
Towards Securing Network Management
Agent Distribution and Communication

Larry Korba
National Research Council of Canada
Rm. 286B, Bldg. M-50, Montreal Road
Ottawa, Ontario K1A 0R6
larry.korba@iit.nrc.ca

1.1 Abstract

Network Management applications using distributed software agents require secure techniques
for agent distribution and communication. Although there are several popular mobile agent
environments written in the Java programming language that contend to offer these functions,
these packages are generally heavy weight and do not provide a framework for authenticating
agent responsibilities within agent systems. This paper describes an agent distribution and
communication framework for Java-based software agents. The framework has several key
features: 1) a secure mechanism for dispatching agents to selected nodes from secured agent
repositories. 2) an operating environment for each agent that depends upon its role-based
authenticated security level. 3) object-based, peer-to-peer and peer-to-many communication. 4)
provision for encrypted communication. 5) a low overhead distributed naming directory of
agents populating the network. 6) proactive agent monitoring for secure operations. 7) tools for
reflective monitoring of agent contents and communication. 8) a lightweight environment that
is easy to use while keeping the agents small in size.

Keywords

Network Management, Mobile Agent, Distributed System, Software Agent, Authentication,
Security

2. Introduction

A distributed approach for network management applications offers distinct advantages over a
centralized paradigm. Key factors in favor of the distributed approach are the redistribution of
network traffic load and the distribution of processing requirements. Collocation of network
management processes or agents with the resources they manage may let agents communicate
locally, rather than over the network. The agent obtains local information about node or
network performance. At the same time it deploys local computing resources to process the
gathered information. Putting diagnostic intelligence at managed nodes also increases the
potential for network management process survivability. A node may be managed even when
the connection to the computer hosting a monitoring function is not functional.

NRC Paper Number: 41616

(c) 1999 IFIP

The introduction of the web and more recently the Java programming language has resulted in
an explosive push toward distributed agent-based Network Management applications. To
further this movement, several organizations have developed agent systems in the Java
Programming language for deployment in network management and other applications. Some
basic requirements for a network management agent environment include the ability to
distribute agent entities throughout the network, implementation of measures to ensure safe
operations by the agents and the agent environment, and support for different types of
intercommunication among the distributed agents.

Fundamental to successful deployment of mobile agent systems is meeting security
requirements [1]. Some research within the network management community is focussed on
full agent mobility. Unfortunately fully mobile agents significantly compound security issues
[2]. A major concern when deploying these systems is the ability to prevent illicit operations
by any of the distributed entities. Illicit or unwanted operations include:

• Agent corruption within their storage or operating environments. Agents need a secure
repository for their storage or operating environment to ensure that they are not corrupted.
For itinerant agents, each agent meeting place must be secured.

• Inappropriate agent transfer or corruption of an agent during transfer. The transfer of an
agent must be secured and sources verified to ensure that only verified agents are allowed
to operate in the agent environment and to ensure that the agent is not corrupted in transit.
It is important to maintain the integrity and privacy of the agent and the information it
may carry.

• Communication interception and corruption. Communication between distributed agents
must be handled in a manner to guarantee that the sender and receiver are allowed to
communicate, and the message exchanges are not easily deciphered or modified by a third
party.

• Corruption or damage to network resources. Depending on the mandate of an agent, it
may be restricted to accessing only certain network resources.

• Corruption or damage to host resources. Agents must be restricted from unauthorized
access to resources on the host. The goal here is prevention of potentially harmful access
or changes to host resources.

This paper first highlights the development of distributed approaches to network management.
Several of the better known environments for mobile agent deployment in the Java
programming language are also compared with a focus on their communication and security
aspects. Finally, the paper describes an agent communication and distribution environment
(ACDE) targeted for the development of Network Management applications.

3. Background

3.1 Agents and Network Management

Within the last decade software vendors and researchers have seriously considered a
distributed approach to Network Management applications. Management by Delegation
(MBD), for instance, is an attempt to provide improved operating characteristics over the
centralized SNMP paradigm through decentralization [3]. The distributed approach of MBD

(c) 1999 IFIP

supports a means for creating new functions delegated by other processes. Appropriate
decentralization reduces the impact on bandwidth for a network management system and
partitions the application and resources. One application area suggested by Meyer as ideal for
MBD is security, i.e., distributed intrusion detection [4]. Suzuki et al. demonstrated a
delegation approach using scripted agents [5]. Their work demonstrates the effectiveness of
distributing processes for network management depending on data transfer requirements.
Although using common management information protocol (CMIP), the approach is applicable
to the SNMP world.

Another approach to the distribution of network management functions is the Managing
Agents for Information Control system (MAGIC) from the Technical University of Munich
[6]. Their architecture introduces an intermediate layer (MAGIC) that interacts directly with
SNMP Agents and management stations. MAGIC agents have two SNMP ports. They are
SNMP agents that implement their own Rule-MIB. The Rule-MIB provides an SNMP-
standardized way for implementing rules that employ managed node MIB Objects, events and
timers within expressions to monitor and interact with a managed NEs.

The Versatile Network Management System (VINES) also distributes sources of information,
algorithms and services [7]. This system offers management client applets, which interact with
network management Domain Servers (DS) for groupings of NEs. A DS is essentially the
union of the MIBs for all NEs within a domain. The DS layer interacts with those MIBs under
control of the management applet.

Mobile autonomous agents have also been proposed and used for Network Management.
Hjalmtysson and Jain have proposed an agent-based architecture for service management and
provisioning in the telecommunications field [8]. Agent mobility conceptually separates
service abstraction from location of execution. An agent may be dispatched on an as needed
basis to perform different service functions. This facilitates load balancing, service quality,
resource allocation, provisioning and service maintenance. The notion of “Plug and Play
networks” as put forward by Bieszczad et al. encapsulates some of these notions [9].

Although the ACDE environment may be used to implement a variety of distributed network
management frameworks, our current security applications follow the management by
delegation approach. Agents, equipped to interact with network resources, such as those
available via SNMP, may monitor and respond proactively to the state of the resources. Agents
may absorb new functions delegated by other agents or processes. The agent may create events
to pass information to managing agents that in turn may delegate new agents to deal with those
events or collate the information for centralized management or logging.

3.2 Security and Communication for Mobile Agents

There are currently many agent environments developed by universities or research institutions
and by companies [10]. Kiniry and Zimmerman provide a more general overview of the more
popular systems systems [11] [12]. This section briefly outlines the security and
communication features for the following environments: Concordia [13], Voyager [14],
Aglet’s Workbench [15], and Odyssey [16].

(c) 1999 IFIP

Currently, the four packages mentioned above implement extensions of the
java.lang.SecurityManager to provide a sandbox in which mobile agents may operate. The only
package that goes well beyond this approach is Mitsubishi’s Concordia. Concordia provides
the most in-depth security measures [17] with the inclusion of secure sockets layer V3,
encrypted storage of agents and the use of a user identity. These more sophisticated security
modules are only available with the licensed version of the software. One security feature
Concordia does not provide is authentication of mobile agents.

In recognition of the need to bolster security facilities for Aglets, the developers have
suggested a security model that defines an authorization language specifying the principals
within an Aglet system and the responsibilities of each of them within the system [18]. The
model also defines how the agents might migrate and access local resources. This work does
not define the infrastructure for distribution of the security information nor does it address the
problem of protection of the internal state of Aglets.

In terms of communication, Aglets provides a message-based, socket level communication.
Concordia offers both distributed multicast events and collaborative communication based on
Java’s Remote Method Invocation (RMI) API. Objectspace Voyager uses CORBA services for
communication. Odyssey uses RMI as its standard communication facility while providing
DCOM and IIOP as options. No package provides fine grain monitoring of agent
communication.

In contrast, ACDE uses a role-based security model for handling access to host and network
resources. Role-based access control has been used by others to manage intranet resources for
instance [19]. In a similar fashion to this approach, all network objects are given a unique
identity, along with permissions, properties and access control lists. Before an agent may be
started, it must first be authenticated through exchanges with a security server. It is only
allowed to access resources permitted through its control lists based upon the agent’s role
within an agent system. ACDE also has a facility for fine grain monitoring of agent
communication.

Agent communication in ACDE is object-based but lightweight. There are provisions for both
multicast and peer-to-peer communication. While fine grain communication monitoring
provides additional security benefits, it also provides an aid in system development. The next
section provides more details of the security and communication provisions of ACDE.

4. System Overview

The initial target for ACDE is distributed, agent-based, security applications in the area of
Network Management. Secured access to wireless local area networks is the first application of
this system [20]. In this system, five different agent types interact with each other to form an
agent system that adds a user authentication application layer for wireless LANs. Agents
monitor network elements for unauthorized access to wireless services. The wireless LAN
security system automatically configures itself by sending agents to operating nodes where
they will be most effective. As network usage or configurations change so does the agent
system configuration.

(c) 1999 IFIP

The system to support this and other security applications was developed with the following
goals:

• Provide a method for one-hop agent dispatch from secure agent storage,
• Authenticate agents on the basis of their roles within agent systems,
• Provide negotiation for and security management of network and host resources,
• Offer agent communication via remote object sharing and multicast events.
• Ensure secure Agent communication,
• Monitor and log resource usage and,
• Provide a lightweight, distributed naming service to support multiple authorized managers

for the agent system monitoring.

All agents are digitally signed in ACDE. Single-hop agents simplify the security infrastructure.
In the current version of ACDE agents are only allowed to move from a ”safe” agent storage
place (an access-restricted directory of a web server) to an agent meeting place called the
Agent Daemon. A three-tiered architecture supports extension of the agent environment to the
sandbox of a web browser. All agents have predefined roles for operation within an agent
system. The predefined roles of an agent include information concerning its resource
requirements, and levels of interaction and authority in dealing with network and host objects
(databases, computer resources, network resources, Agent Daemons, or other agents). A
trusted security server stores information regarding the agent systems and agents. Agents are
authenticated via the trusted server when they arrive at an Agent Daemon. Agents operating
within Agent Daemons and within browsers must negotiate with their host Agent Daemon for
network resources. Finally, in order to operate in the Agent Daemon environment, agents must
implement an interface permitting Agent Daemon monitoring of its communications.

4.1 One-Hop Agents

For many network management applications, mobile, multi-hop agents are unnecessary and
undesirable. It has been argued by many that the key benefit of agent mobility is dynamic
resource usage or load balancing for distributed applications [21]. Balancing of resource usage
may be easily accomplished with one-hop agents. Using one-hop rather than multi-hop agent
mobility lowers the complexity of the resulting agent infrastructure and greatly reduces
security exposures. The agent mobility of ACDE offers a means for populating a network with
agents required for distributed network management systems and adapting the system for
optimal operation. When initially deploying an agent system, mobility provides a means for
populating the network appropriately, depending on network and computer resources. As the
network characteristics change, the agent system may adapt to the changes by retracting or
adding more agents.

It is much easier to establish trust for one-hop agents as opposed to multi-hop agents. A one-
hop agent travels between known agent home servers and the execution environment, while a
multi-hop agent may roam widely among many target environments. Trust must be established
between the execution server (Agent Daemon) and the agent’s owner. The execution server
must also evaluate the level of trust to be put in the agent home server. In an Intranet situation,
where there is no exposure to the Internet, trust may be reasonably high, given that it is
reasonable to assume that the access to the agent home servers will be limited to the network
administrator. In the more general case, the agent system owner may digitally sign the

(c) 1999 IFIP

information comprising an agent. Within ACDE, agents are authenticated at the Agent
Daemon.

Since agent distribution, in the one-hop case, requires mediation of the agent home server, trust
may be assigned on the basis of server owner. Thus within an organization there may be many
servers offering many agent system components. The execution server may have a security
policy that provides a level of trust and access to resources dependent upon the agent home
server owner. In the case of ACDE, the agent system owner digitally signs all agents. Not only
are agents signed and authenticated to assure agent authorship and delivery, they are also
registered with a trusted server to provide a system of security based upon the role of the agent
in an agent system.

4.2 System Block Diagram

The ACDE deploys Agent Daemons throughout the network. Agent Daemons provide an
environment at network nodes to which agents may be dispatched. They allocate resources
based upon agent authentication, and agent requirements and authority within agent systems.
Several managers within the Agent Daemon interact with agents to deliver agent services.
Figure 1 depicts the functions supported by the Agent Daemon.

Figure 1: Block Diagram showing the elements of the Agent Communication and Distribution
Environment.

A Security Manager maintains the parameters of the Java sandbox for each agent operating
within the Agent Daemon. The Security Manager extends the java.lang.SecurityManager (JDK
1.1x) class to monitor activities within agent threads. It handles issues such as the level of
access to the host file system (open, read write, delete), and socket access, among many others
[22].

The Agent Security Access Manager handles access to the secure server. Whenever an agent or
user requires authentication, this manager provides the channel for those negotiations. Any

Agent Daemon

Multi-Threaded Execution Environment

Agent BAgent A

CommunicationMgr.

Communication
 Monitoring
Communication
 Service Request
Proxy Service

Security Manager

Agent Control

Directory
Access

Agent Send/
 Start/Stop

Agent Security
Access Manager

Authentication

Security
 Database Access

Util ity

Network
Resource
Access

Node
Resources

Agent BAgent B Agent BAgent C

Thread Access

File Access

Socket Access

(c) 1999 IFIP

agent wishing to access information from the secure server regarding agent systems for
instance does so through the Agent Security Access Manager.

The communication manager handles requests from agents for communication services. It also
monitors agent communication activity, allowing only authorized communication for the agent.
The communication services controlled by the Agent Daemon include: publishing objects,
requesting objects from other agents, requesting network-based Agent Daemon services such
as multicast services and use of sockets. To allow an applet to communicate with an agent
system, the communication manager also offers a proxy service. An Agent Daemon running on
the same node as the web server hosting the applet provides an authorized applets with
communication access to the agent system via the communication manager.

When an agent wishes to publish an object, it must negotiate with the communication manager
for available resources. The communication manager determines from the trusted server
whether or not the agent is authorized to use communication resources. The trusted server
contains reference information about the agent and the agent system(s) with which it is
associated. Among that information is a list of the allowed types and targets of interactions for
agent communication.

Agents or applets wishing to control the details of the other applets must use the Agent Control
Manager. Agents authorized for agent control may send agents to destination Agent Daemons,
start and stop agents, and access directory services.

A set of utility classes provides access to methods that are useful in assessing or diagnosing
computing or network performance. These utilities may be employed to determine the best
physical locations for agents to operate as part of an agent system within the network. For
instance, an agent may require extensive computing resources. By querying performance
assessment methods within this class at various Agent Daemons, the agent may be sent to the
agent with the ideal set of free resources to optimize agent performance.

4.3 Communication

To operate in an ensemble, distributed entities must be able to communicate with each other.
The ACDE provides an easy-to-use, versatile, yet lightweight communication infrastructure.
Many mobile agent packages offer object communication using either CORBA or Java’s RMI.
These communication techniques abstract away the communication interface for object
exchange and remote method invocation. A local method invocation may have its arguments or
references serialized and transferred to the target method in a remote class. Any objects
returned from the remote method are serialized and returned to the entity that remotely invoked
the method.

CORBA is designed to work across languages. To do this CORBA uses Object Management
Group’s Interface Definition Language to provide the communication interface. Although IDL
provides “the best standard notation language available for defining component boundaries”
[23], mapping IDL constructs into programming languages adds a significant level of
overhead.

Java RMI (supported within JavaSoft’s Development Kit (JDK) Ver. 1.1 and above) takes
advantage of Java’s Object model. It is a much simpler architecture than CORBA and easier to
use. There are some drawbacks to the approach. A number of steps and rules are required to

(c) 1999 IFIP

make a Java class remotely enabled [24]. It is reasonably heavy weight, especially that the
number of classes and interfaces representing the API for the RMI amount to twenty-six (JDK
Version 1.1.3). In addition, an RMI Registry program must also be running for each node with
remotely enabled objects.

ACDE builds upon the communication techniques developed by Ennio Grasso at CSELT
(Centre Studi e Laboratori Telecomunicazioni S.p.A., Italy). Known as the Java Reflection
Broker [25], the package uses several of Java’s APIs: Sockets, Object Serialization and
Reflection to deploy a dynamic invocation model similar to the dynamic invocation interface
in CORBA. In contrast with CORBA or RMI, remotely enabling a Java class requires no
modifications to the class. No stubs and skeletons need be developed for remote enabling. The
communication package works with JDK 1.1x compliant browsers. To publish an object, the
agent or applet creates for itself something akin to a mini ORB. The remote method
invocations for JRB provide true peer-to-peer communication. The package also provides an
event service for asynchronous, multicast, connectionless communication. In this one-to-many
communication model, a sender’s message may be received by a number of recipients,
registered for the message type event.. Not only is the package easy to use, it is also compact,
requiring a class file size of 14K bytes for both client and server sides.

The communication services have been extended for robust communication for multiple agents
operating within a single Agent Daemon and to include a “back door” monitoring facility for
agent communications. To operate within an Agent Daemon, agents must maintain objects
reflecting the identity, nature and contents of communications with its published class. An
Agent Daemon monitors information within the agent regarding recent data exchanges. The
information includes communication streams, identities of entities connecting for remote
invocation, multicast events requested and received.

Secure Sockets Layer version 3 (SSL v 3) provides a means for securing communication
interchanges between agents within agent systems operating under ACDE. This protocol
authenticates and encrypts Transmission Control Protocol streams. The protocol is popular and
appears to have become a standard for secure network communication. There are a number of
third party implementations available in Java, for instance [26].

4.4 Security Management

As discussed above, the approach of using single-hop agents eases some of the security
requirements from the distribution point of view. With ACDE, agents may also pass state
information to other agents. Authorized agents may destroy or deploy other agents. This
process is intended for populating a network with an agent system or for dynamic load
balancing, i.e. load balancing for an agent system while in operation.

Within web browsers, Java’s sandbox approach to security management severely limits an
untrusted applet’s access to host and network resources. Using digitally signed applets can
relax the sandbox restrictions [27]. After creation, classes are signed with a digital certificate
based upon the class’s author and class contents. Successful authentication of delivered classes
assures first of all that a class has not been modified during transfer. Second, systems can be
configured to allow different levels of privileges depending on the author of the class.

In ACDE all agents are digitally signed. This assures that the classes received by Agent
Daemons are the same as the classes created by the specified author and stored at the server.

(c) 1999 IFIP

Rather than allowing the verified, signed agent immediate access to network or host resources,
the Agent Daemon authenticates the identity and role of the Agent through interchanges with a
trusted server. This approach authenticates the agent as a bona fide member of an agent system
scheduled to operate within the network. The interchanges with the trusted server also provide
an added level of assurance against agent corruption and provide a means for restricting or
relaxing agent operations on the basis of agent role within an agent system. When agents and
agent systems are created, their names, roles, required resources, relationships between agents
and agent systems, and lifetimes of agent systems are stored in the trusted server. Figure 2
provides a schematic diagram of typical communication interchanges for ACDE operation.

Figure 2: This diagram illustrates the some communication operations of ACDE. The gray
lines indicate agent transfers. Solid lines indicate communication exchanges. Applets

communicate with agent systems using a three tiered arrangement.

The Trusted Security Server contains sensitive information needed for authentication
exchanges, key distribution, security audit. Figure 3 illustrates the organization of Agent
System information while Figure 4 shows how the Agent object is organized. A developer uses
a Security Management program to interact with the Security Server and edit these objects
when creating an Agent and an Agent System. These objects also relate Agents to the
communication relationships with other Agents, Agent Daemon services, and network
services.

Figure 3: Some of the information defined in the Agent System Object.

Trusted Authentication Server

Web Server Node

Agent Archive (Protected Storage)

Agent Classes
& Behaviours

Creation, Control &
Monitoring Applets

Agent
Systems

Security
Database

WWW
Server

WWW
Server

Agent
Daemon

Agent
Daemon 1

Applet in
Client Browser

Applet in
Client Browser

Security
Server

Security
Server

Agent
Daemon

Agent
Daemon 2

Agent
Daemon

Agent
Daemon 2

Agent
System

Agent
Names

Characteristics

Creation Date

Life Time

Execution
Time

Owner

Network
Operation

Public
Keys

(c) 1999 IFIP

The Security Server provides two functions: 1) generation of ANSI X.9.17 keys for
authenticated agents and users and 2) management of a log of security events. Data Encryption
Standard (DES) is the basis for encryption used by the Security Server. Although 56 bit
encryption keys are considered weak by today’s standards [28], DES provides reasonable
software implementation speeds and adequate protection against attacks from individuals or
organizations other than those with massive resources.

Figure 4: Some of the information defining the Agent object.

The process of Agent Daemon and agent authentication, and agent resource negotiation
proceeds as follows:

• Whenever a user starts an Agent Daemon, its digital signature is checked through
interchanges with the Trusted Authentication Server. A user name, password
authentication exchange permits an Agent Daemon to access agents stored in a protected
area of a web server and to act as a client for authentication exchanges with the Trusted
Server on behalf of deployed agents.

• The Agent Daemon loads agent classes from the remote agent storage area. The Agent
Daemon’s class loader loads the agent as a signed class. After the agent’ digital signature
has been verified, it is still not yet considered by the Agent Daemon to be trusted. Using
Java’s Security Manager mechanism, the agent is not allowed access to resources, other
than communication with the Agent Daemon security and communication managers until
step 3 is completed.

• The Agent Daemon interacts with the Trusted Authentication Server to authenticate the
agent as a member of an agent system scheduled for network deployment. The agent
name is passed in plain text, the hash value derived from the Agent certificate provides a
simple means for securing a channel for exchanging key information. Agent security

Agent
Name

Distribution

Location
Criteria

Communication

Security DB
Requirements

Daemon
Resources

Number/Location
Restrictions

Types, Permissions,
Connections, SNMP,

SSL, etc.

Processing,
Communication

Latencies

Number/Location
Restrictions

Other
Services

Dist.Directory, Agent
Dispatch/Destroy,

File I/O, Host Resources,
Thread Handling

Host & Network
Testing, Search

(c) 1999 IFIP

information and agent system information is exchanged using a key generated for the
agent by the Trusted Authentication Server.

• The Agent Daemon and the trusted server perform a nonce exchange periodically to
ensure the viability of certificates for agents running at the Agent Daemon node [28].

• If the agent has authority to publish classes for communication, it must negotiate with the
Agent Daemon for allocation of communication resources for this purpose immediately. If
the Agent does not do so, the Agent Daemon kills the Agent and adds a security violation
to the event log.

• The Trusted Authentication Server monitors, time stamps and logs several different events
including:
• Successful and failed attempts of access to the security database.
• Breaches within the agent daemon security manager. For instance, the Agent Daemon

notifies the Trusted Server if an agent attempts to overstep its bounds in terms of host
or network resources, or contact with other entities.

• Creation and destruction of agents.

The Trusted server notifies the system administrator whenever any of several settable trigger
events occur. One such trigger event is a repeated authentication failure for an Agent trying to
operate at an Agent Daemon. If this should happen, the Trusted Server sends an electronic
message to the system administrator. As well, subsequent requests from the source address for
further authentication are rejected until the system administrator investigates. These events
typically would be evidence of a brute force attack of an alien agent or agent daemon.

4.5 Agent Monitoring and Control

For multiple agents to negotiate share or allocate tasks make arrangements with each other, etc.
they must communicate. While vital for agents to do their job, agent systems with many
communicating agents can be very difficult to build without appropriate communication
monitoring tools. A communication monitoring class with ACDE permits monitoring of agent
communications by Agent Daemons. An Agent Daemon or an authorized agent or applet may
remotely set environment settings within agents causing them to queue communication
exchanges they have with other entities. The authorized agent may also inspect the internal
methods of the published agent class.

Figure 5 illustrates the typical functions available within ACDE for manual monitoring and
control of agents.

The image is a screen shot of the control window for an Agent Daemon. Fields within this
window list:

• The IP address of the Agent Daemon.
• The IP address of the Agent Server, in this case a web server located at the same IP

address as the Agent Daemon
• A list of Agents available for distribution from the agent repository (Agents for

Distribution Box). The contents of agent archives (e.g. MyBlink.zip) may be examined
remotely.

• A list of agents running at the Agent Daemon with their assigned names in the box named
Running Agents.

(c) 1999 IFIP

• A list of methods available for remote execution for the highlighted agent in the Running
Agents box.

• A list of the methods available in the selected agent. This is a reflectiive service for
examining details of the methods available for remote invocation.

• A list of the latest invocation events. The list shows the invoking method, the method
invoked and the time of the invocation.

• A list of the multicast events received by the Agent Daemon.

Figure 5: A screen snapshot of the control and monitoring window of an Agent Daemon.

5. Discussion

This paper introduces an environment for secure distribution and communication for software
agents. It was designed to accommodate development of Network Management security
applications. The ACDE offers a lightweight environment, deploying one-hop agents that
present the potential for increasing the level of trust between agents and agent operating

(c) 1999 IFIP

environments. Agents communicate using a package that provides both multicast and peer-to-
peer object communications. These communication streams may be monitored. Monitoring
provides automated fine-grained censorship of agent communication and manual monitoring of
agent communications during development or for analysis. Central to the system is a
mechanism for agent authentication and for authorized agent access to various network and
computing resources, on the basis of the roles of agents within agent systems.

While providing advantages for rapid prototyping and testing of distributed systems created in
the Java programming language, development in other languages is not precluded. Java’s
native language interface provides one facility for bridging the language gap. CORBA,
although a more heavyweight solution, is yet another approach for legacy or multi-language
systems.

Using a centralized security server approach for authentication provides a rapid technique for
updating and distributing agent and agent system information. For instance, if there is a change
in an agent system configuration, or its security requirements, only the information in the
security server needs to be changed. The key drawback to this approach is the fact that the
system requires that the security server is operational at all times. A successful denial of
service attack on the security server would effectively disable ACDE operation. A common
technique for countering this type of attack is to use a backup server or a series of security
servers.

Currently the system is being deployed and extended while new security applications are under
development. The initial applications include secured access for wireless local area networks
and a distributed intrusion detection system.

6. References

[1] C. G. Harrison, D. M. Chess, and A. Kershenbaum. Mobile agents: Are they a good
idea? Technical report, IBM Research Report, IBM Research Division, T.J. Watson
Research Center, Yorktown Heights, NY, March 1995.
http://www.research.ibm.com/massive.

[2] William M. Farmer, Joshua D. Guttman, and Vipin Swarup. Security for mobile
agents: Authentication and state appraisal. In Proceedings of the Fourth European
Symposium on Research in Computer Security, pages 118-130, Rome, Italy, September
1996. Springer-Verlag Lecture Notes in Computer Science No. 1146.

[3] Y. Yemini, G. Goldszmit, S. Yemini, Network Management by Delegation.
Proceedings of the 2nd Int. Symp. On Integrated Network Management, pp. 95-97,
Washington, DC, April, 1991.

[4] K. Meyer, M. Erlinger, J. Betser, C. Sunshine, G. Goldsmidt, Y. Yemini,
Decentralizing Control and Intelligence in Network Management. Proceedings of the 4th
Int. Symp. On Integrated Network Management, Santa Barbara, CA, May 1995.

[5] M. Suzuki, Y. Kihira, S. Nakai, Delegation Agent Implementation for Network
Management. IEICE Transactions on Communications, 1997, V.80, No.6, pp. 900-907.

[6] M. Trommer, R. Konopka, Distributed Network Management with Dynamic Rule-
Based Managing Agent. Proceedings of the 5th Int. Symp. On Integrated Network
Management, San Diego, CA, 12-16 May 1997.

(c) 1999 IFIP

[7] G. Mansfield, E.P. Duarte Jr., M. Kitahashi, S. Noguchi, VINES: Distributed
Algorithms for a Web-Based Distributed Network Management System. Proceedings of
the 5th Int. Symp. On Integrated Network Management, 12-16 May 1997, San Diego,
CA, pp. 281-294.

[8] G. Hjalmtysson, A. Jain, Agent-Based Approach to Service Management- Towards
Service Independent Network Architecture, Proceedings of the 5th Int. Symp. On
Integrated Network Management, 12-16 May 1997, San Diego, CA, pp. 715-729.

[9] Bieszczad, A. and Pagurek, B. (1997), Towards plug-and-play networks with mobile
code, in Proceedings of the International Conference for Computer Communications
ICCC’97, November 19-21, 1997, Cannes, France.

[10] Agent Tools List http://www.agentbuilder.com/AgentTools/

[11] Joseph Kiniry and Daniel Zimmerman. A Hands-on Look at Java Mobile Agents.
IEEE Internet Computing, July-August, 1997.

[12] Joseph Kiniry and Daniel Zimmerman. Addendum to “A Hands-On Look at Java
Mobile Agents, A Look at Mitsubishi’s Concordia”, http://computer.org/internet
/v1n4/kiniry.htm

[13] Concordia http://www.meitca.com/HSL/Projects/Concordia/Welcome.html

[14] Objectspace Voyager http://www.objectspace.com/

[15] IBM Aglets http://www.trl.ibm.co.jp/aglets/

[16] General Magic http://www.genmagic.com/technology/mobile_agent.html

[17] Tom Walsh, Noemi Paciorek, David Wong. Security and Reliability in Concordia,
Hawaii International Conference on Software Systems, HICSS 31, January 6-9, 1998,
Hawaii.

[18] Gunter Karjoth, Danny B. Lange, and Mitsuru Oshima. A Security Model for Aglets,
IEEE Internet Computing, July-August, 1997, http://computer.org/internet

[19] Zahir Tari and Shun-Wu Chan. A Role-Based Access Control for Intranet Security,
IEEE Internet Computing, September-October, 1997, http://computer.org/internet

[20] Larry Korba. Securing Wireless LAN Access: A Network Management Approach.
IEEE Int. Symp. on Wireless Communication, Montreal, P.Q., May 22-23, 1998.

[21] UMBC Agent email list. http://www.cs.umbc.edu/agentslist/

[22] Scott Oaks, Java Security. O’Reilly & Associates.

[23] Tom Mowbray. The Essential CORBA, John Wiley & Sons, 1995.

[24] Java RMI http://java.sun.com:80/products/jdk/rmi/index.html

[25] Java Reflection Broker http://andromeda.cselt.it/users/g/grasso/free.htm

[26] Phaos SSLava http://www.phaos.com /main.htm

[27] Java Security1 http://java.sun.com/marketing/collateral/security.html

[28] B. Schneier, “Applied Cryptography.” John Wiley & Sons, 1996.

(c) 1999 IFIP

