
Composite Events for Network Event
Correlation �

G. Liu, A. K. Mok E. J. Yang

Department of Computer Sciences SBC Technology Resources, Inc.

The University of Texas at Austin 9505 Arboretum Blvd.

Austin, Texas 78712 Austin, Texas 78759

fliugt, mokg@cs.utexas.edu eyang@tri.sbc.com

Abstract

With the increasing complexity of enterprise networks and the Internet, event

correlation is playing an increasingly important role in network as well as in-

tegrated system management systems. Even though the timing of events often

reveals important diagnostic information about event relationships and should

therefore be represented in event correlation rules or models, most extant ap-

proaches lack a formal mechanism to de�ne complex temporal relationships

among correlated events. In this paper, we discuss the formal use of composite

events for event correlation and present a composite event speci�cation ap-

proach that can precisely express complex timing constraints among correlated

event instances, for which e�cient compilation and detection algorithms have

been developed in [14, 13]. A Java implementation of this approach, called

Java Event CorrelaTOR (JECTOR), is described, and some preliminary ex-

perimental results of using JECTOR in an experimental network management

environment are also discussed in the paper.

Keywords

network management, event correlation, composite event, timing constraint

1. Introduction

In most network management systems, state changes of the managed objects,

such as link loss, down/up node, (un)reachable remote node, etc., are reported

to the manager objects in the form of event messages, also called alarms, e.g.,

SNMP traps or CMIP event noti�cations. Event occurrences are caused by

problems in the network, such as hardware/software failures, performance bot-

tlenecks, con�guration inconsistency, security violations, etc., and their e�ects

are observed by the relavant objects in the network. Because a single problem in

a networked environment may a�ect the operation of many devices/subsystems,

�This work is supported in part by a grant from the O�ce of Naval Research under grant

number N00014-98-1-0704.

(c) 1999 IFIP



it may cause a number of events to be generated from them. As a result, net-

work operators are frequently \
ooded" by a large number of event messages

when a few network failures occur. Such scenario is often called "event storms"

in the network management domain. Because of the large volume of event noti-

�cations, these event messages are often ignored or misinterpreted by network

operators, and this usually leads to longer latency for problem-diagnosis and

bigger loss for businesses that depend on the managed network or system.

Event correlation is an important fault management process to address this

problem in many network management systems. By correlating event messages

generated from the managed network, a network management system can pro-

vide a more concise view of alarm messages such that network operators can

accurately and quickly identify the underlying root cause failures. It has been

noticed in [8] that "event correlation is becoming one of the central techniques

in managing the high volume of event messages". Besides network management,

event correlation can also be used in many other mission-critical applications,

such as air tra�c control, power station and chemical plant management [16],

patient-care monitoring, etc., where large volumes of related data are collected

from many pieces of equipment and need to be correlated or suppressed for

diagnostic purposes. In some emerging integrated system and application man-

agement tools, e.g., Computer Associates' TNG Unicenter, Tivoli's TME 10,

event correlation is also supported as an important management function.

Event correlation is also a complex task. It involves not only information

about the managed network, i.e., topology, con�guration, but also knowledge

about events generated from various devices/agents in the network, e.g., the

format and meaning of each individual event, causal and temporal relationships

among events and so on. In both research and commercial contexts, most extant

approaches proposed for event correlation, such as model-based [7, 18] and

rule-based [1] methods contain various techniques to capture network topology

information as well as causal relationships among events. However, timing

relationships among events are not well covered in these approaches. In most

cases, only a correlation time window is used, which is de�ned either as a �xed-

length window or by a pair of start/end events. As we can see from the following

example, it is awkward if not downright impossible to express even some simple

cases by a correlation window.

Example 1 One common event correlation rule in many networks is as fol-

lows: \When a link-down event is received, if the next link-up event for the

same link is not received within 2 minutes and an alert message has not been

generated in the past 5 minutes, then alert the network administrator." These

timing requirements cannot be expressed with a simple correlation time window.

Instead a conjunction of two conditions with di�erent time windows is required.

In this paper, we shall present an approach that can specify complex timing

constraints among events and show how it can be used for event correlation

(c) 1999 IFIP



in the network management environment. By using this approach, temporal

relationships such as those in Example 1 can be de�ned in a simple and precise

way. E�cient algorithms have been developed for compiling and executing the

correlation rules thus de�ned. We have implemented these algorithms; we shall

present the results in event correlation and the performance data obtained from

some of our experiments.

1.1. Related Work

In the network management domain, a number of approaches have been pro-

posed to correlate alarms/events generated from various parts of the network

management system in order to identify the real \cause" of these events, or

at least to partially reduce information redundancy. IMPACT [7, 8] adopts

a model-based approach, where a network-element class hierarchy is used as

the structure model and a message class hierarchy, a correlation class hierar-

chy and correlation rules are used as the behavior model. NetFACT [6] also

has an object-oriented model to describe the connectivity, dependency and con-

tainment relationships among network elements. Events are correlated based

on these relationships. In EXCpert [15], the cause-e�ect relationships among

events are modelled with correlation tree skeletons as the bases for correlation.

InCharge [18] represents the causal relationships among events with a causality

graph and uses a codebook approach to quickly correlate events to their root

causes. However, timing relationships are often ignored or over-simpli�ed in

these approaches, important as they are illustrated in Example 1. In most

cases, only a correlation time window can be associated with each event corre-

lation process.

In other reported research e�orts as well as commercial products, more

general AI and other computing techniques have been applied to event correla-

tion. Rule-based system is used in [1]. Neural networks are applied in [17]. In

Hewlett Packard's OpenView's Event Correlation Service product, a functional

programming language (ECDL) is used to specify correlation rules. In Sea-

gate's NerveCenter product, �nite-state machines are used to model the event

correlation/fault diagnosis process.

In [5], composite events are proposed for event correlation. The results of

correlation, usually the cause events, are speci�ed as composite events, with

the correlation rules captured in the speci�cation of these composite events.

In this paper, we adopt a similar approach, but the composite event speci�ca-

tion/detection approach is very di�erent in our case. In particular, [5] as well

as [2, 3, 4] use certain prede�ned event operators for composite event speci�-

cation. However, as we indicate in [12], those event operators often introduce

ambiguity in terms of composite event occurrence semantics. We have proposed

a uni�ed approach for specifying composite events as well as timing constraints;

our approach is precise in de�ning occurrence semantics, and is more expressive

and has e�cient detection algorithms.

(c) 1999 IFIP



The remainder of the paper is organized as follows: Section 2 introduces our

composite event speci�cation approach. Section 3 discusses how we apply this

approach to event correlation in the network management environment and de-

scribes a prototype implementation of it. Some preliminary experiment results

of this event correlation system are shown in Section 4. Section 5 concludes the

paper.

2. Composite Events

2.1. Event Model

From an engineering point of view, events represent state changes of interests

that may occur in a system. For example, \link down", \link up" can be de�ned

as events in a network management system. In general, events can be classi�ed

into primitive events and composite events. Primitive events are events that are

pre-de�ned in a system and their detection mechanism is usually embedded in

the system implementation. Composite events or complex events are formed by

composing primitive or other composite events, each of which called component

event. A special module is usually devoted to detecting the occurrences of these

composite events.

We also view events, either primitive or composite, as recurrent, i.e., an

event may occur multiple times during a computation. Each occurrence of an

event is called an event instance. Since an event may have several attributes

associated with it, each instance of it can be represented as a tuple of values

of these attributes. Therefore, the history of an event is a time-series of these

instances, represented as tuples. For simplicity, given an event e, we may also

use (e; i) to denote the ith instance of e.

We use the following #-function to de�ne the occurrence index of an event's

most recent instance at time t:

De�nition 1 At time t during a computation, 8 event e,

#(e; t) =

�
0 (e; 1) has not occurred by t

i e0s most recent instance at time t is (e; i)

The following attribute function is de�ned to access the value of attribute

attr of event instance (e; i):

De�nition 2 Suppose attr is an attribute of an event e. 8i 2 N+, we de�ne

the following function

AttrV alue(e; attr; i) = the value of attribute attr of (e; i)

Furthermore, the following relative attribute function is de�ned to access

attribute values of an relative instance of event e at time t:

(c) 1999 IFIP



De�nition 3 Given event e, assume attr is one of its attribute. 8 time t during
a computation, 8i 2 N , we de�ne

AttrV aluer(e; attr; t; i) = AttrV alue(e; attr;#(e; t) + i)

where #(e; t) + i > 0, and t is called the reference time of this function term.

A common attribute of all events is the occurrence time. Therefore, we

de�ne the following @-function and relative @-function to represent occurrence

time of certain event instances:

@(e; i) = AttrV alue(e; \OccurrenceT ime00; i)

@r(e; t; i) = AttrV aluer(e; \OccurrenceT ime00; t; i)

In this paper, the domain of event occurrence time is the set of non-negative

integers. Accordingly, the @-function is monotonic to occurrence indices, i.e.

8i > 0,

@(e; i+ 1) > @(e; i)

2.2. Composite Event Specification

Most approaches to composite event speci�cation, e.g., [2, 3, 4] use event op-

erators, such as AND, OR, SEQUENCE, etc. However, as we pointed out in

[9, 12], an event may occur multiple times during a computation, and applying

the usual operators on events instead of event instances often leads to semantic

ambiguity. This limits the expressiveness of the event speci�cation languages.

We propose a di�erent approach where composite events are speci�ed in

terms of conditions or constraints on attribute values of other event terms.

From a given set of events, a new composite event can be de�ned which occurs

whenever certain conditions on the attribute values of other event instances

becomes true. Furthermore, since the occurrence times of an event obey the

monotonicity property as indicated in Section 2.1, we have shown in [14, 13] that

the truth value of a boolean expression of occurrence attributes can be detected

before we evaluate the expression at the occurrences of the component event

instances. Therefore, in order to detect composite event occurrences as early

as possible, we separate the condition on event occurrences from conditions on

other attributes and thereby de�ne a composite event in the following format:

define composite event CE with

attributes ([NAME, TYPE], ..., [NAME, TYPE])

which occurs

whenever timing condition

TC is [satisfied | violated]

if condition

C is true

then

ASSIGN VALUES TO CE's ATTRIBUTES;

(c) 1999 IFIP



Condition C in the above de�nition can be expressed as a boolean expression

involving attribute functions and/or relative attribute functions, e.g.

AttrV alue(e1; \attr1
00; 2) +AttrV alue(e2; \attr2

00; 10) >

AttrV aluer(e3; \attr4
00; 20; 1)

The composite event CE's attribute assignments can be speci�ed in the form

attrname := expression, where attrname is the name of an attribute of CE,

and expression is an arithmetic expression involving attribute functions and/or

relative arribute functions of the component events.

In general, the timing condition TC (which may also be viewed as timing

constraint) can be speci�ed as a formula in disjunctive normal forms whose

literals are basic constraints de�ned below:

De�nition 4 A basic constraint speci�es a timing relationship between two

event instance occurrences. Generally, it can be expressed in the following form:

T1 +D � T2

where D is an integer constant, and T1, T2 are event instance occurrence time,

represented with @-function, relative @-function, or 0.

Example 2 The basic constraint @(e1; i) + d � @(e2; i) with d > 0 speci�es

the deadline for the ith occurrence of event e2 to be d time units after the ith

occurrence of event e1. The basic constraint @(e1; i)� d � @(e2; i) with d > 0

requires the ith occurrence of event e1 be at least d time units later than the ith

occurrence of event e2. @(e; 3) � 4 means the third instance of event e should

not occur earlier than time 4.

Because our timing constraints and conditions are expressed with respect

to event instances, composite events that are speci�ed in this approach have

a clear semantics as to their occurrences. Examples of how to express event

operators using this formalism are given in [12].

We have developed an event speci�cation language, JESL to support the

composite event speci�cation formalism described above. Detailed discussion

of the composite event occurrence detection algorithms is out of the scope of this

paper. The problem involves detecting the satisfaction or violation of timing

constraints and evaluation of attribute conditions and is quite complicated, as

has been discussed in [13, 14]. We have developed a set of timing constraint

compilation and detection algorithms [13, 14] to detect these composite event

occurrences e�ciently and as early as possible.

Besides composite events, primitive events can also be de�ned in JESL in

the following syntax:

define primitive event PE with

attributes ([NAME, TYPE], ..., [NAME, TYPE]);

(c) 1999 IFIP



2.3. Correlation using Composite Events

In the network management environment, we consider those events received at

the management stations for correlation as primitive events. These alarms/events

are usually generated by the managed network devices (either agents or other

software modules on these devices) or by the network management system it-

self during the polling/monitoring process. Since one or a few faults in the

network may cause a large number of these primitive events to occur, a corre-

lation process is used to remove redundant information and identify the root

cause of the correlated events. The rules for correlation usually re
ect the

relationship among the correlated events, such as the causal relationship or

temporal relationship. If these relationships can be speci�ed in the composite

event de�nitions, we can view the results of correlation as occurrences of the

corresponding composite events.

With the composite event speci�cation language JESL described above, we

can express the relationships among events for correlation, either cause-e�ect

or complex temporal relationships as conditions on event attributes for com-

posite events. For instance, for the correlation rule described in Example 1, a

composite event LinkADownAlert can be de�ned as following:

define composite event LinkADownAlert with

attributes (["Occurrence Time" : time],

["Link Down Time" : time]) which occurs

whenever timing condition

@(LinkADown, i) + 2 minutes <= @r(LinkAUp, @(LinkADown, i), 1)

and @(LinkADown, i) + 2 minutes <= @r(LinkADownAlert,

@(LinkADown, i), 1) and @(LinkADown, i) - 3 minutes >=

@r(LinkADownAlert, @(LinkADown, i), 0)

is satisfied

if condition true is true

then {

"Link Down Time" := @(LinkADown, i);

}

where LinkADown and LinkAUp correspond to the up and down events of a

link A. The composite event will occur at 2 minutes after an occurrence of

LinkADown event if no LinkAUp event occurs during this 2-minute interval and

no LinkADownAlert event was triggered during the past 5-minute interval.

Notice in the above example we use LinkADown or LinkAUp to represent the

down or up event of link A. However, in most network management systems,

only LinkDown and LinkUp events are generated when a link is down or up,

and the link name is usually given as an attribute of the LinkDown and LinkUp

events. In this case, to facilitate the speci�cation of correlation conditions such

(c) 1999 IFIP



as those in Example 1, we add the following two functions to JESL:

@f (e; f; i) = @(ef ; i)

@fr(e; f; T; i) = @r(ef ; T; i)

where f is a boolean expression de�ning conditions on attributes of event e, and

ef is a �ltered event based on event e and f such that any instances of event

e whose attribute values satisfy f become instances of event ef . For instance,

given LinkDown event, @(LinkADown; i) event in Example 1 can be expressed

as @f (LinkDown, "Link Name" == "A"; i) where Link Name is an attribute

of the event LinkDown that carries the name of the link that is down.

Besides the relationships among correlated events, network event correla-

tion may also involve reasoning about the network topology. For example, a

correlation rule may specify that if a router-A-down event is received and many

node-down events for downstream nodes from the router A are also received

after that, then the root cause is router A down and suppress those node-down

events. In this case, although the node-down events may carry the name of

the node, whether the node is \downstream from router A" still needs to be

inferred from the network topology.

Although our original composite event speci�cation language presented in

Section 2.2 does not include conditions on network topology, this can be eas-

ily added by allowing predicates in the condition parts of the composite event

speci�cation, where predicates can be used to express conditions on network

topology. For instance, for the above example, we can use a predicate Down-

Stream(A, B), which is evaluated to true if B is a downstream node from A.

3. JECTOR - A Java Event Correlator

3.1. System Architecture

We have implemented JESL, an event speci�cation language in a Java event

service package called JEM. Using JEM, we developd a prototype network event

correlation system called JECTOR, implementing the composite event based

correlation approach discussed in Section 2.3. The architecture of the JECTOR

system is shown in Figure 1.

As shown in Figure 1, JECTOR consists four major components:

� Event Adaptor: Since di�erent network agents or management systems

may have di�erent alarm/event message formats, we use event adaptors

to standardize them into prede�ned primitive event formats. At run time,

the alarm messages are translated into the primitive event instances and

fed into the JEM for correlation.

� Event Spec Editor is used for users to input the event correlation rules in

the form of composite events. Primitive events, i.e. the events received

(c) 1999 IFIP



JEM


Network

Topology


Network


Event Spec

Editor


Event

Display


Network

Administrator


TC

Monitor


Condition

Evaluator


Event

Trigger


Parser
 Compiler


Event Compiler


Event Monitor


Subscription

Server


Event Adaptor
 Event Adaptor

Network


Management

System


Figure 1. JECTOR System Architecture

from event adaptors, may also be speci�ed here. These event speci�ca-

tions, de�ned with JESL language, are sent to the event compiler for

parsing and compilation.

� Event Display is used to show network administrators the results of cor-

relation. Occurrences of composite events are received from JEM and

displayed here.

� The event monitor in the JEM package is used as the correlation en-

gine here. Composite events, which correspond to correlation rules, are

compiled and loaded into the event monitor. When the network events

coming in from the event adaptors, instances of these composite events

are detected as the results of correlation. They are sent over to the event

display to alert the network administrators. Predicates about network

topology, such as DownStream(A, B) etc., can be included in the con-

dition parts of composite event speci�cations, in addition to the event

attribute value functions AttrV alue and AttrV aluer. These predicates

are evaluated by the condition evaluator by executing the corresponding

built-in procedures according to the network topology data, thus sep-

arating the domain-speci�c from the general event attribute functions.

These procedures and the network topology data are customizable such

that they can be easily replaced by di�erent implementations for di�erent

network environment. The subscription server of JEM is used here as a

"message switch". All event messages as well as JESL speci�cations are

re-distributed to their relevant components by the subscription server.

(c) 1999 IFIP



JEM and JECTOR are implemented in Java, using JDK 1.1.3. The parser

for the event speci�cation language is implemented using Java CUP v0.9e, cour-

tesy of a Java LALR parser generator written by Scott Hudson from Georgia

Institute of Technology. The event compilation algorithms described in [14, 13]

are implemented in the compiler. Currently only an event adaptor for the trap

log of HP OpenView Network Node Manager is implemented. It reads the

text entries from the HP OpenView's trapd.log �le and translates them into the

prede�ned primitive event formats. Other types of event adaptors, such as for

syslog, SNMP traps, etc., can be developed if needed.

3.2. Correlation Process

Since we use composite events to represent the correlation rules, the correla-

tion process is essentially the task of composite-event detection through event

monitoring. When the primitive event messages are sent from the event adap-

tors and passed to the event monitor by the subscription server, the timing

constraints of pre-de�ned composite events are �rst checked against these in-

put event instances by the Timing Constraint Monitor (TC Monitor). If some

timing constraints are detected as being satis�ed or violated according to the

composite event de�nitions, the condition evaluator is triggered. Here the con-

ditions on other event attributes as well as predicates on network topology are

evaluated. A network topology database is used to store the topology data.

Once the conditions are evaluated as true, the attribute values of the corre-

sponding composite events are computed and their occurrences are triggered.

As a result, the detected composite event instance is sent to event display to

alert network operators. The new composite event instance may also be fed

into the Event Monitor as input for detecting other composite events.

A detailed description of composite event detection algorithms is out of the

scope of this paper and can be found in [10]. Here, we use an example scenario to

brie
y illustrate the detection process for the composite event LinkADownAlert

de�ned in Section 2.3. This scenario and process are described in Table 1.

4. Experimental Results

To evaluate the practicality of our approach, we used JECTOR to correlate

events generated from real networks. Our �rst experiment is conducted on

a small IP network test-bed which consists of 7 routers and 50 workstations

and PCs. The network is managed by the HP OpenView Node Manager. By

studying the event logs of HP OpenView, we found that the most common

faults in this network were due to mis-con�gurations; event messages shown in

the OpenView's event windows which correspond to these mis-con�gurations

are usually repetitive and redundant. Network administrators often need to

read through hundreds of event messages to identify the problems, which in

most cases are only a few. For instance, in the IP network test-bed, some mis-

(c) 1999 IFIP



Event Index Occ Time Detection Operations

LinkADown 1 10:10am no LinkADownAlert occurred within

the last 3 minutes; set timer t1
to timeout at 10:12am

LinkAUp 1 10:11am cancel timer t1
LinkADown 2 10:14am no LinkADownAlert occurred within

the last 3 minutes; set timer t2
to timeout at 10:16am

LinkADown 3 10:14am no LinkADownAlert occurred within

the last 3 minutes but a time t2
already set for (LinkADownAlert, 1);

no timers set

LinkADownAlert 1 10:16am timer t2 timeout; trigger

LinkADownAlert event

LinkADown 3 10:18am (LinkADownAlert, 1) occurred within

the last 3 minutes; no timers set

LinkAUp 3 10:19am do nothing

Table 1. Correlation Process Illustrated

con�gured subnet masks and IP addresses caused hundreds of event messages

in the following format to appear in HP OpenView's event window:

...

- Minor Fri Apr 10 09:32:26 x.x.x.x Inconsistent subnet mask

255.255.255.224 on interface Et3/0/0, should be 255.255.255.0

- Minor Fri Apr 10 09:34:32 a.a.a.a Inconsistent subnet mask

255.255.255.224 on interface Fast, should be 255.255.255.0

...

- Major Fri Apr 10 10:25:05 x.x.x.x Duplicate IP address: node

x.x.x.x reported having y.y.y.y, but this address was previously

detected on node y.y.y.y

...

- Major Fri Apr 10 10:28:04 y.y.y.y Duplicate IP address: node

y.y.y.y reported having y.y.y.y, but this address was previously

detected on node x.x.x.x

...

Obviously it is desirable to be able to suppress these repetitive and redun-

dant event messages such that at most one event message, corresponding to

one fault (one mis-con�guration in this case) is sent to network administra-

tors in a �xed time interval, say 24 hours. Using JECTOR, we can specify

two primitive events, InconsistSubnetMask and DuplicateIP, corresponding to

these two types of mis-con�guration, and then go on to de�ne two composite

(c) 1999 IFIP



events, SuppressedISMask, SuppressedDupIP, such that those two composite

events are triggered only if a new inconsistent network mask fault or duplicate

IP fault is reported and such fault has not been reported within the previous

24 hours. As a result, we were able to reduce the number of events of these

two types from around 300 a day to about 12. Network administrators can

now quickly �nd the problems and �x them. And it also becomes easier for

them to �nd other types of errors which would otherwise be \buried" in these

event message \
ood". JECTOR's response time in these experiments, i.e., the

detection latency of the composite events is under 1 second, and this is deemed

to be quite acceptable for most practical scenarios today.

Scalability is an often asked question when a system's performance is un-

der evaluations. In our case, the composite event detection latency D is the

most important indicator of JECTOR's performance. Although our experi-

ments show acceptable detection latencies in the test cases, D could go up

dramatically when the number of composite events to be detected or the event

occurrence rates go beyond certain thresholds. A separate set of experiments

were conducted to measure D under di�erent event occurrence rates. The re-

sults, which are discussed in detail in [11], show that D is largely determined

by the balance between event occurrence rate and the processing time of each

event instance. If the event processing speed cannot catch up with the event

occurrence rate, the wait queue will keep getting longer and eventually lead to

unacceptably long latencies for composite event detection. For the composite

event set used in the above network event correlation experiments, our tests

show that D is within 1 second, as long as the event occurrence rate does not

exceed 100 per second.

There is room for improving the performance of event detection under high

event rates, by reducing the average event processing time and thereby decreas-

ing the length of the wait queue. Some optimizations have been implemented

in the current JEM system such that conditions shared by several composite

events need to be checked only once instead of multiple times. This would help

reduce the average event process time when a condition is shared in multiple

composite event speci�cations. Other techniques may include pipelining event

processing and load-sharing on multiprocessors. By pipelining the composite

event detection process, we can improve the average event processing speed and

thus have shorter wait queues. If the composite events and other involved com-

ponent events can be partitioned into several independent sets, we can assign

them to several event correlators running on di�erent processes or machines

such that each of them may experience smaller event reception rate and less

event processing time.

(c) 1999 IFIP



5. Conclusions and Future Work

In this paper, we have described an approach for event correlation which is based

on a formal composite-event speci�cation language and which can precisely ex-

press timing relationship among correlated event instances. By applying this

approach to a network management environment testbed, using a Java pack-

age called Java Event Correlator(JECTOR) which implements this approach,

we seeked to demonstrate the viability of our correlation method in practice.

The performance results of JECTOR in some experiments, in particular, event

correlation latency are also discussed in the paper.

The intentional separation of network topology model and reasoning from

the event speci�cation and detection mechanism may be regarded by some as

a disadvantage of this approach, compared to model-based event correlation

approaches. However, we think that this 
exibility is what makes it possible

to apply this approach to di�erent network topology model as well as other

management domains. Our goal is to have a modular and composable toolset

which is consistent with the open architecture philosophy which is extremely

important consideration in our opinion. For our future work, besides working

on techniques to further reduce detection latency under heavy load (i.e., large

event rates), we plan to integrate JECTOR more closely with HP OpenView

Node Manager, since it is a widely used network management platform today.

And we shall also seek to use JECTOR in a larger scale network environment

to further test its practicality and identify new research problems.

References

[1] S. Brugbosi, G. Bruno, and et al. An expert system for real-time fault di-

agnosis of the italian telecommunications network. In the 3rd International

Symposium on Integrated Network Management, pages 617{628, 1993.

[2] S. Chakravarthy and D. Mishra. Snoop: An expressive event speci�cation

language for active databases. Data and Knowledge Engineering, 14(10):1{

26, October 1994.

[3] S. Gatziu, A. Geppert, and K.R. Dittrich. Detecting composite events in

active database systems using petri nets. In the 4th International Workshop

on Research Issues in Data Engineering, pages 2{9, Feburary 1994.

[4] N. Gehani, H.V. Jagadish, and O. Shmueli. Composite event speci�cation

in active databases: Model & implementation. In the 18th International

Conference on Very Large Data Bases, pages 327{338, August 1992.

[5] M. Hasan. The Management of Data, Events, and Information Presen-

tation for Network Management. PhD thesis, Department of Computer

Science, University of Waterloo, Canada, 1995.

(c) 1999 IFIP



[6] K. Houck, S. Calo, and A. Finkel. Towards a practical alarm correlation

system. In the 4th IEEE/IFIP Symposium on Integrated Network Manage-

ment, 1995.

[7] G. Jakobson and M. Weissman. Alarm correlation. IEEE Network, 7(6),

November 1993.

[8] G. Jakobson and M. Weissman. Real-time telecommunication network

management: Extending event correlation with temporal constraints. In

the 4th IEEE/IFIP Symposium on Integrated Network Management, 1995.

[9] Guangtian Liu and Aloysius K. Mok. An event service framework for

distributed real-time systems. In IEEE Workshop on Middleware for Dis-

tributed Real-Time Systems and Services, December 1997.

[10] Guangtian Liu and Aloysius K. Mok. An event service framework for

distributed real-time systems. Technical report, Real-Time System Lab,

Computer Science Department, University of Texas at Austin, June 1997.

[11] Guangtian Liu and Aloysius K. Mok. Implementation of jem - a java com-

posite event package. Technical report, Real-Time System Lab, Computer

Science Department, University of Texas at Austin, November 1998.

[12] Guangtian Liu, Aloysius K. Mok, and P. Konana. A uni�ed approach

for specifying timing constraints and composite events in active real-time

database systems. In Real-Time Technology and Applications Symposium,

June 1998.

[13] Aloysius K. Mok and Gunagtian Liu. Early detection of timing constraint

violation at runtime. In Real-Time Systems Symposium, December 1997.

[14] Aloysius K. Mok and Gunagtian Liu. E�cient run-time monitoring of

timing constraints. In Real-Time Technology and Applications Symposium,

June 1997.

[15] Y.A. Nygate. Event correlation using rule and object based techniques. In

the 4th IFIP Symposium on Integrated Network Management, 1995.

[16] M. PlauWagenbauer and W. Nejdl. Integrating model-based and heuristic

features in a real-time expert system. IEEE Expert Intelligent Sys. and

their Applications, 8(4):1218, 1993.

[17] H. Wietgrefe, K. Tochs, and et al. Using neural networks for alarm cor-

relation in cellular phone networks. In the International Workshop on

Applications of Neural Networks in Telecommunications, 1997.

[18] S. Yemini, S. Kliger, and et al. High speed and robust event correlation.

IEEE Communications, May 1996.

(c) 1999 IFIP


