
The Development of Integrated Inter and
Intra Domain Management Services

D. Lewis,
Department of
Computer Science,
University College London,
United Kingdom.
D.Lewis@cs.ucl.ac.uk

V. Wade,
Department of
Computer Science,
Trinity College Dublin,
Ireland.
Vincent.Wade@cs.tcd.ie

R. Bracht,
IBM,
Heidelberg,
Germany.
bracht@de.ibm.com

Abstract

Service providers are under increasing competitive pressure to reduce costs,
increase customer service and introduce new services. Speed of deployment,
ease of reuse of existing components and co-operation across organizational
boundaries are vital for management systems to succeed in such an
environment. This requires a significant change in the way management
systems are modeled and developed. This paper presents a design process which
is customized to support the analysis and development of inter and intra domain
management systems as well as assisting in the development and deployment of
reusable components. The design process was trialed and validated by its
application in the development of software in a multi-domain management
research project.

Keywords

Service Management, Software Methodologies, Open Service Market, Component
Reuse

1. Introduction

The liberalization of the telecommunications market world-wide and the advent of
increasingly intense competition is forcing service providers to reduce the cost of
delivering services while increasing customer satisfaction. The automation of
operations systems is seen as an important part of achieving this, improving the
efficiency of the interactions between a service provider’s business various
processes and the interactions with the processes of customers, suppliers and
collaborators [1]. As the pressure intensifies to rapidly develop effective
telecommunications management systems, developers are increasingly turning to
software reuse techniques and in particular the use of commercial off the shelf

(c) 1999 IFIP

components. In addition, increasing emphasis is being placed on the use of open
interfaces in order to support inter-domain interfaces that ease multi-domain
interworking problems and conform to regulatory requirements.
An appreciation of the overall business environment in which open
telecommunications management systems are developed can help in our
understanding of the requirements for a suitable development methodology. A
model of this environment is depicted in Figure 1. It centers on a management
system developer stakeholder operating in a market where it provides
management systems (possibly internally) to a service provider stakeholder. A
management system must support one or more management tasks required by the
service provider, which may involve interactions between the service provider and
customer stakeholders and/or other service providers. Ideally, the development of
management systems should make use of commercial off-the-shelf components,
purchased from component vendor stakeholders in an open market. The system
developer also relies on the use of open standards for platforms and for common
management functions implemented by components. These ensure both the
interoperability between the provider’s systems and those operated by customers
and/or other providers and the interoperability between components purchased
from different vendors.

other service
providers

service
providers

customers

system
developers

component
vendors

standards

Development

Operation

frameworks &
interface definitions

business needs

working software

component
& frameworks

system requirements

business
needs

requirements

frameworks &
interface definitions

Figure 1: Stakeholders in the management software development process

Any suitable development methodology must have both a suitable notation for
expressing the various concerns that arise during system development, as well as a
process for systematically addressing those concerns from initial requirements
capture through to testing and deployment of software. Such a development
methodology is presented in this paper. It builds on current management software

(c) 1999 IFIP

paradigms and general software engineering trends and has been validated by
application in the development of substantial multi-domain management systems
for advanced telecommunications services. The paper first details the work that
has influenced the definition of this methodology, before giving an overview of
the methodology itself and providing some detailed examples of its application to
the development of research prototypes.

2. Relevant Trends in Systems Development

The ITU-T’s Telecommunication Management Network (TMN) recommendations
[2] provide an architectural framework for constructing open telecommunications
management systems. The series includes a TMN Interface Specification
Methodology [3] that provides guidelines for the functional decomposition of
management functions resulting in agent interface specifications expressed in
GDMO. It does not provide specific guidance on the development of entities with
multiple manager and agent interfaces, which will typically be key to inter-
domain management interactions.
There has also been interest recently in applying Open Distributed Process (ODP)
techniques to management system development. The OSI ODP standards [4] have
been applied to telecommunication management by the TINA consortium [5] and
ISO’s Open Distributed Management Architecture work [6]. Though ODP
provides a structured way of modeling distributed system concerns using separate
Enterprise, Information, Computation, Engineering and Technology viewpoints, it
does not provide a prescriptive development process, and consistent notations for
all the viewpoints have not yet been standardized.
The broader software engineering community has developed a wide range of
methodologies, aimed more at the problem of software development than open
interface definition. Though no consensus has emerged on the ideal development
process, this being seen as specific to the application domain, there is now a
standard for the graphical representation of object-oriented analysis and design
models. This has been standardized by the Open Management Group as the
Unified Modeling Language (UML) [7]. The methodology presented in the next
section uses UML in a process tailored to developing open telecommunications
management systems.
Further work on development methodologies has been performed in recent
European research projects. The EURESCOM project P.610 has performed case
studies developing multimedia service management systems [8], which has also
used UML. The case studies provided examples of the application of UML use
case diagrams for capturing the requirements of management systems, and UML
class, sequence and component diagrams for the design of these systems. The
ACTS project TRUMPET performed a case study of an inter-domain service
management problem that used ODP viewpoints modeled using UML [9]. They
found UML mapped well to ODP viewpoints, with use cases used for the
enterprise viewpoint, class diagrams for the information viewpoint, component

(c) 1999 IFIP

and sequence diagrams for the computational viewpoint and deployment diagrams
for the engineering viewpoint. Some problems were identified however with
UML’s ability to represent ODP computational objects.

3. A Development Methodology

In order to develop management systems that are able to satisfy the requirements
both of the organization that operates them and of the multi-organization
collaborations that the open service market may demand, two model types must be
accommodated:
• Multi-Domain Model: This captures requirements of management tasks

involving more than one organizational domain. It therefore concentrates on
supporting inter-domain interactions.

• Single-Domain Model: This captures the management system requirements
and design of a specific organization. It therefore concentrates on intra-
domain interactions.

However, these models are not independent, and a methodology for this problem
domain has to support aligning requirements and interface definitions from the
multi-domain model and the single domain model.
In addition to these two models a suitable methodology must also specifically
address the modeling of components. Components should be treated as separate
entities from multi-domain or single-domain systems, and if developed by third
party vendors, they will have distinct development life-cycles. The methodology
must therefore support the inclusion of a component model into the development
of multi-domain or single-domain systems. This methodology has been influenced
in making these distinctions by the modeling work of previous
telecommunications research projects and programs such as PREPARE [10][11]
and PRISM [12] and TINA-C’s modeling guidelines [13].
UML has been selected as the primary modeling notation for the methodology due
to the broad range of models it supports, its extensibility though its stereotype
mechanism and its increasing support by CASE tools. However, to fully support
the development cycle of management systems, detailed design specifications and
open interface definitions have to be expressed in more technology specific
languages, such as GDMO, SMI and IDL. Tools are already available to support
mappings from UML to these languages and such mappings form the basis for
UML modeling in support of ongoing standardization work in the
TeleManagement Forum.

(c) 1999 IFIP

Define roles and
stakeholders

Capture functional
requirements

Information
modeling

Functional
decomposition

Dynamic modeling

Use cases &
use case
diagrams

Object diagrams
of business

scenario

Definition of
contractual

responsibilities

Class
diagrams

Component

diagrams

Interface
Specifications

Distribution
modeling

Specification of
tests

Implementation

Testing

Deployment
diagrams

Test cases

Interface spec
complete?N

Y

Figure 2: Overview of Development Process

The development process aims to provide a structured way of iterating through the
development of management systems, whether they are multi-domain systems,
single-domain systems or components. By following a common well understood
process and notation, regardless of the type of system being implemented,
communication between developers of these different types of systems will be
facilitated. The process can be decomposed into the following steps:
• Definition of the system business model, identifying the business stakeholders

and roles together with their responsibilities and obligations to each other.
• Functional requirements capture by use case analysis.
• Identification of system information in terms of objects and their relationships.
• Functional decomposition of the system into sub-systems, including

identification of pre-existing, reusable components, the definition of external
interfaces and interfaces between sub-systems.

• Definition of distributed platform structure and required services.

(c) 1999 IFIP

• Definition of test specifications.
• Implementation and integration of components.
• Testing of sub-systems, sub-system integration testing and testing of external

interactions.
This process is represented in Figure 2, together with the modeling outputs of the
individual steps. Note that some models are used in several subsequent steps. Also
note that the information modeling, functional decomposition and dynamic
modeling steps are closely coupled and may undergo several iterations before
arriving at a set of completed interface specifications.

4. Application of Methodology

The methodology outlined above was applied in the EU sponsored ACTS project
called Prospect. The target multi-domain systems developed in Prospect were for
performing user trials to demonstrate and assess the integration of service control
systems with service and network management systems, operating across a
number of organizations. Several trial systems were developed each corresponding
to a different multi-domain system. The different trials demonstrated how systems
could be constructed to flexibly support multiple business scenarios and how
management components could be reused in different domain systems, across
these different business scenarios. System development was based as much as
possible on the use of UML, using both the Paradigm Plus and Rational Rose
CASE tools. The following sections presents examples of the models generated
during the definition of role, stakeholders and use cases of multi-domain systems
and during the information modeling, functional decomposition and dynamic
modeling of components.

4.1 Multi-domain Modeling

In any multi-domain scenario, such as the Prospect trials, a clear model is
required of the different stakeholders that are involved and the business roles
supported by these stakeholders. The enterprise model for a specific business
scenario was represented using UML object diagrams. The objects in the
enterprise model diagrams were instances of classes from a general enterprise
model, shown in the class diagram in Figure 3. In this general model, roles and
stakeholders are differentiated by their class stereotypes. The general enterprise
model defined a set of roles and stakeholder that were thought likely to be present
in multi-domain, open service management scenarios. However, this was
principally performed to clarify the context of Prospect’s work, and other general
enterprise model classes could be equally valid in different situations.

(c) 1999 IFIP

composite
service
provider

<<stakeholder>>
multimedia
teleservice
provider

<<stakeholder>>
value
added
service
provider

<<stakeholder>>
network
operator

<<stakeholder>>

customer
<<stakeholder>>

end user
<<role>>

customer
administrator

<<role>>

provider
administrato

<<role>>

provider
<<stakeholder>>

buys services from
0..* 1..*

supports role

1

0..*

supports role

1

0..*

supports role
1

*

Figure 3: Class diagram showing Roles and Stakeholders used in Prospect
Trials

To provide a more detailed context for the subsequent definition of use cases, the
relationship between the roles and organizations prior to the trial was also
described. This took the form of statements of contractual responsibilities between
the different stakeholders that could, in commercial scenarios, form the basis of or
be informed by legal contracts between the parties concerned. These contractual
responsibilities may be represented as associations between stakeholder objects.
Use cases at the multi-domain system level define what the system as a whole
needed to do in terms of useful interactions with actors that define the system’s
environment. These actors represented instances of the role class stereotypes from
the general enterprise model for the multi-domain system. The use cases
themselves were stated in the form of text, with sections defining the use case pre-
conditions, the use case itself and the use case post conditions. The preconditions
present the state of the multi-domain system, from the point of view of the actors,
and would typically be related to the post-condition of other use cases. The use
case body describes in terms meaningful to the actor, the interactions that they
performed with the system in order to perform some useful task.
To analyze the inter-domain interactions within such a multi-domain system, the
individual use cases were refined to describe the inter-domain interactions they
required. This step was informed by the responsibilities between different roles
and stakeholders in the enterprise model. Refining the multi-domain use cases in
this way enabled the identification of use cases for the individual domain, i.e. the
single-domain systems that made up the multi-domain system. A similar set of use
case diagrams showing the decomposed, single-domain use cases, could them be
produced. However, use case diagrams in UML do not support direct interaction
between use cases, so use case diagrams could not be used to show the full chains
of interactions between single-domain systems. Instead, high-level sequence

(c) 1999 IFIP

diagrams were also to show information flows between the multi-domain system
actors and the single-domain systems.
The definition of what actual information was involved in these inter-domain use
cases was based on the requirements embodied in the multi-domain use case
definitions. However, developers also took information definitions from existing
standards and from existing components that were likely to be used in the systems
implementation.

4.2 Component Modeling

core subscription component

customer

provider

subscribe
customer

cancel
subscription

activate
SAG

deactivate
SAG

assign
SAG

deassign
SAG

set svc
profile

delete
service
profile

create
subscriber

delete
subscriber

create
SAG

delete
SAG

add item
to SAG

remove
item from

SAG

create
service
template delete

service
template

service factory
management

user
management

Figure 4: Use case model for Prospect Subscription Management component

The components used in Prospect were mostly taken from the TINA Service
Architecture [14], where they were described in terms of ODP viewpoints using
OMT for the informational viewpoint [15] and block/interface diagrams and ODL
(an extension of IDL) for the computational viewpoint [16]. This was found to be

(c) 1999 IFIP

inadequate for understanding the component as a whole during system analysis,
since it represented the component at a design level only. Higher level views of
the component were only available from TINA in terms of unstructured text and
diagrams together with some examples.
Components are in themselves systems, and can therefore benefit from the same
modeling approach used for systems. Components were therefore re-described
using use cases to define the actors that would interact with a component and to
define those interactions. A use case diagram for the Subscription Management
component used in Prospect is given in Figure 4. Note that some actors represent
human users while others represent systems that may be other components in the
same family.

1..*

uses

1..*

ServiceOperator

1..1

uses

1..*

0..*

controls lifecycle of

1..1

0..*

Subscriber
<<IO>>

controls

1..1

0..*

UserGroup
<<IO>>

controls

1..1

1..1

controls lifecycle

1..1

UserAgent
<<CO>>

1..1

uses

1..*

0..*

ServiceTemplate
<<IO>>

controls

1..1

0..*

uses

1..*

ManagementApplication
<<System>>

1..*

1..*

1..1
SubscriberManager

<<CO>>

1..1

1..*

0..*

1..1

0..*

1..1

0..*

1..1

uses

0..*

0..*
SubscriptionAgent

<<CO>>

1..1

1..1

notifies

0..*

1..1
ServiceTemplateHandler

<<CO>>

1..1

1..*

0..*

1..1

uses

0..*0..*

SubscriptionContract
<<IO>>

controls

1..1
SubscriptionRegistrar

<<CO>>

0..*

1..*

1..1

0..*

0..*0..*

1..1

0..*0..*

1..1

Figure 5: Top level class diagram for Subscription Management component
design

The design of components was developed using UML class diagrams. These
represented the results of both the information modeling activity and the

(c) 1999 IFIP

functional decomposition activity. Outputs specific to either activity were
integrated on the same diagrams but were differentiated by stereotypes for
information objects (IO) and computational objects (CO) respectively. Though
UML component diagrams could be used to identify the different interfaces of
computational objects, the details of the interfaces were modeled by refining the
class diagrams. This facilitated both the automated generation of IDL by case
tools and the maintenance of consistency with interaction diagrams, features not
directly supported by component diagrams. Figure 5 shows the top-level class
diagram for the Subscription Management component.
Figure 6 shows an example of how class diagrams were used to define the
interfaces for one of the computational objects that makes up the Subscription
Management component shown in figure 5. The computational object, Subscriber
Management, has eight IDL interfaces, two of which have been inherited from
more general interfaces intended for managing a computational object’s lifecycle
(i_CoInit) and administrative state (i_CoMgmt). The interface operation’s
parameters are not shown in this figure, but were also modeled in the CASE tool
used (Rational Rose in this case).

i_sagMgmt

defineSAG()
modifySAG()
delete SAG()
addSAGItem()
removeSAGItem()

i_sagInfoQuery

getSagList()
get AssignedSagList()
getSAG()

i_sbrMgmt

createSubscriber()
modifySubscriber()
deleteSubscriber()

i_sbrInfoQuery

listAccounts()
getSubscriber()
modifySubscriberDetails()

i_subscrnNotify

notifySubscription()
notifyCancellation()

i_portfolioMgmt

getPortfolio()
modifyPortfolio()
deletePortfolio()

i_CoInit

init()
terminate()

(from Interface)

i_CoMgmt

setAdminState()
getAdminState()

(from Interface)
i_smInit i_smMgmt

Figure 6: UML class diagrams showing details of the interfaces to the
Subscriber Management Object

(c) 1999 IFIP

To fully describe the component behavior, its dynamic operation had to be
modeled. This was typically performed by defining the interactions between the
computational objects and actor systems based on individual use case descriptions.
An example of such an interaction diagram is given in Figure 7, which shows the
interactions between entities in terms of IDL operations on their interfaces. This
example performs the functionality required by the “Create SAG (Subscription
Assignment Group)” use case shown in Figure 4. Note that in this diagram only
the Subscriber Manager and the Subscription Agent entities are part of the
Subscription Management component. The management application is the design
level representation of the application used by the Provider Administrator actor
identified in the use case model, while the User Agent object is part of the User
Management system actor also identified in the use case model.

MUAP : Management
Application

SMGR : i_sag
Mgmt

SAGT : i_saInit UA : i_uaInit

1: defineSAG (in t_AccountNo, in t_AssignGroupSelection, out t_SagId)

Subscriber
Manager

Subscription
 Agent User Agent

2: initialise (in t_UserId)

3: saInit (in t_UserId, in t_IntRefList, out t_Int

Figure 7: Interaction Diagrams showing subscription Component behavior for
the Create SAG use case.

5. Conclusions and Further Work

A development methodology has been proposed that combines an iterative, use
case driven development process with UML as the modeling notation. This has
been applied effectively in the Prospect project for multi-domain management
system analysis, intra-domain system development and component development.
By using the same basic methodology for all of these activities communication
between the different developers, e.g. component developers and component re-
users, was eased. This methodology has been adopted as the basis for an ACTS
Guideline on designing service management systems [17]. This experience also
provides evidence that open management system development can be performed

(c) 1999 IFIP

using existing software development techniques as already advocated within the
TeleManagement Forum [18].
Though the use of UML is key to this common approach some difficulties in its
application were encountered. Use cases lack a relationship where use cases in one
system interact with use cases in another system, a facility that would be useful in
decomposing multi-domain system requirements into single-domain system ones,
and similarly in matching single domain system requirements onto component use
cases. Also, though multi-interface computational objects can be modeled as
components in UML component diagrams, these cannot be used as
communicating entities in interaction diagrams, restricting support for multi-
interface distributed components.
Further work is underway within the ACTS project FlowThru in refining this
methodology. This is principally aimed at providing better support for analyzing
business process requirements using UML activity diagrams, and at ensuring
component specifications are restricted to providing only the details actually
needed for reuse.

Acknowledgment

This work was conducted under the partial funding of the EU through the ACTS
projects Prospect (contract AC053) and FlowThru (contract AC335). The views
expressed in this document do not necessarily reflect those of these consortia.

References

[1] E Adams, K Willetts, The Lean Communications Provider, McGraw Hill,
1996.

[2] Telecommunication Management Network, M3000, ITU-T, 1996.

[3] TMN Interface Specification Methodology, ITU-T Draft Revised
Recommendation M.3020, 1994.

[4] Reference Model for Open Distributed Processing, Part 1 Overview and Part 2
Foundations, ISO/IEC 10746-1 (DIS) and 10746-2 (IS) ITU-T X901 and
X902, 1994.

[5] M.Chapman, S. Montesi, Overall Concepts and Principles of TINA, TINA
Baseline Document, TB_MDC.018_1.0_94, December 1994.

[6] Information Technology- Open Systems Interconnection- Open Distributed
Management Architecture, ISO/IEC Draft International standard, Draft
Recommendation X.708, June 1996.

[7] Unified Modeling Language Specification, v1.1, OMG, August 1998.

(c) 1999 IFIP

[8] F. Nesbitt, T. Counihan, J. Hickie, The EURESCOM P.610 Project: Providing
a Framework, Architecture and Methodology for Multimedia Service
Management, Proceeding of 5th International conference on Intelligence in
Service and Networks, Antwerp, Belgium, Springer-Verlag, 1998.

[9] M. Kande, S. Mazaher, O. Prnjat, L. Sack, M. Wittig, Applying UML to
Design an Inter-Domain Service Management Application, Proceeding of
UML’98, Mulhouse, France, June 1998.

[10] J. Hall (ed), Modeling and Implementing TMN based multi domain
management, PREPARE Consortium, Springer Verlag, 1996.

[11] D. Lewis, T. Tiropanis, L.H. Bjerring, J. Hall, Experiences in Multi-domain
Management Service Development, Proceedings of the 3rd International
Conference of Intelligence in Broadband Services and Networks, Heraklion,
Greece, Springer Verlag, October 1995.

[12] A. Berquist, Succeeding in Managing Information Highways, PRISM
Consortium, Springer Verlang, 1996.

[13] J.Salleros, TINA-C Service Design Guidelines, TINA Report
TP_JS_001_0.1_95, TINA Consortium, March 1995.

[14] H. Berndt, R. Minerva, TINA-C Service Architecture, TINA Baseline
document TB_MDC.018_1.0_94, 1994.

[15] H. Christensen, E. Colban, Information Modeling Concepts, TINA Baseline
document TB_EAC.001_1.2_94, Version 2.0, April 1995.

[16] Computational Modeling Concepts, TINA Baseline document
TB_A2.NAT.002_3.0_93, December 1993.

[17] V. Wade, D. Lewis, W. Donnelly, D. Ranc, N. Karatzas, M. Wittig, S. Rao,
A Design Process for the Development of Multi-domain Service Management
Systems, ACTS Guidelines for ATM deployment and interoperability, Baltzer,
June 1997.

[18] A. Vincent, C. Hall, Modelling/Design Methodology and Template, NMF
Internal Document, Draft 4, 18th October 1997.

Biographies

David Lewis graduated in Electronic Engineering at the University of
Southampton in 1987 and in 1990 received a MSc. in Computer Science from
University College London where since he has worked as a research fellow. He
has worked primarily on the EU funded projects in which he has been responsible
for leading teams developing integrated, multi-domain service management

(c) 1999 IFIP

systems. He is also working on a Ph.D., researching a service management
development framework for the open services market.
Vincent Wade is a lecturer in the Computer Science Department in Trinity
College Dublin. He received his BSc from University College Dublin, Ireland and
a MSc from Trinity College Dublin, Ireland. He leads a research group
investigating distributed information systems, management systems and virtual
environments. He currently leads several EU and industrial research project in
these areas and is author of over forty technical papers in international conference
and research journals.
Ralf Bracht received a Ph.D. in physics from Ruprecht-Karls University,
Heidelberg, Germany, in 1995. Since then he has been working at IBM Science
and Technology Center in Heidelberg. He has worked on the RACE project
PREPARE and the ACTS project Prospect. He was Prospect’s technical chairman
and is now a project manager at IBM. His current interest is management of
telecommunications services.

(c) 1999 IFIP

