A Novel Approach for Mapping the OSI-SM /
TMN Model to ODP/OMG CORBA

G. Paviou

Center for Communication Systems Research
Dept. of Electronic Engineering , Univ. of Surrey
Guildford, SurreyGU2 5XH,

UK

G.Paviou@ee.surrey.ac.uk

Abstract

Over the last years, OMG CORBA has been emerging as the ubiquitous technology for
building distributed systems. Since the TMN is a distributed system, a lot of research has
addressed the issue of using CORBA as its base technology. Most solutions have
concentrated mainly on interoperability aspects between OSI-SM and CORBA, assuming
that OSI-SM will be used at the TMN element and element management level. In this paper
we examine the issues behind a native CORBA-based TMN, trying to achieve a solution
that maintains the full OSI-SM expressive power while it is at the same time scaleable and
performant. While elements of other solutions are used, e.g. the IDM GDMO to IDL
mappings, a number of aspects in this proposal are novel. In particular, CMIS-like access
aspects through scoping and filtering are kept separate from managed objects. In addition,
managed objects are not required to have distinct IDL interfaces but agents may become
computational entities with CMIS-like IDL interfaces. The approach has been partly
validated through implementation while relevant CORBA-based applications were used in
field trials.

Keywords
0SI-SM, TMN, ODP, CORBA, CORBA-based TMN

1. Introduction

Since the early inception of Open Distributed Processing (ODP), a number of related
technologies tried to provide a uniform and ubiquitous framework for building distributed
applications. The latest and most powerful of those technologies is the OMG Common
Object Request Broker Architecture (CORBA) [1], which can be thought as the pragmatic
counterpart of ODP. Given the fact that the Telecommunication Management Network
(TMN) [13] is a large scale distributed system, it is valid to consider its mapping to
CORBA, considering the latter as the representative distributed object technology. This
implies replacing OSl Systems Management (OSI-SM) [15] and the OSI Directory [14]
with OMG CORBA as the base technology for the TMN. The relationship between OSI-SM
and OMG CORBA has attracted considerable attention from the research community in
recent years. In this paper we propose a solution that maintains the expressive power of
OSI-SM and provides a smooth migration path towards a CORBA-based TMN.

(c) 1999 IFIP

A key motivation for using CORBA in TMN environments is the following. OSI-SM was
conceived as an object-oriented management technol ogy in the absence of a general purpose
distributed object-oriented framework. OMG CORBA provides exactly such a framework
and it islikely that it will be used in the future for supporting advanced telecommunications
services. Using OSI-SM to manage components those services will result in a discrepancy
of technologies: one technology for the service control, i.e. OMG CORBA, and another
technology for service management, i.e. OSI-SM. OMG CORBA may provide the unifying
framework, resulting in economies of scale.

Additional motivations for using OMG CORBA in TMN systems are the following.
CORBA provides a superior distribution paradigm, in which every object could be
potentially distributed. In OSI-SM only whole agent applications can be distributed.
CORBA performance could be potentially better than OSI-SM due to a more lightweight
protocol stack. Finally, CORBA exhibits multiple O-O programming language mappings
while most OSI-SM/TMN platforms support mainly C++ APIs. On the other hand, OSI-SM
exhibits a more expressive object model and superior object access and event dissemination
mechanisms, so the mapping between the two poses a difficult technical challenge.

The solution proposed in this paper relies on the initiadl NMF / Open Group Joint Inter-
Domain Management (JIDM) work for the static mapping [6] of the OSI-SM Guidelines for
the Definition of Managed Objects (GDMO) [19] to the CORBA Interface Definition
Language (IDL) [1]. The issues behind this mapping and its implications are discussed in
section 2.2. An initial mapping of the OSI-SM model to CORBA is presented in section 3.
This is enhanced to a complete mapping in section 4 which retains the full OSI-SM / TMN
expressive power. Section 5 discusses design, implementation and OSI-SM to CORBA
migration aspects. Finally, section 6 presents a summary. It should be finally noted that this
paper assumes that reader has a relatively good understanding of both the OSI-SM / TMN
model and of ODP/ OMG CORBA.

2. Mapping OSI-SM to ODP and GDMO to CORBA IDL

2.1 Mapping OSI-SM to ODP

Since the early days of ODP, there have been various attempts to describe OSI-SM in ODP
terms. [11] was the first attempt, considering managed objects and managing objects as
ODP objects, communicating via ODP platform mechanisms. This implies that the
functionality of OSI-SM agents, including name resol ution, scoping, filtering, access control
and event dissemination, is not explicitly present. Such functionality needs to be supported
via ODP mechanismsi.e. through special servers.

A similar approach has been more recently standardized in the Open Distributed
Management Architecture (ODMA) [16], which is the ISO/ITU-T approach to describe
OSI-SM in ODP terms. ODMA tries to provide a generic management framework that can
be mapped to either ODP-based object technologies, such as OMG CORBA, or to OSI-SM
communication protocols and relevant engineering concepts. OSI managed and managing
objects map onto ODP objects and interfaces while the ODP trader is used for discovering
interface references, according to desired object properties. Object creation is supported
through factory interfaces, which can be a so discovered through the trader.

(c) 1999 IFIP

In the case of an ODP-based supporting platform, managing and managed objects
communicate directly with each other. When the underlying platform is OS|-SM-based, the

OSI agent becomes an “operation dispatcher” in the engineering viewpoint that performs
operations to managed objects. It also becomes a “notification dispatcher” that forwards
notifications to managing systems. One or more notification dispatchers may be also
necessary within a managing system in order to deliver the notifications to the requesting
managing objects.

This ODP view of OSI-SM implies that the resulting framework does not support scoping,
filtering and multiple operations to managed objects. In addition, if CORBA is used as the
underlying platform, it is mentioned that notifications should be disseminated using relevant
mechanisms i.e. OMG event servers and channels. When OSI-SM based platforms are used,
the relevant protocols and supporting engineering concepts such as agents and notification
dispatchers should be hidden behind the ODP platform APIs. The intention is to allow for
the specification of management systems from an information and computational
perspective in an implementation neutral fashion. The use of an OSI-SM or ODP-based
technology is considered an engineering viewpoint decision that does not affect the system
specification.

We could characterize the above approach as a “least common denominator” one, in which
the OSI-SM framework is “pruned” to fit the ODP model. Despite its ODP orientation, [16]
recognizes the fact that multiple object access through scoping and filtering and event
dissemination through filtering and event forwarding discriminators may need to be exposed
in the computational viewpoint. This leaves open the possibility for other potential
mappings between OSI-SM and ODP. We present such an approach and explain in detalil
the relevant issues in the rest of this paper.

2.2 Mapping OSI-SM GDMO to CORBA IDL

Describing OSI-SM in ODP terms assumes that it is possible to map a managed object
specified in GDMO from an information viewpoint to an ODP computational interface.
Assuming that CORBA IDL will be the basis for the ODP computational viewpoint
language, we will consider the issues of mapping GDMO specifications to CORBA IDL
specifications. This is in accordance with the fact that OMG CORBA is considered as the
pragmatic counterpart of ODP and the fact that OMG specifications may evolve into ODP
recommendations.

Mappings between GDMO and CORBA IDL have been addressed by JIDM. Though the
main intention behind this work was to result in the specification of generic gateways
between different management technologies, the same principles and mappings can be used
to support pure CORBA-based management systems. The JIDM work started in 1993 and
the first important outcome was the comparison of the Internet SNMP, OSI-SM and OMG
CORBA object models described in [12]. Theecification trandation aspects followed

[6], including the generic mapping of GDMO to CORBA IDL. We discuss the main aspects

of the specification translation below.

While IDL interfaces have attributes in a similar fashion to GDMO objects, it is not
possible to map GDMO to IDL attributes directly. This is because IDL attributes have only
get and set properties, while GDMO attributes have additioseiToDefault, add and
remove properties. In addition, it is not possible to define specific exceptions associated
with access to attributes in IDL, while this is possible in GDMO. As such, GDMO attributes

(c) 1999 IFIP

should map to access methods in accordance with the relevant properties e.g. <attr>_get,
<attr>_set, <attr>_setToDefault, <attr>_add and <attr>_remove.

While this approach solves partly the mismatch problem between GDMO and IDL
attributes, it creates other problems. For example, it is not possible to interrogate the
CORBA interface repository about the attributes an interface has in order to access those
attributes through the dynamic invocation interface; the latter is useful for generic
applications such as MIB browsers. GDMO attributes also exhibit “MATCHES FOR”
properties which are used for filtering. There is no equivalent in IDL which means that OSI-
SM-like filtering cannot be easily supported.

GDMO actions can be naturally mapped onto IDL methods with input argument the action
information and output argument the action result. Action parameters, which signify action-
specific errors, are mapped onto IDL exceptions. GDMO noatifications can be mapped onto
separate interfaces that should be supported by managing objects and event channels. Two
separate interfaces should be generated for the notifications of a managed object class, one
for the “push” and one for the “pull” model.

An additional key difference between GDMO and CORBA IDL concerns the dynamic
binding of functionality to managed object instances through conditional packages. This is a
key feature of GDMO, used very often by information model designers, while it is not
supported in IDL. The only solution is to make the functionality of GDMO conditional
packages “mandatory” from a specification point of view. This approach though has a
number of problems. First of all, the functionality of assigning packages dynamically to
object instances at creation time is lost. A more important problem is that conditional
packages are sometimes used by information model designers in a fashion that cannot be
supported throgh “hardwired” implementations. A solution to this problem would be for
ISO/ITU-T to “correct” any existing specifications that present this problem and instruct
information modeling groups on the proper use of GDMO conditional packages, in an IDL-
compatible fashion.

Given the rules for IDL to GDMO translation, it is possible to map OSI-SM GDMO
managed objects to CORBA IDL interfaces and preserve all the work that has gone into the
relevant OSI-SM / TMN specifications. The relevant translation may support gateways
between CORBA and OSI-SM / TMN applications. It may be also used to support the
native operation of management systems entirely in CORBA, as it is investigated in this
paper. The equivalent IDL interfaces follow exactly the same inheritance lattice as in
GDMO, while thei_top interface is equivalent to the OSI-Stdp class [18]. The i_top
interface inherits from thé ManagedObject one, which in turn inherits from CORBA’s
Object, as do all the IDL interfaces.

The i_ManagedObject interface may support functionality common to all the managed

objects, such as getting an object's name, accessing a number of attributes with one
operation, evaluating a filter and returning the interface references of its superior or of its

immediately subordinate objects in the containment hierarchy.

3. AnInitial Mapping of the OSI-SM Mode to CORBA

Having discussed the mapping of GDMO to CORBA IDL, we will consider how CORBA
can be used instead of OSI-SM as the basis for TMN systems. This approach will support

(c) 1999 IFIP

initidly only basic functionality but it will be extended it to support the full OSI-SM
functionality in the next section.

3.1 Object Discovery Through Hierarchical Naming and Containment
Relationships

This approach assumes the same hierarchical naming scheme asin OSI-SM / TMN systems,

based on the GDMO name bindings in “agent” domains and on the OSI Directory global
name schema specified in [21]. For example, the name of the root object in a CORBA
managed object cluster that constitutes a TMN OS could be:

{ c=GB, 0=U0S ou=CCSR, cn=NM-0S, systemld=NM-OS}

This is now an instance of the CORBA CosNaming::Name IDL type as specified by the
OMG Name Service [2]. Both OMG and OSI-SM names are ordered lig{gpasfvalue
components, so there can be a direct mapping between the two. The key difference is that
the OMG name space is generally a graph instead of a hierarchical tree. Since we are
adopting the TMN hierarchical naming principles, the OM@nagement name space
becomes a hierarchical tree.

The first four components of the above example name deaoi@g contexts, i.e. they are

not associated to CORBA objects. The fifth component, i.e. systemld=NM-OS, is a hame
bound to the compound context defined by the previous four. These contexts and the
relevant name will be registered with the CORBA naming service [2]. A client or manager
object will be able to resolve the object’'s name to an interface reference through the naming
server. In addition, the client will be also able to discover all the management applications
running in the UoS CCSR domain by performingsh operation on the naming contgxt

c=GB, 0=Uo0S, ou=CCSR }. It will subsequently be able to obtain the subordinate object
names of those contexts, eggstemld=NM-OS for the cn=NM-OS context, and resolve

them to interface references. This architecture provides discovery functionality similar to
that of the OSI Directory in OSI-SM / TMN environments [21] but it is supported through
the use of naming services [2]. The latter may be federated in order to cope with large name
spaces and different administrative domains.

interface i _ManagedObj ect

CosNami ng: : Nane get Nanme ();
CosNami ng: : NameConponent
get Rel ati veNane ();
i _Managednj ect resol ve (in CosNam ng:: Name nane)
rai ses (Not Found);

i _ManagedObj ect get Superior ();

ManagedObj ect Li st get Subor di nates ();

voi d addSubordi nate (in i_ManagedObj ect subord)
rai ses (lnvalidObject);

voi d renoveSubordi nate (in i_MinagedObj ect

subor d)
rai ses (lnvalidoject);

voi d destroy ()
rai ses (NotDel etabl e,
Del et eCont ai nedbj ects) ;

Codel Thei_ManagedObject IDL Interface

(c) 1999 IFIP

Having presented the system discovery aspects, we also heed to address discovery facilities

within an MIT cluster. Every managed object is aware of its name, which will be passed to

it at by its “factory” at creation time. In addition, every managed object is aware of its
superior and subordinate objects. Those object references form now a “virtual” MIT, since
the relevant managed objects may be physically distributed across different network nodes.
The superior reference is passed to an object at creation time. The subordinate references
are passed to an object by the subordinate objects themselves, which update their superior at
creation and deletion and maintain the “referential integrity” of the MIT. The Code 1
caption shows a potential IDL specification of the i_ManagedObject interface that supports
this functionality. Every managed object provides access to the references of its superior
and immediate subordinate objects in the MIT. It cesolve a subordinate name to a
reference by using recursively thetSubordinates andgetRelativeName methods.

Manager objects may discover the exact structure of the MIT, starting from the root object
and using those discovery facilities. This approach is in fact similar to the OSI-SM / TMN
one apart from scoping and filtering. It should be noted that every object acts essentially as
a name server for objects in its subtree. The key advantage of the approach is that managed
objects other than the MIT root do not have to register with the name service; this results in
fewer interactions across the network and faster operation. If the name service was used
instead, subordinate names would have to be retrieved from the name server through a “list”
operation and subsequently mapped to interfaces references through a “resolve” operation.
In this approach, the CORBA name service is only used for getting access to the root MIT
object.

We could have added scoping at least to the i_ManagedObject interface, since it can be
easily supported by traversing the “contains” relationshiputfrothe getSubordinates
method. The problem though is one of “culture”: scoping is a facility related to the OSI-SM
Common Management Information Service (CMIS) [17] while the i_ManagedObject
interface is totally unrelated to CMIS as an access method. Adding scoping, filtering and the
full OSI-SM access functionality over CORBA is the next step. We will address the relevant
issues in section 4.

3.2 Object Lifecycle and Event Dissemination Aspects

Two other important aspects of a management framework are object lifecycle, i.e. managed
object creation and deletion, and event dissemination. We will address those here, taking a
realistic approach which uses existing CORBA facilities.

In every “agent” domain, there will exist factory finder object, bound to the domain
naming context e.g. cn=NM-OS. A client will be able to obtain its name from the name
server through a “list” operation and resolve it subsequently to an interface reference. A
further optimization can be achieved by agreeing in advance on the relative name of the
factory finders e.gfactoryFinderld=NULL, since there will always exist a single instance in

a domain. The factory finder will provide access to specific factories for a particular type of
interface as advocated by the CORBA lifecycle services [2]. Specific factory interfaces will
exist for every GDMO class that haseate properties. A factory interface will take
parameters according to the GDMO class specification, which may include the name of the
object to create, its superior’'s name, a “reference” object and initial values for attributes. A
factory interface bears similarities to the CMh$create primitive but initial attribute
values can be strongly typed. Managed object deletion is supportedytthitoe destroy

(c) 1999 IFIP

method of the i_ManagedObject interface. Derived implementation classes will have to
redefine the relevant method behavior according to the GDMO name binding propertiesi.e.
deny deletion, instruct the caller to delete contained objects first or delete the whole subtree.
This code could be automatically produced by “JIDM-aware” IDL compilers.

The final important point for a complete CORBA-based architecture is event dissemination.
This can be based on the existing OM¢&Nt services [2]. In every “agent” domain, there

will exist achannel finder object, in a similar fashion to the factory finder one. This will
provide access to event channels that serve specific event types. Managed objects that
generate notifications will register with the corresponding event channels as “event
suppliers”. Manager objects will get access first to the channel finder through the naming
service and then to the particular event-specific channels, registering as “event consumers”.
Generated notifications will be sent to the corresponding channels and will be subsequently
passed to the manager objects using the push or pull model. The fact that event channels
correspond to specific event types can support strongly typed event dissemination. Event
type specific push and pull interfaces will be produced for every GDMO notification and
will be supported by the relevant channels. In summary, this event reporting approach is
based on the CORBA event services.

3.3 TheProposed Architecture

“Agent” Domain

FF: Factory Finder

F: Factory

ECF: Event Channel Finder
EC: Event Channel

M"O: Managing Object
MO: Managed Object
NS: Name Server

Figurel A Basic Architecturefor OSI-SM to CORBA Mapping

The relevant architecture is depicted in Figure 1, showing the various interactions as
described before. The key advantage of using CORBA is that the managed objects that
constitute a logical “agent” cluster may be distributed across different “capsules”, i.e.
operating system processes, which may in turn be distributed across different network
nodes. The event channel finder and event channels will be located in the same capsule. The

(c) 1999 IFIP

managed object factories will be located in the capsules where the relevant interfaces will
be created. The factory finder will be statically configured to know the references of the
relevant factoriesin that domain.

The disadvantages of this approach in comparison to OSI-SM are the following:
» thereisno support for multiple attribute access,
» thereisno support for multiple object access through one management operation;
« object discovery facilities do not support scoping and filtering;

* events are disseminated based on the event type i.e. there is no support for
filtering; and

 thereisno support for logging.

4. A Complete Mapping of the OSI-SM Model to CORBA

In this section we extend further the approach presented in the previous section to include
TMN aspects such as scoping, filtering, EFD-based event dissemination and logging,
addressing the disadvantages of the previous approach and migrating effectively the OSl-
SM / TMN framework over CORBA.

Since the JIDM work on the mapping between GDMO and CORBA IDL was first published
in 1994, a number of researchers started investigating the issues behind a CORBA-based
management architecture. We will examine first the most important related work by other
researchers, presenting it in chronological order.

4.1 Related Research Work

[3] discusses the application of the TINA ODP-based architecture to management services.
It presents the view that management applications should be modelled by OSI-SM-like
agents, which are computational objects with IDL interfaces in the TINA management
architecture. Managed objects do not have their own computationa interface but are
specified as information objects in Quasi-GDMO and mapped to engineering objects within
the agent.

The GDMO to CORBA IDL mapping presented in [6] addresses the static trandation
aspects. The architecture of a management environment based on the resulting CORBA
specifications is another issue. [7] presents the first research work on such an architecture as

a proposal to the JIDM group. The first version of this work appeared in 1995 and tries to

re-use as much as possible the existing OMG services. The key element of this approach is

that it establishes a “shared management knowledge” repository in CORBA, which
recaptures aspects of the GDMO specification lost in the translation e.g. the MATCHES
FOR properties of attributes.

The author’s initial approach (circa 1995) was to model OSI-SM agents as computational
entities with CMIS-like IDL interfaces, based on the initial ideas in [3] but taking those to
completion as presented here. The first version of the relevant architecture and specification
was produced in the ACTS VITAL project which validated the TINA framework. As a
result, the author was pointed to a TINA-C group working in a very similar direction and
proposing a similar architecture [4].

(c) 1999 IFIP

This proposes that managed objects are grouped together in “agent” clusters and named
using TMN-based hierarchical naming principles. In addition, it proposes those to be
administered by a Management Broker (MB), which is a computational entity similar to an
OSI-SM agent. The latter offers a CMIS-like interface which supports multiple attribute
access and multiple object access through scoping and filtering. Event reporting and logging
are supported thumh Event Forwarding Discriminator (EFD) and log managed objects.
This approach was only a paper exercise that never went into considerations behind the
potential realization of such a framework. As such, it was never taken any further within
TINA-C.

The author architected a very similar approach which could be realized based on the
OSIMIS environment [8] and its reusable software components. A first implementation of a
generic gateway between CORBA and OSI-SM was produced in the summer of 1996. A
second implementation followed, with native CORBA-based management agents [9] as
described here.

Finally, [5] is the official JIDM proposal. While different from the other initial JIDM
proposal [7], it combines elements of the other approaches. Managed objects are organized
in “agent” domains and are named hierarchically. Event dissemination is handled through a
specialization of the OMG event service, using event channels in both manager and agent
domains. Multiple attribute and multiple object access is supportedgthrthe JIDM
i_ManagedObiject interface which is CMIS-like. This means that every managed object acts
as an agent or management broker for its subtree. This approach is different to both [9] and

[4].
4.2 Multiple Attribute Access and Filtering

With the current GDMO to IDL mapping, every attribute is mapped to one or more access
methods. As a consequence, manager objects have to access attributes on a one-by-one
basis, which creates unnecessary management traffic. Accessing multiple attributes is an
important management requirement. In addition, many applications use the“Gafli&l
attributes” facility, which should aso be supported. The obvious place to put this
functionality isthei_ManagedObject interface.

The key problem is knowing what the attributes of a managed object instance are. The
i_ManagedObject part of a MO instance could interrogate the CORBA interface repository

for the attributes of every derived interface and access them locally, through the DII.
Unfortunately, this approach will not work. The problem isthat as a result of the GDMO to

IDL trandlation, the notion of attributes is lost which means that the CORBA interface
repository cannot be used. An alternative approach would be to provide “shared
management knowledge” about the information of a GDMO-derived IDL interface. For
example, this information is stored indsscovery managed object in OSI-SM / TMN
environments [21]; [7] proposes such an approach.

A third and most efficient approach would be similar to that of most TMN platforms: every
derived implementation class should pass the names of its attributes to the
i_ManagedObiject part of an instance at creation time. The only problem with this approach
is that this code will need to be hand-written, which is both tedious and error prone, while in
TMN platforms it is automatically produced by GDMO compilers. A way around this
problem would be the existence of special “JIDM-aware” IDL compilers which could
produce this code automatically.

(c) 1999 IFIP

In summary, it is possible to support multiple attribute access. The example method
signatures for getting multiple attributes are shown in the Code 2 caption. A similar
setAttributes method could also be provided. It should be finally noted that the resulting
methods are weakly-typed because the IDL any type is used for attribute values.

struct Attribute {
Attributeld_t attrld;
any attrval;

enum GetListError_t {
noError,
noSuchAttri bute

struct GetAttribute_t {
Get Li stError_t error;
Attributeld_t attrld;
any attrVval ; /1 “empty” in errors

h
typedef sequence<GetAttribute_t> GetAttributeList_t;

interface i_ManagedObject

In...

void getAttributes (in AttributeldList_t attrldList,

out GetAttributeList_t attrList);
void getAllAttributes (out AttributeList_t attrList);
boolean evaluateFilter (in Filter_t filter);

Code 2 Multiple Attribute Access and Filtering

The next aspect to consider is filtering, which is a much more difficult proposition. [7]
proposes to use the OMG property service, together with “shared management knowledge”
which provides access to the GDMO MATCHES FOR properties of attributes, the solution
being very complex. [5] specifies filtering as part of the CMIS-like access methods of the
i_ManagedObiject interface but does not discuss at all how it is going to be provided. It
should be noted that supporting filtering in CORBA to OSI-SM gateways is easy since the
filter will be actually evaluated in the target OSI-SM agent; this is not the case in native
CORBA environments.

Let’s revisit first how filtering is supported in OSI-SM environments. Filter assertions on a
particular attribute are evaluated by the attribute itself while the ASN.1 compiler produces
comparison methods. The problem with CORBA is that attributes are not “first class
citizens” of the framework. Defining an attribute in an IDL interface results in nothing more
than access methods being produced, without any special support for the relevant data type.
As such, there is no automatic support for equality comparison and subsequently for the
evaluation of filter assertions. One solution to this problem would be for OMG to consider
providing such support thugh a special extension to IDL. Types preceded by some special
keyword, e.gattri but e, could be treated specially, deriving from a generic attribute
class and supporting equality and other comparisons. This requitgghttiee modification

of both the IDL and the relevant programming language mappings. [7] mentions that the
comparison methods required for filtering could be either provided by hand, which is

(c) 1999 IFIP

obvioudly not desirable, or produced by modified IDL compilers which understand
comment lines with special significance.

In summary, it is not easy to provide filtering in native CORBA environments. In general,
the mapping of IDL types to object classes is not rich enough, lacking support for
comparison, pretty-printing and other generic functionality. As such, it is problematic to
deal with instances of the any type. Thisis an areathat needs specia attention by the OMG.

Given the support for filtering and the fact that containment relationships can be navigated
through the getSuperior and getSubordinates methods, multiple access to managed objects
and sophisticated discovery facilities can be provided. The relevant functionality is similar
to that provided by OSI-SM agents and the question is where it should be placed. [5], the
official IDM proposal, places it as part of the i_ManagedObject interface. This essentially
means that every managed object behaves as an agent for its subtree. In contrast, the author
[9] and [4] propose to separate this functionality from the managed objects, so that different
sophisticated access styles can be provided.

4.3 Fine-grain Event Dissemination and Multiple Object Access Through the
Management Broker

Given the support for filtering, fine-grain event reporting and logging can be provided by
migrating the relevant OSI-SM models over CORBA. In every “agent” domain, there will
exist a Event Processing (EP) object. Managed objects will get access it through local
means, e.g. the factories may pass its reference to MOs at creation time. MOs will
subsequently “push” their notifications to it. The EP object will create the “potential event
report / log record” through the relevant object factory, evaluate the filters of EFDs and logs
and may instruct the latter to send the event or log it as a log record accordingly. This is
exactly the behavior prescribed in [20]. Note that the existence of the EP object is totally
transparent to manager objects that are interested to receive event reports.

Manager objects will request the forwarding of events by creating EFDs and setting the
destination attribute to contain either their name or object reference. This implies that the
syntax of thedestination and backupDestinationList EFD attributes [20] will have to be
slightly modified. Destinations are currently specified as OSI-SM distinguished names
which can be mapped to CORBA names, but CORBA object references should be added.

The last aspect of the OSI-SM / TMN framework that needs to be provided is support for
multiple object discovery and access facilities based on scoping and filtering. Such access
facilities are certainly “OSI-SM / TMN specific” and should be provided in an incremental
fashion, without being an integral aspect of the rest of the framework. A key reason for
considering those separately is they are do not represent the only way of providing this type
of functionality. For example, in the CMIS/P access model containment relationships are
navigated first through scoping with filtering applied at the end of the selection process.
[10] proposes an enhanced model in which any relationship could be navigated, with
filtering possibly applied at various stages of the selection process. Other mechanisms may
be invented in the future that suit best the needs of particular management environments.

This is the why the author proposes to separate the CMIS-based access aspects from the rest
of the management framework. As such, CMIS-based access shatul part of the
i_ManagedObject interface but should be supported by a sepdaatmement Broker

(MB) object. Given the fact that CMIS is the current access mechanism in TMN

(c) 1999 IFIP

environments, a MB should always exist in an “agent” domain with its name bound to the
domain naming context e.§.c=GB, 0=U0S, ou=CCSR, cn=NM-0S, brokerld=CMIS }.
Managed objects could be accessed either directly or through the MB. The advantage of
MB-based access is object discovery and multiple object access through scoping and
filtering. The disadvantage is that the relevant access paradigm is weakly-typed: attribute
and action values are of the IQny type. The architecture of the proposed framework is
depicted in Figure 2, including the event dissemination through EFDs. This updates the
architecture that was presented in Figure 1.

— e e =,

“Agent” Domain

M"O: Managing Object FF: Factory Finder

MO: Managed Object F:. Factory

efd: Event Forw. Discr. EP: Event Processing
NS: Name Server MB: Management Broker

Figure 2 A Complete Architecturefor OSI-SM to CORBA Mapping

When an “agent” domain is instantiated, the root MIT MO, the factory finder and the
management broker register themselves with the name service (interadtiohe figure).
Manager objects need to know in advance the domain name{ e€9GB, o=UoS
ou=CCSR, cn=NM-0OS }. They may invoke a list operation on the name service and
discover the names and subsequently the references of the MIT root, FF and MB objects
(interactionb). A MO may be created either in a strongly-typed fashion through the relevant
factory (interactions ;g and g) or in a generic, weakly-typed fashion through the MB
(interactions @ and d;). The manager may subsequently access the object either directly
(interaction e) or through the MB. A MO emits a notification by “pushing” it to the event
processing object (interaction).f The latter will create first a “potential event report”,
retrieve an EFD’s filter (interactiornp)fand evaluate it. The potential event report is not
shown since it is manipulated locally by the EP i.e. can be thought as encapsulated by it. If
the filter evaluates to true, it will instruct the EFD to send the event report (interagtion f
The EFD may need to resolve the name of the manager to an interface reference through the
name service (interactiog)¥ and “push” the event to the manager (interactjpn f

(c) 1999 IFIP

We show below (a part of) the broker's CMIS-like interface. This supports single object
operations (get), object discovery operations (objectSelection) and multiple object
operations (multipleObjectGet), in a similar fashion to CMIS [17].

/1 Scope_t, Filter_t and Sync_t nep exactly to the
/1 X. 711 Scope, CM SFilter and CM SSync ASN. 1 types

typedef struct ObjectSelection_t {
Scope_t scope;
Filter_t filter;

s

typedef struct ObjectNaneList_t {
CosNami ng: : Nane nare;
i _ManagedObj ect obj ect Ref;
}

interface i _CM SBroker
CosNami ng: : Name get Nane (); Il the broker's name

void get (
in CosNaming::Name objectName,
in string objectClass, // allomorphism
in AttributeldList_t attrldList, // empty ->"“all”
out GetAttributeList_t attrList

)
raises (GET_ERRORS);

void objectSelection (
in CosNaming::Name baseObjectName,
in ObjectSelection_t objectSelection,
out ObjectNamelList_t objectNameList
) raises (OBJECT_SELECTION_ERRORS);

void multipleObjectGet (
in CosNaming::Name baseObjectName,
in ObjectSelection_t objectSelection,
in Sync_t sync,
in AttributeldList_t attridList, // empty ->

P
out GetResultList_t resultList
) raises (MULTIPLE_OBJ_OPER_ERRORS);

"...
Code 3 Generic CM1S-like Managed Object Accessin IDL

5. OSI-SM to CORBA Migration Approach

The first step for migrating towards the target framework is to support only agent discovery

and CMIS interactions through CORBA, without individua IDL interfaces for managed
objects. This essentially means that the management broker will act as an agent that
provides access to managed objects implemented by existing TMN platform infrastructure.

The MB may be used in conjunction to the existing Qs agent object within an OSI-SM agent
application. In this case, the TMN application in agent role will have two interfaces: the
existing Qs interface and the CORBA version of thes"Qnterface as specified by the

i_ CMISBroker and i_CMISManager IDL interfaces. This minimal approach is depicted in
Figure 3. Existing OSI-SM-based manager applications will continue to function while new
CORBA-based management applications may be developed. This architecture provides a
“dual-agent” access paradigm.

(c) 1999 IFIP

NS DSA

TMN Agent Application

CORBA :
Mgr : Q MOs

S
5.0 0

NS: Name Server
DSA: Directory Service Agent

Figure 3 Dual Q; and CORBA Agent

A variation of this approach is the gateway approach, in which the management broker
becomes a separate application which accesses one or more management agents in the
“back-end” through their @ interfaces. The gateway approach is useful to provide
adaptation for TMN applications that are already deployed, in which case it is not possible
to add to them the management broker in a tightly-coupled fashion. A gateway version of
the MB was first produced in 1996. The tightly-coupled dual agent approach was
subsequently implemented in 1997.

The target architecture is one in which managed objects will be native CORBA objects
administered by Management Brokers, as presented previously in detail.

6. Summary

Given the emergence of CORBA as the ubiquitous object technology for open distributed
systems, in this paper we examined in detail how it can be used as the base technology for
the TMN. We presented first a minimal approach which retains the TMN hierarchical
naming and containment relationships but does not support scoping, filtering, multiple
object access and fine-grain event reporting and logging. A key aspect of this approach is
that only few objects in each “agent” domain need to export their names to the name server.
This avoids scalability problems in TMN environments where network elements and
operations systems may contain 10’s of thousands of objects.

We then added multiple attribute access and filtering to the managed objects and explained
how CMIS-like multiple object access can be supportedutiirahe management broker.

The proposed architecture retains the advantages of OSI-SM with the drawback that support
for filtering and knowledge about the attributes of a particular object need to be hand-coded
i.e. they cannot be automatically supported by IDL compilers. An advantage of the
presented approach is that managed objects are not required to have separate IDL
interfaces, which helps scalability for nodes with a large number of managed objects.

(c) 1999 IFIP

We should finally answer the question of what is the architectural impact to the TMN if
CORBA is adopted. The answer is that there should be no impact at al. The TMN
architecture and methodologies will remain the same. Interface specifications will be
produced in GDMO, following possibly guidelines which will guarantee that generic
trandlation to IDL is possible. In addition, the Qs interface profiles will be modified,
including CORBA protocols as valid choices for TMN interfaces. The use of CMIS/P-
GDMO or GIOP-IDL will become an engineering issue for implementing the same
specifications. An additional benefit of using CORBA is that TMN Operation System
components could be distributed across different network nodes.

In summary, CORBA seems a very promising technology for future TMN systems. Its main
value compared to OSI-SM s that it tends to become the ubiquitous technology for future
heterogeneous distributed systems. Its use for both management and service control will
result in economies of scale and allow for the easier integration of new managed resources.

Acknowledgments

This work was undertaken under the ACTS FlowThru, REFORM and VITAL projects
which are al partialy funded by the Commission of the European Union.

The author would like to thank S. Mazumdar of Lucent Technologies, the editor of the
GDMO to IDL mappings document [6] which formed the basis for this work.

References

[1]. Object Management Group, The Common Object Request Broker: Architecture and
Specification (CORBA), Version 2.0, 1995.

[2]. Object Management Group, CORBA Services: Common Object Services Specification
(COSS), Revised Edition, 1995.

[3]. L.A. de la Fuente, J. Pavon, N. Singer, Application of TINA-C Architecture to
Management Services, in Towards a Pan-European Telecommunications Service
Infrastructure, H.-J. Kugler, A. Mullery, N. Niebert, ed., pp. 273-284, Springer, 1994.

[4]. E. Garcia-Lopez, Distributed Management Facilities Architecture, TINA-C baseline
document TB_EGL.002_2.1_1996, 1996.

[5]. J. Hierro, J. Gonzalez, Common Facilities for Systems Management, Telefonica 1+D
Submission to the NMF - X/Open Joint Inter-Domain Management task force, 1996.

[6]. NMF - X/Open, Joint Inter-Domain Management (JIDM) Specifications, Specification
Tranglation of SNMP SMI to CORBA IDL, GDMO/ASN.1 to CORBA IDL and IDL to
GDMO/ASN.1, 1995.

[7]. S. Mazumdar, Mapping of Common Management Information Services to OMG
Common Object Services Specification, ATT Bell Labs, TM # BL0112540-96.09.30-
02, 1996.

[8]. G. Pavlou, G. Knight, K. McCarthy, S. Bhatti, The OSMIS Platform: Making OS
Management Smple, in Integrated Network Management 1V, A. Sethi, Y. Raynaud, F.
Faure-Vincent, ed., pp. 480-493, Chapman & Hall, 1995.

(c) 1999 IFIP

9.

[10].

[11].

[12].

[13].
[14].
[15].
[16].
[17].
[18].
[19].
[20].

[21].

G. Pavlou, D. Griffin, Realiziing TMN-like Management Services in TINA, Journal of
Network and System Management (JNSM), Special Issue on TINA, Vol. 5, No. 4, pp.
437-457, Plenum Publishing, 1997.

G. Pavlou, A. Liotta, P. Abbi, S. Ceri, CMISP++: Extensions to CMIS/P for
Increased Expressiveness and Efficiency in the Manipulation of Management
Information, IEEE Network, Vol. 12, No. 5, pp. 10-20, September/October 1998.

S. Proctor, An ODP Analysis of OS Systems Management, in the Proc. of the
TINA'92 Workshop, Narita, Japan, January 1992.

T. Rutt, ed.,Comparison of the OS Systems Management, OMG and Internet
Management Object Models, Report of the NMF - X/Open Joint Inter-Domain
Management task force, 1994.

ITU-T Rec. M.3010,Principles for a Telecommunications Management Network
(TMN), Study Group 1V,1996.

ITU-T Rec. X.500, Open Systems Interconnectidhe Directory: Overview of
Concepts, Models and Service, 1993.

ITU-T Rec. X.701, Open Systems Interconnecti®ygtems Management Overview,
1992.

ITU-T Rec. X.703, Open Systems InterconnectiOpen Distributed Management
Architecture (ODMA), 1997.

ITU-T Rec. X.710, Open Systems InterconnectioBpmmon Management
Information Service Definition (CMIS) - Version 2, 1991.

ITU-T Rec. X.720, Open Systems Interconnecti@ructure of Management
Information - Management Information Model , 1991.

ITU-T Rec. X.722, Open Systems Interconnecti@ructure of Management
Information - Guidelines for the Definition of Managed Objects, 1992.

ITU-T Rec. X.734/X.735, Open Systems InterconnectiBystems Management
Functions - Event Report and Log Control Functions, 1992.

ITU-T Rec. X.750, Open Systems Interconnection, Systems Management Functions -

Management Knowledge Management Function, 1995.

Biography

George Pavlou received his Diploma in Electrical and Mechanical Engineering from the
National Technical University of Athens, Greece and his MSc and PhD in Computer
Science, both from University College London, UK. Over the last 12 years he has been
undertaking and directing research in the areas of communications protocols, performance
evaluation, distributed systems, broadband network technologies, network management and
service engineering. He has architected the OSIMIS TMN platform and has contributed to
standardization work in 1ISO, ITU-T, TMF, OMG and TINA. Since the beginning of 1998

he is a full professor at the University of Surrey, School of Electrical Engineering and

Information Technology, where he leads the activities of the networks research group.

(c) 1999 IFIP

