio of HDisk1 on
Luxor, and can also produce knowledge at higher levels of abstraction, e.g. diskio of
a disk on an AIXServer. Such results are more interesting for system administrators,

(c) 1999 IFIP

as they appear more like genuine knowledge than do individual propositions. In
addition, the knowledge enjoys more predictive power.

Domain Knowledge

The domain knowledge that is used in our experiments consists of a collection of
relations between different components in the system. For example, the hierarchical
description of components consists of the following logical facts: an AIX4-r1server
is an AIXserver is a UNIX server. The description of the model consists of relations
between components. The relations between components are for example: a disk is
a part of a machine, and a machine is part of an application.

2.3 Data Mining Tools

In our experiments, we have used three data mining tools to analyse the data
collected by monitoring agents: the Adaptive System Management Tool from
Syllogic (Netherlands), Progol from the University of York (UK), and Tilde from
the University of Leuven (Belgium). We describe these briefly below.

Adaptive System Management Tool

The Adaptive System Management (ASM) Tool, developed at Syllogic in the
Netherlands, is an integrated toolbox that consists of separate modules for data
collection, data storage, system modelling, data mining, and presentation. The
mining module consists of the three propositional techniques described in Section
2.2. The results of these techniques are presented visually to the user. In the system
modeling module the analyst defines domain knowledge.

The ASM tool uses a hierarchical architecture for organizing monitoring agents
and collecting data. The basic component of the data collection system is a
collection object. Each collection object performs the same action: (i) retrieve data,
where the source of data is either a system or another collection object, (ii) store the
data in memory, file or database and potentially (iii) propagate data to parent
collection objects. At the leaves of the tree the collection objects retrieve data by
taking measurements (e.g. by executing programs) or reading existing statistics (e.g.
SNMP or kernel statistics). The internal nodes of the tree collection objects retrieve
data by collecting data from the collection objects that are below them. Finally, the
root node stores all data into a repository such as a Data Warehouse.

An advantage of this hierarchical structure of monitoring agents is that one can
construct a collection scheme that makes effective use of resources (network,
storage, and computational power) during collection, query, and storage phases.
Furthermore, by organizing the tree to minimize dependencies, the system can
continue to operate when there may be a problem in one or more agents in the
system.

Progol

Progol, developed at Oxford University Computing Laboratory, is an ILP system
that uses a rule-induction algorithm [13]. It discovers rules that explain as much of
the data as possible. The rules may overlap in the data coverage. Progol exploits
background domain knowledge, making it possible for specific rules to be

(c) 1999 IFIP

incorporated in later learning, thereby discovering more general rules expressed in
first-order logic. It constructs a pruned top-down search which produces guaranteed
optimally short clauses. Furthermore, it supports numerical hypotheses using built-
in functions as background knowledge.

Tilde

Tilde, developed at the University of Leuven, is an ILP system that builds binary
decision trees, having no overlapping coverage [4]. It is derived from Quinlan’s
propositional C4.5 algorithm, in that Tilde uses the same heuristics and search
strategy. However, Tilde extends C4.5 in that it discovers first-order
representations. Hence, it has C4.5 capability (when working with binary attributes)
as a special case. Because of the use of the divide-and-conquer strategy underlying
decision tree technology, Tilde has proven to be very efficient when run on large
datasets. Other features of Tilde include the ability to handle numbers and to
perform regression.

3. Three Preliminary Lab Experiments

In this Section we describe briefly three preliminary experiments on real life data
sets. In the first two experiments we relied upon learned propositional structures
provided in the ASM tool set. For the third experiment we used similar data mining
algorithms in SAS. More detail can be found in the references. These three
experiments layed the groundwork for a real-world trial, which we descibe in
Section 4 in some detail.

3.1 File System Performance

The aim of this experiment was to discover the parameters that influence the access
time to files in a file-system distributed over several hosts [10]. To do this, a data
set was produce by periodically executing several UNIX commands, with an
interval of 30 minutes, and measuring the response-time. The result was a data set
of 5052 records with the following attributes:

Weekday: Sunday, … , Saturday
Directory: name of directory
Local: location of directory
Filehost: name of host
Dirsize: total size in kB
CPU_usage: load on local host
Response: response-time below 2 seconds

The parameter Response was the target. All other parameters were potential causes
except Filehost, which depends on Directory.

Figure 1 shows a part of a decision tree for all general or specific, potential
primary causes. The numbers below each node in the tree indicate the total number
of cases and the percentage of cases with a bad response, respectively. Clearly the
name of the directory almost completely determines the acceptability of the
response time. However, the tree does not show any information about any of the

(c) 1999 IFIP

other parameters because they are overshadowed by Directory. If the analysis is
restricted to the general parameters, the tree in Figure 2 is obtained. Clearly the
response is never acceptable (the leaf is 100%) if the directory is remote and the
directory-size exceeds 2652 KB.

Figure 1: Decision tree with overshadowing

Figure 2: Decision tree without overshadowing

find_data
5052, 36.9%

Local = False
2526, 71%

Dirsize > 2652
1684, 100%

Dirsize <= 2652
842, 12.9%

Local = True
2526, 2.8%

CPU_usage >36.65
432, 10.2%

CPU_usage <= 36.65
2094, 1.2%

Directory = /home/test/bin
842, 12.9%

Directory = /home/test/src
842, 100%

Directory = /home/test/src/sub
842, 100%

Directory = /usr/bin
842, 100%

Directory = /usr/etc
842, 0%

Directory = /usr/inlcude
842, 6.5%

find_data
5052, 36.9%

(c) 1999 IFIP

3.2 Network Bottlenecks

The data for this experiment describes the load on 16 subnets connected by a single
router [10]. Over a period of 18 weeks a total of 16849 measurements were done on
each of the subnets. The following parameters were monitored for each subnet.
Each measurement represents the state over a 10-minute period. Along with these
parameters, the day of the week and the time of the day were measured.

LoadN: percentage of bandwidth utilization on subnet N
PktsN: packet throughput on subnet N
CollN: number of collisions on subnet N

This data was analyzed in an attempt to pinpoint a problem causing complaints
about occasional poor performance on subnet 5. At times the load on subnet five
was too high for people to work on. The problem would disappear after an hour but
a probable cause was not found. A preliminary investigation showed that users
started complaining whenever the load on subnet 5 started creeping above 35%, so
a single target was defined that is true iff Load_5 is above 35%. Before the analysis
was started, the parameters Pkts_5 and Collision_5 were removed from the data set
because they are tied directly to Load_5.

The decision tree in Figure 3 shows part of the dependencies between the target
parameter and the remaining parameter. Clearly the performance on subnet 5 is
unacceptable in most cases that the load on subnet 9 was high.

Figure 3: Decision tree for the network bottleneck problem

The dependency between subnet 5 and 9 seems to suggest that there is some
sort of client/server communication going on between the two subnets. If such a
communication actually is the main cause for the high load on subnet 5, there
should be a roughly linear relation between the number of packets or the load on the

Cabletron
16849, 1.2%

Load9 > 21.11
2810, 5.8%

Load9 <=21.11
14039, .1%

Coll13 > .085
1730, 3.1%

Coll13 <= .085
1080, 12.7%

Coll9 > 10.435
214, 15.4%

Coll9 <= 10.435
1516, 1.3%

Pkts12 > 47.495
721, 6.9%

Pkts12 <= 47.495
359, 24.2%

(c) 1999 IFIP

two subnets. To test this hypothesis, a correlation analysis was done on all pairs
(Load_5, Load_i), resulting in the following top three absolute correlations:

Load5 Load9 .788
Load5 Load1 .131
Load5 Load4 .105

3.3 Discovering System Behavior Models

This experiment was designed to discover a state transition graph (STG) that
models the behavior of a network [7]. If the learned STG were accurate and
reliable, then it could be used for proactive and reactive fault management,
prediction of network behavior, and automated monitoring and control.

The same numeric data set was used as that described in Section 3.2 above;
however the components of the learned STG were qualitative, including the states,
input events, and state transitions. The questions we tried to uncover in this
experiment were (i) which mining methods provide better results for this problem,
(ii) how much and what kind of data do we need to extrapolate a useful behavior
model, and (iii) should we derive one global behavior model, or should we derive
some number of local behavior models. As this is more-or-less a lab experiment
which is rather involved, we refer the reader to the details described in [7].

4. A Large, Real-World Experiment

This experiment was performed at a large airline company in the Netherlands. We
monitored a spare part tracking and tracing appplication (TTA) for aircraft. The
TTA uses several IBM AIX servers, an Oracle database, and Windows PC clients in
Amsterdam, Singapore, and New York. In total, monitoring agents were put into
place that collected values on 250 parameters at regular intervals. Examples of
some of the parameter types are cpu load, free memory, database reads and nfs
activity. The agents performed a read every 15 minutes and stored the values in a
database. The TTA was monitored for 2 months, resulting in a table of 3500 time
slices of 250 parameters.

The performance was measured by simulating a task of the application, viz.
querying a database, and recording the access time of this database query. The
performance measure was declared as the pivotal measure in a Service Level
Agreement (SLA) between the IT Department and the users of the TTA. All
parameters, including the SLA parameter, were measured at the same interval. The
determinator of good and bad performance of the TTA is governed by the test
database access time < 3. This means that a TTA user should never have to wait
more than three seconds for the answer when performing this specific task. This
task was agreed to be typical for TTA users.

A model of the TTA and the underlying supporting systems was created. The
model consists of about 140 components, such as servers, printers, disks and
databases. All components that are monitored are in the model as well as the known
relations between the components. The relations are one-to-many, part-of relations.

(c) 1999 IFIP

Results of the Decision Tree Algorithm

The tree in Figure 4 shows the decision tree induced from the complete dataset. The
most important parameter is paging space used on server 11. The tree states that a
high value for the parameter paging space used is the main indicator for bad
performance. The amount of used paging space can not be influenced directly, but
can be reduced by increasing the amount of physical memory, or limiting the
number of applications that run on this server. The next split on CPU idle time on
server 11 gives additional evidence for the fact that server 11 needs additional
hardware or less intensive usage.

The parameter filetime measures the delay on scheduled jobs. The application
updates requests from a mainframe at fixed times. The requests are sent (in batch)
from the mainframe to the UNIX-server server 11, and then processed by the
application. The split suggests that if the mainframe sends the file more than 2.5
minutes late, the performances drops. This can have multiple causes. Firstly, the
network could be down causing the mainframe to fail when trying to send the
requests and at the same time causing the performance-measure to time out because
the database query is performed over the network. Secondly, the application wastes
CPU cycles trying to retrieve a file which is not yet there, because the mainframe
application did not yet put it there. This happened in more than 50% of the cases.
So, this split indicates that the way the application receives mainframe requests
should be improved.

Figure 4: Results of the decision tree algorithm

Results of the Top N Algorithm

The parameters that influence performance were discovered by the Top N
algorithm. The resulting top 3 are displayed as follows:

Server 11 paging space > 685.5 MB
Client 6 ping time > 258.5 millisec.
Server 5 CPU idle < 74.5 %

Airline Data
3749, 41.5%

Server 11 paging space <= 685.5
2520, 24.7%

Server 11 paging space > 685.5
1229, 75.9%

Server 11 CPU idle > 63
381, 35.2%

Server 11 CPU idle <= 63
848, 94.2%

Batch filetime > 2.5
2021, 30.6%

Batch filetime <=25
499, 0.8%

(c) 1999 IFIP

The attribute paging space used is in agreement with the results in the previous
section. The attribute client ping time is the ping time to a foreign router. It is clear
that if this ping time exceeds 258.5 milliseconds the performance for foreign users
is bad. A system manager of the airline company reasoned that these high ping
times correspond to foreign users loading a complete table from the database to
their client. This table could be very big and the network connections to foreign
countries have a narrow bandwidth. So this situation caused both the network as
well as the application to be very busy for some time. Unfortunately, fixing this
bottle-neck is very expensive: buy more bandwidth or redesign and reimplement a
part of the TTA to reduce network traffic.

The presence of the attribute CPU Idle time on server 5 is a direct indication
that this machine is a bottle-neck for the performance of the TTA.

Results of the Rule Induction Algorthm

With the rule induction algorithm we induced several types of rules. Simple rules
that contain one parameter as a condition and one as a conclusion are presented in
an association matrix. We found several surprising relations between individual
components of the system. A striking example is the correlation of two disk IO
monitors: the correlation between the disk IO of a disk in server 5 and a disk in
server 25. After studying the data more closely it was concluded that these disks
exhibited almost complete disjunct operation.

The rule induction algorithm also discovered rules involving (multiple)
parameters as conditions that affect TTA performance. We found, for example, the
following rules:

low freespace on /var/tmp on server 5 -> low performance
server 25 high paging space ∧ server 25 high ftp connections -> low performance

Results of Algorithms That Learn First-Order Structures

This section describes ILP experiments. To compensate for the growth of search
space by the addition of the model information and using a first order modeling
technique, we preprocessed the data set into binary parameters incorporating only
values that are higher or lower than average ± 3 times the standard deviation. This
reduces the data set size (leaving out all “normal” values) and simplifying the
search, since only binary parameters are used. The loss of information in this
preprocessing step has been taken as a simplifying assumption. The main goal of
applying first order techniques was to give a proof of concept of the usability of
ILP. Using all values without reducing the search space may have produced better
results but also would have dramatically increased the analysis time.

Progol

Progol was used to induce rules that incorporated the relevant model information.
Progol generated the two rules displayed below.

Performance is low <- ∃x class_id(x, # requests in queue) & high(x)
Performance is low <- ∃x class_id(x, NFS server) & high(x)

(c) 1999 IFIP

Because there is only one parameter of type number of requests in queue, this
rule is essentially propositional. The queue contains the requests that still have to be
dealt with. This means the application cannot handle all incoming requests, or
perhaps that too many users use the application at the same time.

The second rule means that if any parameter of type NFS server on any server
in the model is high the performance will be low in the coming period. Although
there are just six parameters that have type NFS server, the second rule is very
interesting because it gives a more general description of the problem, which is that
on server 11, the network load and the usage of this server is too high. Note that
several specific correlations that we found with the propositional algorithms are
expressed here in one understandable rule.

Tilde

Tilde was presented with the same preprocessed data as Progol. Tilde induced the
tree in Figure 5.

Figure 5: Tilde Decision Tree

The first split in the tree is equivalent to the following rule: If there is a
parameter with class NFS Server that has value high then performance is low.

This is exactly the same result as found with Progol. High values of the NFS
Server class have the greatest impact on the performance. The next split is on high
values of class Trace. These parameters are the different performance measures
defined for this application. So, this split tells us that the different performance
measures are similar in the case of high values of class NFS server. If there aren’t
high values of class NFS server Tilde splits on high parameter values for the
instance Hdisk14 server 11. A parameter instance is a collection of parameters on a
specific component, so this comes down to the fact that high usage of disk 14 on
server 11 is causing performance decrease. Further investigation shows that this
holds for almost all disks of server 11.

Recall that from the propositional experiments we concluded that memory
problems or overloading of server 11 was the main problem of the TTA. Here we
see something similar. When NFS activity (on server 11) is low, high disk activity
on server 11 is the main bottleneck. It is fairly easy to identify this situation as

System
Performance

Class_id(x, “NFS Server”) &
 High(x) FALSE

Class_id(x, “NFS Server”) &
High(x) TRUE

Class_id(x, “Tracer”) &
High(x) TRUE

Class_id(x, “Tracer”) &
High(x) FALSE

Instance_id(x, “hdisk14 11”) &
High(x) TRUE

Instance_id(x, “hdisk14 11”) &
High(x) FALSE

(c) 1999 IFIP

swapping. The machine has a low CPU load, low network activity but is only
swapping memory causing high disk activity. Again, the conclusion is that server
11 needs more memory or the number of applications on this server should be
decreased.

5. Discussion: Data Mining in Enterprise Management

Our experiments in applying data mining methods to archived network data have
been encouraging, and now we have been able to produce results that are
meaningful at a customer site.

Our task at the customer site was a common one: to understand the causes that
effect the behavior of SLA performance metrics. Clearly, if such causes can be
discovered, then one is halfway towards making performance better and thus more
likely to meet SLA commitments. Below we suggest a number of other tasks that
we think are amenable to data mining methods, each one of which deserves some
old-fashioned brainstorming, discussion, and implementation. Our immediate goal
at this juncture is to incorporate these methods into commercial product, where little
to no technical expertise in data mining or machine learning methods is needed in
order to get useful results.
• Identify the common characteristics of applications or business processes that

appear to perform well, in contrast to those which perform poorly.
• Predict which applications or processes are likely to perform poorly in the

future.
• Identify security breaches in network usage.
• Understand what networking services and applications are commonly used

together.
• Reveal the difference between an application or process this month versus last

month.
• Identify the causes of faults in historical data sets [17].
• Evaluate new network configurations [17].

6. Summary and Conclusion

The concepts and experiments presented in this paper demonstrate that the
application of Data Mining techniques to the domain of enterprise management can
offer insight into the dynamics of the system at hand. In the experiments we found
several unexpected and real problems with the applications and business processes
under study. We have seen that, although propositional techniques are very useful,
first-order techniques are more comprehensible and have more predictive power.
Further work should be done in the area of an efficient implementation of first order
techniques. Also further research should be done to determine domain specific
properties that can be used to improve the efficiency and quality of the results. We
provided brief discussion of three lab experiments, and a large-scale
implementation of data mining at a customer site. Finally, we suggested other areas
that would be amenable to data mining methods.

(c) 1999 IFIP

References

[1]. Adriaans, P.W. and Zantinge, R. Data mining. Addison-Wesley, 1996.
[2]. Adriaans, P.W. Adaptive System Management, in Advances in Applied

Ergonomics, proceedings ICAE'96, Istanbul, 1996.
[3]. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A. 1996. Fast

discovery of association rules, in [5].
[4]. Blockeel, H., De Raedt, L. Top-down induction of logical decision trees.

Unpublished. 1997.
[5]. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. Advances in

Knowledge Discovery and Data Mining, AAAI Press/MIT Press, 1996.
[6]. Herlaar, L. Diagnosing Performane of relational database managament

systems, technical report, Utrecht University, 1995.
[7]. Ibraheem, S., Kokar, M., Lewis, L. Capturing a qualitative model of network

performance and predictive behavior, Journal of Network and System
Management. In press.

[8]. Knobbe, A.J., Adriaans, P.W. Analysing binary associations, in Proceedings
KDD '96.

[9]. Knobbe, A.J., Den Heijer, E., Waldron, R. A practical view on data mining, in
Proceedings PAKM ‘96.

[10]. Knobbe, A.J. Data mining for adpative system management, in Proceedings of
PADD ’97

[11]. /DYUDþ#11/#'åHURVNL#61#Inductive Logic Programming,Techniques and
Applications, Hellis Horwood, 1994.

[12]. /DYUDþ#11/#'åHURVNL#61#Inductive Logic Programming, proceedings ILP-97,
Springer, 1997.

[13]. Muggleton, S. Inverse entailment and Progol. New Generation Computing,
13:245-286, 1995.

[14]. Quinlan, J.R. C4.5: Programs for Machine Learning, Morgan Kaufman, 1992.
[15]. de Raedt, L. (Ed.) Advances in Inductive Logic Programming, IOS Press,

1996.
[16]. Zantinge, R. and Adriaans, P.W. Managing Client/Server. Addison-Wesley,

1996.
[17]. Venter, F. J. The use of lattice-based knowledge discovery to determine

dependencies between network management parameters. Masters Thesis,
University of Pretoria, South Africa. October 1997.

[18]. Lewis, L. and Noushin, A. Data mining in large network archival databases.
Technical Note ctron-lml-95-02. Cabletron Systems. 1995.

[19]. Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach.
Prentice Hall. 1995.

(c) 1999 IFIP

