An Adaptable Network COntrol and
Reporting System (ANCORS)’

L. Ricciulli, P. Porras
Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park,CA 94025

{livio, porras}@csl.sri.com

Abstract

We present ANCORS, an adaptable network control and reporting system that
merges technology from network management and distributed simulation to provide
a unified paradigm for assessing, controlling, and designing active networks.
ANCORS introduces a framework to assist in managing the substantial complexities
of software reuse and scalability in active network environments. Specifically,
ANCORS provides an extensible approach to the dynamic integration, management,
and runtime assessment of various network protocols in live network operations. We
present some of the advantages that can be obtained by merging technology from
network management, distributed simulation, and active networking, and describe
how ANCORS leverages complementary elements of each. We also introduce an
ANCORS facility called the active network daemon Anetd, which supports the de-
ployment and system management of a large class of legacy software and newer ac-
tive network applications under the ANCORS framework. Last, we present a proto-
type network engineering service that was developed to demonstrate ANCORS’s
capabilities.

Keywords

Network engineering, active networks, distributed simulation, protocol
prototyping, dynamic deployment

1 Introduction

The most significant trends in network architecture design are being driven by
the emerging needs for global mobility, virtual networking, and active network tech-
nology. The key property common to all these efforts is adaptability: adaptability to
redeploy network assets, to rewrite communication rules, and to make dynamic in-

* Thework presented in this paper is currently funded by the Information Technology Office of the
Defense Advanced Research Projects Agency, under contract number DABT63-97-C0040.

(c) 1999 IFIP

sertion of new network services' a natural element in network operations. Critical to
the deployment and management of these future networks is the need to provide con-
sistency and control over dynamic changes, and to limit the impact that such changes
have on performance and stability, as required for robust communication. Adaptive
computing environments could benefit greatly from several ongoing research efforts.
Active network research [2,4,7,15,19,20], in particular, seeks to pursue this concept
of adaptive computing by providing network protocols that are more flexible and
extensible. Active networking is motivated by the notion that the improvement and
evolution of current networking software is greatly hindered by slow and expensive
standardization processes. Active networking tries to accommodate changes to net-
work software by facilitating the safe and efficient dynamic reconfiguration of the
network. Adaptive computing environments may be seen as the composition of the
two main orthogonal approaches to active network design discussed in [19]:

Discrete Approach: Administrators issue explicit commands that load, modify,
or remove networking software. With this approach a network is active in the sense
that it can be dynamically changed administratively.

Integrated Approach: The network is modified by the data packets that travel
through it. When packets travel through the network, they automatically cause re-
quired software resources to be loaded on demand. This approach is being followed
today by most active networking research and allows a much finer-grain dynamism.

2 ANCORS Paradigm

In addition to work in the active network community, new standards are being
proposed to assist in the distribution and maintenance of end-user applications
[16,17]. These standards attempt to introduce more timely and cost-effective
mechanisms for distributing and maintaining application software via the network,
allowing users to install or update software components by simply accessing HTML-
like pages. However, extending such mechanisms to include the deployment and
maintenance of system-level software is more difficult. The addition of system-level
networking software must be done carefully to avoid potentially costly mistakes, and
must also be properly coordinated with the management infrastructure if such
changes are to be properly monitored and controlled.

While the trend toward adaptable protocol and application-layer technologies
continues, the control and assessment of such mechanisms leaves open broader
questions. Future networks could greatly benefit from simulation services that would
allow network engineers to experiment with new network technologies on live net-
work operations, without compromising service. Live-traffic-based simulation serv-
ices would provide engineers insight into how a proposed alteration would affect a
network, without committing the network to potentially disruptive consequences.

Finally, the management of adaptive networks would greatly benefit from so-
phisticated monitoring tools to help assess the effects of runtime alterations and de-
tect when those effects result in activity outside a boundary of desired operation.

! In this paper, the term network service refers to a resource made available through the network that pro-
vides awell-defined interface for its utilization.

(c) 1999 IFIP

Current network management (NM) and control software is oriented toward servic-
ing single administrative domains. As new interdependencies arise in sharing re-
sources beyond single administrative domains, monitoring capabilities (e.g., per-
formance monitors, fault- or misuse-detection services) should be able to change
over time, adapt as new conditions develop, and scale well to large networks.

ANCORS is intended to streamline and, at the same time, enrich the management
and monitoring of active networks, while adding new support to the network man-
agement paradigm to assist network designers. The ANCORS project is pursuing a
unified paradigm for managing change in active network computing environments.
Underlying this framework is a conceptual model for how elements of technology
from network management, distributed simulation, and active network research can
be combined under a single integrated environment. This conceptual model is illus-
trated in Figure 1.

Adaptable Distributed ANQORS gains from dzscrgte active
Network Live-Traffic networking the ability to dynamically de-
Monitoring Simulation . .
\ Fidelity] ploy engineering, management, and data
\ Scalability | Software ! transport services at runtime. ANCORS
\ Flexibility reuse

leverages this capability with network
management technology to (1) integrate
network and system management with

| v v legacy standards (SNMP, CMIP) to
\)/ provide a more flexible and scalable
AN Active 7 management framework, (2) provide
~ Control” network ~management functions to

Figure 1 Synergistic Model supervise network operations, (3)

dynamically deploy mechanisms to collect network statistics to be used as input to
network engineering tools and higher-level assessment tools, and (4) assist network
operators in reacting to significant changes in the network. In addition, ANCORS
integrates distributed simulation facilities that will observe live traffic, and simu-
late/emulate the effects that proposed modifications have on the network.

2.1 Active Node Architecture

The coexistence of the discrete and integrated active networking approaches in-
creases network adaptability. Therefore, besides offering flexible integrated execu-
tion environments (EEs), such as those being developed by the active network com-
munity, adaptable networks should also support the coexistence of concurrent pro-
gramming environments that can be discretely deployed within a single node.

(c) 1999 IFIP

, Mangement EE

Add or Delete EEs System
Management < =
1
Network - !
Management :
T 1
. . 1
Execution Environment 1 :
(EE)] ANEP '
1 |Demultiplexing<——7(7—
1
Resources: . ' :
Input or Output Channel Resource Assignments '
QOs ' Active Network '
Computation Resource Requests .
1

Application Space ! Node OS Network

Figure2 Active Network Node Ar chitecture

This has led researchers to draft the active network node architecture depicted in
Figure 2 (refer to [1] for more details). Here, several EEs execute in user space and
explicitly request resources from the node operating system. A particularly interest-
ing aspect of the architecture is its provision for a privileged management EE that
performs network and system management tasks (security implications are discussed
in Section 3.1.3). In addition, a demultiplexer dispatches active network packets en-
capsulated through ANEP (Active Network Encapsulation Protocol) [1] to the differ-
ent EEs (including the developing new management and engineering technology that
fits well within this design).

2.2 ANCORSArchitecture

Control Layer ANCORS targets an active
response network environment, where

powerful design and assessment

, J ‘\ — capabilities are required to

Assessment L ayer coordinate the high degree of
‘\ [V dynamism in the configuration

50) <en (oo | <t { e and availability .of services and

Data L ayer [umm} [] protocols. To this end, we have

formulated an architecture of a

engineering system that, while inheriting some components from current NM tech-
nology, introduces distributed simulation as an additional tool for design and per-
formance assessment. Some components of the ANCORS architecture map very well
to already existing technology. Recognizing this, the architecture has been explicitly
designed to accommodate other network management engineering solutions.

The ANCORS architecture is divided into data, assessment, and control layers.
Figure 3 shows how the data and information flow through the layers. The data layer
operates at the data packet level and offers a set of services for the manipulation of
network data. The assessment layer performs analytical reviews of network behavior

(c) 1999 IFIP

to extract relevant semantic information from it. The control layer performs higher-
order functions based on expert knowledge.

The ANCORS architecture has been designed to reuse and integrate software
components derived from significant advances in network alarm correlation, fault
identification, and distributed intrusion detection. In particular, the assessment and
control layers of the ANCORS architecture perform tasks analogous to alarm corre-
lation and fault analysis of the types currently proposed by network management
expert systems [3,14,18].

All the components constituting these logical layers may be independently de-
ployed and configured on machines throughout the network using common system
management support. ANCORS may distribute data-layer services on machines
across domains,” but deploys assessment and control layer services in machines
within the domain they manage. Depending on the amount of resource sharing re-
sulting from the deployment of active networking services, the assessment layer may
also be distributed across machines in multiple domains. Because the control layer
must possess a significant amount of authority to perform changes in the network, it
should be deployed only within a single domain. Several control services may then
cooperate at the inter-domain level to exchange information for making better con-
trol decisions about their respective domains.” The following sections describe the
data layer, which embodies the most innovative features of our architecture.

221 Datalayer

The foundation of the ANCORS architecture is the data layer, which is composed
of engineering, monitoring, and data transport services. Although presented as a sin-
gle layer, it is useful to recognize and distinguish the various modules that may
populate this layer. For this reason, we decompose the data layer into three distinct
data service types, all of which may benefit from dynamic deployment in the net-
work.

2211 DataTransport Services

Data transport services offer communication protocols that are either quite gen-
eral and extensible as proposed by active networking concepts, or that support more
traditional services derived from those available today. Although data transport
services are an integral part of the ANCORS architecture, the project does not focus
on the development of new transports. Rather, the architecture is tailored to accom-
modate both new and legacy data transport services. In all cases, we assume that data
transport services may be dynamically deployed. The scope of this paper does not
permit us to give a detailed description of these services and their possible applica-
tions. We instead focus on the monitoring and engineering services.

% In this context, a domain consists of a collection of software and hardware objects managed by a single
administrative authority.

* A discussion about inter-domain information exchange between control service is beyond the scope of
this paper.

(c) 1999 IFIP

2212 Monitoring

Monitoring services perform tasks analogous to those of today’s network man-
agement agents. In general, monitoring services record the operation of other net-
work services, perform analytical reviews of the network traffic (either directly or
through the review of data collected by legacy monitoring agents), and report rele-
vant information to higher-layer components in the ANCORS architecture. A vari-
ety of legacy SNMP- or CMIP-based agents, such as RMON, may be directly inte-
grated into the ANCORS framework. In addition, specialized network monitoring
services may be dynamically deployed to perform user-defined targeted analyses.

The use of active networking to dispatch user-definable monitoring capabilities
gives ANCORS two major advantages: (1) it permits selective monitoring of par-
ticular phenomena, such as new network requirements and new usage patterns that
emerge over time, and (2) it improves monitoring scalability (as suggested in [8,21])
through various degrees of sophistication in the monitoring agents, thus allowing, as
suggested in [6], a fluid tradeoff in the amount of computation performed in the
services distributed throughout the network and the amount of computation per-
formed at the management station. These services are deployable in the NM EE of
the active network node discussed in Section 3.

2213 Engineering Services

Engineering services aid in the design and testing of network services before
their deployment. In practice, engineering services may mimic the behavior and
performance of all other network services, but differ in the following ways: (1) they
live in a separate address space and are for the exclusive use of the network design-
ers, (2) they execute protocols in a virtual time scale that may differ from physical
time,* and (3) they generate synthetic network traffic that does not contain user data.

ANCORS incorporates a distributed simulation engineering service to help op-
erators explore and select the optimal deployment and configuration of network as-
sets. Like monitoring services, the ANCORS simulation component can be distrib-
uted to key traffic arteries of the network, and can perform high-fidelity protocol and
network component simulations based on the content of selective live traffic. The
results of these simulations can be used to better understand the affects of various
alterations of network behavior (which may become commonplace under the active
network paradigm), before committing the network to these alterations. Section 4
presents an overview of the ANCORS distributed simulation services.

3 ANETD: Active NETworks Daemon

Anetd is ANCORS’s facility for managing the deployment, operation, and moni-
toring of deployable network services in an active network. Anetd follows the dis-
crete active networking approach, providing code mobility to legacy network soft-
ware (e.g., SNMP agents) and system management support for new active network-
ing applications. Anetd support focuses on services that are fairly permanent and
long-lived, that can benefit from having a separate system management infrastruc-
ture, and that are fairly encapsulated (i.e., they do not rely on large numbers of

* The passage of time is explicitly controlled by predefined time-synchronization algorithms.

(c) 1999 IFIP

shared libraries that may not be commonly available). Anetd also facilitates the de-
ployment of auxiliary resources needed by the applications to facilitate the porting of
existing software. However, Anetd is not intended to deploy a large number of li-
braries or require large installation directories.’

From a system management perspective, Anetd views all services within the
ANCORS architecture (Figure 3) as equivalent. The assessment layer interprets
monitoring results from the data layer, and the control layer reacts to significant con-
ditions as they are reported by the assessment layer. The automatic response services
may reconfigure both the assessment services and the data-layer services in response
to changes in the network behavior. 4netd handles process control requests coming
from the management stations or automatic response services to either load new
services or terminate existing ones.

3.1 Anetd Prototype

Anetd listens on a user-assigned UDP port and accepts ANEP encapsulated pack-
ets. If the type ID in the ANEP packet header is of the type assigned to ANCORS by
the Internet Assigned Numbers Authority (IANA) (type 51), the ANEP payload is
parsed and the Anetd control commands are interpreted.

A client application encapsulates ANCORS system management commands us-
ing an ANEP header, and forwards the commands to Anetd. In addition to processing
commands directed to itself, Anetd looks at the packets it receives and, if a packet is
destined to one of the services that was previously deployed, it forwards that packet
to the appropriate process. This is accomplished as follows: once a new application
with an ANEP type assigned to it is deployed, Anetd adds the type ID to a demulti-
plexing table. The demultiplexing table maps an ANEP type ID to a file descriptor;
the file descriptor, in turn, maps to the standard input of the application. Application
output streams do not require any support from Anetd and can allow the system to
assign output ports automatically.®

Multiple Anetd daemons can be running simultaneously on the same host, per-
haps implementing multiple virtual active networks. The only restrictions are that (1)
multiple daemons cannot share the same ANEP port, and (2) if multiple daemons are
controlled by the same client, care must be taken in avoiding overwriting configura-
tion files and output redirection files.

311 System Management Commands

Anetd system management commands allow a client to deploy, configure, and
manage network application software. Our current prototype supports the deploy-
ment and control of either UNIX binaries or Java applications.” Under the current
version of Anetd, these core functions are supported by nine system management
commands: load, configure, query, kill, put, get, init, getacl, and getweb. While fu-
ture extensions to this command set may be required as additional functionality is

* In these cases, we advise standard manual installation techniques or (as in the case of Java) bundle the
required resources with Anetd in advance.

¢ We believe that this demultiplexing scheme is analogous to the mechanism that is used in inetd.

" The currently supported UNIX platforms are Linux 2.0, SunOS 5.5 and FreeBSD 2.2.

(c) 1999 IFIP

desired, our current experience in building and distributing Anetd clients indicates
that these primitives provide sufficient coverage necessary for basic management.
Because of space limitations, we will only describe in detail the LOAD command,
which is the most important. (Refer to [11] for the other commands.)

The LOAD command instructs Anetd to download files specified via a URL and
to start a new network service. The load command has the format

LOAD [T=<anepid>] [J=<jurl>| X=<url> | A=<url>] [F=<url>] [S=<val>]
[E=<var:val> ...] [D=<dir>] [O=<file>] [R=<file>]

Each active network EE has a unique ANEP ID, which is administratively as-
signed by IANA; Anepid is the ANEP ID of the service being deployed. If this ar-
gument is not present, the deployed service will be assigned type 0 and no packets
will be demultiplexed to it by Anetd.

J=<jurl> specifies a Java application. jur/ is of the form
http://servername.edu:port/classpath/~class ~ where servername.edu:port specifies
the server where the Java application is located following normal URL conventions.
The classpath is a path pointing to the base path of the Java application. The class is
the class to invoke. In this type of deployment, Anetd simply triggers Java’s built-in
mechanisms to dynamically resolve the methods required by the application
throughout the base classpath information. After proper initialization, the Java’s
Virtual Machine automatically downloads the required bytecode from the specified
HTTP server, following the Java’s RMI specification [5].

X=<url> specifies the URL of a binary-compatible file url. After the file is
downloaded with an HTTP GET command and the HTTP header is stripped, the
downloaded code is simply forked as a separate child process.

A=<url> indicates that ur/ specifies an ANCORS image. An ANCORS image is
compiled as a dynamic library, and it contains application-specific code to be added
to a remote process. After downloading the ANCORS image in an analogous way to
the code for the X type, Anetd opens the image as a dynamic library and invokes the
symbol init_model. Anetd then returns the handle for the new image, together with
any strings returned by the init model function, to the client that issued the load
command. The client can then later refer to the specific handles returned by Anetd to
invoke application-specific procedures through the CONF command. ANCORS im-
ages can therefore be used as building blocks to compose separate native-code serv-
ices coexisting in a single process.

Because the X and 4 types specify native executables, Anetd automatically ap-
pends an extension to the specified URLs that matches the particular operating sys-
tem on which Anetd is running. Other flags (S, E, D, O, R) specify execution pa-
rameters and the flag F' specifies URLs of data files to simply upload through Anetd.
Space restrictions do not allow us to describe these flags; refer to [11] for a detailed
description.

3.1.2 Deploying ANTS

We include an example demonstrating how a client can deploy ANTS [19] active
nodes. This example uses a program named sc, which simply encapsulates ANCORS
Anetd requests with ANEP.

(c) 1999 IFIP

Three different ANTS active nodes can be deployed on hostl, host2, and host3
and pipe their standard output to log files by using the following commands:

sc 3322 host1 LOAD
J=http://sequoia.csl.sri.com:7000/ants-1.2.a/~ants/ConfigManager
F=http://sequoia.csl.sri.com:7000/ants-1.2.a/runs/data.config
F=http://sequoia.csl.sri.com:7000/ants-1.2.a/runs/data.routes
S=data.config S=18.31.12.3 T=18 O=log
sc 3322 host2 LOAD
J=http://sequoia.csl.sri.com:7000/ants-1.2.a/~ants/ConfigManager
F=http://sequoia.csl.sri.com:7000/ants-1.2.a/runs/data.config
F=http://sequoia.csl.sri.com:7000/ants-1.2.a/runs/data.routes
S=data.config S=18.31.12.2 T=18 O=log
sc 3322 host3 LOAD
J=http://sequoia.csl.sri.com:7000/ants-1.2.a/~ants/ConfigManager
F=http://sequoia.csl.sri.com:7000/ants-1.2.a/runs/data.config
F=http://sequoia.csl.sri.com:7000/ants-1.2.a/runs/data.routes
S=data.config S=18.31.12.1 T=18 O=log

These commands are sent to three Anetd daemons, located on hostl, host2, and
host3, which listen on port 3322 (the active network port). The LOAD commands
cause the three Anetd daemons to instantiate copies of the ANTS active network
nodes and pipe their standard output to some log files. Notice that the ANTS appli-
cation specified by J=<jur/> requires two configuration files loaded by the
F=<ur[> arguments, and the command-line arguments S=data.config
S§=1831.12.{1,2,3}. The T=18 argument instructs Anetd to later forward ANEP
packets of type ID 18 to this application.

To illustrate the generality of Anetd, we also give an example of how a native

code SNMP agent could be deployed using Anetd:

sc 3322 host] LOAD
X=http://sequoia.csl.sri.com:7000/SNMP/snmpd
F=http://sequoia.csl.sri.com:7000/SNMP/mib.txt
F=http://sequoia.csl.sri.com:7000/SNMP/acl.conf
F=http://sequoia.csl.sri.com:7000/SNMP/party.conf
F=http://sequoia.csl.sri.com:7000/SNMP/view.conf
F=http://sequoia.csl.sri.com:7000/SNMP/context.conf
S=-p

S=8000

E=MIBFILE:mib.txt

An SNMP agent called snmpd is deployed to hostl with all the appropriate con-
figuration files and command-line arguments. Note that the T argument is missing,
signifying that Anetd is not required to demultiplex ANEP packets to the SNMP
daemon which, in this case, will independently receive packets on port 8000.

3.1.3 AccessControl

Network security is a very important issue that should be addressed during all
stages of design and implementation of any network software. Anetd offers two
ways for providing access control: (1) it only executes deployment and control
commands originating from a set of known IP addresses, and (2) it only accepts code
originating from a set of known HTTP servers. The access control information is

(c) 1999 IFIP

specified in two files residing on the server: host.allow and web.allow. Hosts.allow
contains the list of hosts authorized to send control commands to Anetd. Web.allow
contains a list of HTTP code servers from which Anetd is authorized to retrieve code.
Accepting control commands only from a set of clients allows administrative author-
ity to be set, thus limiting misuse of the daemon. Restricting code retrieval from a
set of secure code servers will help limit the potential for misuse of the ANCORS
management services.

4 Distributed Simulation

Adaptable and configurable networks will require code repositories with which
deployable applications can be stored and retrieved. This idea has already appeared
in several network management designs where deployable monitors can be dynami-
cally inserted to key points in a network. Under ANCORS we are reusing and ex-
tending these concepts in the development of generic and reusable simulation mod-
els, which are deliverable as part of an ANCORS simulation service. In particular,
we are developing simulation models that allow network engineers to compose and
design experiments dynamically, based on the content of network traffic observed
from spatially distributed points in a network. The following briefly summarizes the
benefits of extending simulation into the network management framework, and how
issues of resource utilization can be controlled and balanced against the fidelity of
simulation results.

4.1 Distributed Simulation and Network Management

As with any distributed application, network simulation experiments will require
some form of remote management. In our paradigm, the network management infra-
structure and protocols will be reused for this task. In particular, as explained in
Section 3, the deployment and control of simulations is performed through the same
mechanisms used to deploy and control both monitoring agents and communication
protocols.

This work differs significantly from current simulation work in that the current
model of simulation typically involves the generation of synthetic workloads derived
from statistical models. Inevitably, these high-level models of network traffic fail to
capture important phenomena of the real load experienced by the real network. By
including simulation in the network management infrastructure, it is possible to feed
real workloads to the simulation system and thus greatly improve its fidelity. In
some cases the workload abstracted from monitoring agents may be directly piped to
the simulation, while in other cases this may not be possible because of differences
in time-scale. In either case, network management tools can be used to first define
the workload parameters required by the simulation and then feed collected data to
the design experiments.

(c) 1999 IFIP

4.2 Controlling Resource Utilization

Simulation is typically used to predict the performance of a design by abstracting
the behavior and performance of the design. The abstraction is usually performed in
a way that optimizes the use of computing and communication resources to address
very specific design problems. Distributed simulation offers a way to divide the
execution of the software across a network to exploit the model’s parallelism. The
amount of abstraction used in the simulated models has a huge impact on the amount
of resources required to simulate a given system. For example, if one wanted to
study the performance of a particular transport protocol, at one extreme one could
simulate the protocol by producing the actual packets of the protocol and transmit-
ting actual simulated data between the simulated hosts, or at the other extreme only
transmit high-level digests of the packets to abstract connections or the number of
bytes to transfer in each session.

421 Balancing Fiddlity with Resource Availability

We are currently focused on high-fidelity protocol development and prototyping.
This kind of engineering service may require a substantial amount of communication
and computing resources to be effective. This use of engineering services (which is
our focus in [9,12]) should either be relegated to dedicated portions of the network so
as not to interfere with normal operations, or should be executed slower than as fast-
as possible to limit the amount of resources used. It is important to realize that even
when the simulation is relegated to specific designated areas of the network (for ex-
ample, a LAN of low-cost PCs), the engineering support can still benefit from being
part of an integrated system like ANCORS.

In the near future will also develop higher-level models that will be used to as-
sess the efficacy of different routing protocols. These models will consist of simu-
lated routing tables and protocols that update the routes dynamically to minimize
delay. In this case the simulation would require few resources from the network (in
the order of a few tens of packets every several seconds) and may very well be
placed on actual network nodes. In this case the simulator, through data provided by
an ad-hoc monitoring agent, would assess the relative benefit of higher levels of dy-
namism in the route updates.

4.2.2 Not asFast asPossible

Most simulators run as fast as possible to accommodate the designers’ needs. In
some situations, however, as fast as possible may not be the best solution or may not
be desirable. In some cases, simulation, although it could execute faster than the tar-
get system (i.e. the simulated time advances faster than the physical time) must be
slowed down to the speed of physical time to allow humans to interact with it (for
example, flight simulators). In some other cases, as in network engineering, the
simulation may be slowed to prevent consuming too much of the computing and
communication resources. The degree of slowdown is intimately tied to the amount
of the resources one wants to dedicate to simulation relative to other network func-
tions and should therefore be set accordingly. When we conduct our network engi-

(c) 1999 IFIP

neering experiments, we initialize this speed by calling a function devoted to regulate
the speed of the simulation. The function has the form
hardware_synch(<virtual_time_ticks>);

Through this function the user can specify the maximum amount of virtual time
ticks per second. Whenever any of the models engaged in a simulation start con-
suming too many resources and let simulation time advance too fast, they are sus-
pended until they are allowed to execute more events. The range of values for <vir-
tual time_ticks> depends on the time granularity of the simulated system and there-
fore cannot be generalized. In our high-fidelity experiments, each virtual time tick
corresponds to 10 s and we therefore set <virtual time_ticks> to 100,000 to pace
the virtual time with physical time.

4.2.3 Software Emulation versus Simulation

As part of our research we are exploring how to support the analytical require-
ments necessary for design versus prototyping, and have developed some techniques
[9,10] to offer a prototyping and engineering environment. Using our methodology, a
designer can (1) build a distributed software emulation to first verify the correctness
of the implementation or the ideas and (2) then later, if necessary, augment the
model(s) with mechanisms to yield a distributed simulation capable of performing
timing-based quantitative measurements.

Emulation reproduces the behavior of a design by substituting some of the com-
ponents of the system that may be not available or enable a better development envi-
ronment. Emulation only tests the behavioral semantic of a system but does not pro-
vide (in most cases) metrics that are related to time. For example, emulating a trans-
port protocol may help in the development and prototyping of the finite state ma-
chinery but may not allow the measurement of how long each of the operations may
take or the quantitative effects of contention on the transmission lines.

Simulation, on the other hand, has the notion of virtual time and can be used to
estimate the time at which different operations take place in the design. Simulation
can therefore be used to perform detailed quantitative analysis of a design’s perform-
ance. Distributed simulation is typically much more expensive than distributed
emulation because it must keep track of a global notion of virtual time among the
simulating entities. This resource requirement gap between emulation and simula-
tion can therefore be exploited to tailor the amount of resources dedicated to network
engineering

5 Virtual Networking Using ANCORS

As an example of an engineering service we have developed several deployable
components to both instantiate and execute distributed simulations through Anetd. A
base component exports a set of primitives that provide (1) multithreading (nonpre-
emptive), (2) reliable multicast emulation, and (3) global time synchronization.
These primitives were designed to provide support for distributed simulation net-
work engineering applications, as well as some forms of sophisticated network
monitoring. A detailed description of these services is presented in [9].

(c) 1999 IFIP

To date, we have also developed a representative example of an engineering net-
work service that emulates a UNIX kernel. This service was obtained by modifying a
Linux operating system to allow its execution as a user process. The modifications of
the operating system substituted the lower-level hardware-dependent procedures and
interfaces with user-level counterparts. We deleted the file system support and incor-
porated all necessary configuration procedures (such as ifconfig and route) into the
virtual kernel itself. Memory management was completely deleted and replaced by
user-level memory allocation functions (malloc and free). The scheduling was also
completely replaced by nonpreemptive threading offered by the simulation package
CSIM [13].

The resulting service executes on a virtual timescale, and offers the identical
networking behavior of a real Linux kernel, providing a vehicle to instantiate high-
fidelity distributed simulations of virtual networks [9]. One of the model’s configu-
ration functions accepts several different timing configurations to approximate the
protocol stack timing behavior of four different kernels (SunOS 4.1.3, SunOS 5.5,
Linux 2.02, and FreeBSD 2.2). The virtual kernel offers the network application
programming interface (API) of the real Linux counterpart and therefore can be used
to reproduce a wide range of loading conditions. ANCORS’s ability to add and de-
lete threads can be used in this application to dynamically change loading conditions
(by adding or deleting user-defined loading threads) or by injecting user-defined
monitoring probes into the kernel, so that specific parameters can be observed. The
user-definable loads may be produced by either closely mimicking real load condi-
tions recorded by network monitoring services or by linking some real applications
to the virtual kernel to generate application-specific loads.

The deployment of a virtual network is achieved by downloading and configuring
several virtual kernels through Anetd daemons. All these operations can be per-
formed either through a standard HTML browser or via script. We have so far in-
stantiated several virtual networks running on a network of workstations including
Sun SPARCstation 20s, UltraSPARCs, and Intel-based machines running FreeBSD
and Linux. (In [9], we measured their performance and scalability.)

6 Conclusion

As the dynamic deployment of network services becomes standard technology to
support user applications, network operators will require an efficient and flexible
infrastructure to assist them in network design, configuration, and monitoring. The
quality of future network management, monitoring, and engineering tools and stan-
dards will be crucial in determining the speed at which networking will evolve to-
ward a more dynamic architecture. In ANCORS, network monitoring, control, and
design can coexist in an integrated paradigm. The synergy of combining distributed
simulation, network monitoring, and active networking will dramatically increase the
power of network management and engineering. We have shown how a unified, yet
very extensible, system management framework can be derived from current Web
technology to provide compatibility with legacy standards and virtually unlimited
extensibility to introduce more powerful management technologies as they become
available.

(c) 1999 IFIP

We are currently bridging our work with existing active networking technologies
to provide an integrated platform for merging data transport protocols and their asso-
ciated deployment mechanisms with our extensible engineering and management
support. In addition, we will use our infrastructure to conduct network engineering
experiments to advance the understanding of end-to-end network behavior and offer
a user-friendly environment for the development of new network technologies.

References

[1] Active Networks Working Group. Architectural framework for active networks. Technical Report
http://www.cc.gatech.edu/projects/canes/arch/archdraft.ps, 1998.

[2] D. S. Alexander, M. Shaw, S. M. Nettles, and J. M. Smith. Active bridging. Proceedings of the ACM
S GCOMM'97 Conference, Cannes, France, September 1997.

[3] A. Bouloutas, A. Calo, and A. Finkel. Alarm correlation and fault identification schemes in communi-
cation networks. Technical Report RC 17967, IBM, 1992

[4] J. Hartman, U. Manber, L. Peterson, and T. Proebsting. Liquid software: A new paradigm for net-
worked systems. Technical Report 96-11, University of Arizona, 1996.

[5] Javasoft. The Java remote method invocation (RMI) specification. Technical report, Javasoft, Sun
Microsystems Incorporated.
http://www javasoft.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html, 1998.

[6] 1. Katzela, A.T. Bouloutas, and S.B. Calo. Centralized vs. distributed fault localization. Integrated
Network Management 1V, 1995.

[7] U. Legedza, D. J. Wetherall, and J. V. Guttag. Improving the performance of distributed applications
using active networks. /EEE INFOCOM'9S8, 1998.

[8] K. Meyer, M. Erlinger, C. Sunshine, G. Goldszmidt, and Y. Yemini. Decentralized control and intelli-
gence in network management. Integrated Network Management 1V, 1995.

[9] L. Ricciulli. High-fidelity distributed simulation of local area networks. Proceedings of the 31st An-
nual Simulation Symposium, Boston, April 1998.

[10] L. Ricciulli, J. Meseguer, and P. Lincoln. Distributed simulation of parallel executions. Proceedings
of the 29th Annual Simulation Symposium, 1996.

[11]L. Ricciulli. Anetd: Active NETwork Daemon. Technical Report, Computer Science Laboratory,
http://www.cd.sri.com/ancors/Anetd, SRI International, 1998.

[12] L. Riccuilli, P. Lincoln, and P. Kakkar. TCP SYN flooding defense. Proceedings of Communication
Networks and Distributed System Modeling and Simulation Conference, San Francisco, 1999.

[13] H. Schwetman. CSIM: a C-based, process-oriented simulation language. Technical report, MCC,
1989.

[14] N. Shroff and M. Schwartz. Fault detection/identification in linear lightwave. Technical Report
CU/CTR/TR 243-91-24, CTR, 1989.

[15] J. Smith, D. Farber, C. A. Gunter, S. Nettle, M. Segal, W. D. Sincoskie, D. Feldmeier, and S. Alex-
ander. Switchware: Towards a 21st century network infrastructure.
http://www.cis.upenn.edu/~switchware/papers/sware.ps, 1997.

[16] A. van Hoff, J. Giannandrea, M. Hapner, S. Carter, and M. Medin. The HTTP Distribution and Repli-
cation Protocol. Attp.//www.marimba.com/standards/drp.html, August 1997.

[17] A. van Hoff, H. Partovi, and T. Thai. Specification for the Open Software Description (OSD) Format.
http://www.microsoft.com/standards/osd/, August 1997.

[18] C. Wang and M. Schwartz. Identification of faulty links in dynamic-routed networks. /EEE JSAC, 11,
1993.

[19] D. J. Wetherall, J. V. Guttag, and D. L. Tennenhouse. ANTS: A toolkit for building and dynamically
deploying network protocols. Proceedings of IEEE OPENARCH'9S, 1998.

[20] Y. Yemini and S. da Silva. Towards programmable networks. Proceedings IFIP/IEEE International
Workshop on Distributed Systems: Operations and Management, 1'Aquila, Italy, October
1996.

[21] Y. Yemini, G. Goldszmidt, and S. Yemini. Network management by delegation. Second International
Symposium on Integrated Network Management, Washington DC, April 1991.

(c) 1999 IFIP

