Application of SDL-92 for the specification of
OSI Management Systems

M. Rodriguez, R. Calmeau, E. Fernandez

Departamento de Teoria de la Sefial y Comunicaciones e Ingenieria Telemdtica
E.T.S.I de Telecomunicacion. Universidad de Valladolid

Campus Miguel Delibes S/N

47011 Valladolid

SPAIN

{manrod,calher,eusebio }@gbien.tel.uva.es

Abstract

Network resources in OSI network management are modeled using managed objects.
These objects are specified by the semi-formal language GDMO that describes their
behaviour (using natural language) and static structures. This drawback in the be-
haviour specification can be solved using formal methods. A mapping method from
GDMO information models to SD1-92 specifications based on the direct translation
of the GDMO template into SDL constructs is presented in this paper. This solu-
tion simplifies the automatic translation process between both languages and solves
some of the problems because of the differences in the object oriented concepts in-
volved. An example of the proposed translation method and its application to OSI
management system specifications are also presented.

Keywords
OSI Management, Management Information Model, GDMO, SDL-92, ASN.1

1. Introduction

An important task in the development of OSI management applications is the
specification of the management characteristics of network resources (known as

(c) 1999 IFIP

management information). To structure the management information, ITU-T! has
developed the Management Information Model (MIM), [1], which defines managed
objects as entities which represent network resources from a management point of
view. These objects are described by the standard notation GDMO, [2], which allows
the description of the managed objects static structure and their behaviour, though
bebaviour is usually specified by using natural language. This fact may introduce
ambiguities in the understanding of the behaviour and also limits the possibilities
of managed object and agent simulation. The use of a formal description technique
(FDT) to describe managed object behaviour can avoid these drawbacks. Among the
different FDTs, SDL-92, [3], has been selected due to its object oriented capabilities
(similar to the GDMO ones) and its powerful tool support.

A method to obtain a formal specification in SDL-92 of managed objects and
their interface with the agent using their GDMO definition is presented in this pa-
per. A model of the agent and its interfaces with a manager and managed objects
is also presented. The method uses the definition of ASN.1, [4], data types in SDL
specifications as defined in the Z.105 ITU-T Recommendation (SDL combined with
ASN.1), [51.

This paper is organized as follows: Section 2. describes the proposed method
to translate GDMO management information models into the corresponding SDL
specification. The suggested SDL model for a generic managed object and agent
is also presented in this section. Section 3. presents a example of the translation
algorithm. Finally, section 4. offers some conclusions and indicates the open issues
for future work.

2. Managed System Specification in SDL

2.1 Related Work

Several proposals have been made for the formal specification of information mod-
els by now. One of them focuses on extending GDMO with behavioural notations,
obtaining a formal specification of the behaviours. This approach (GDMO+ [6],
[7]) proposes several extensions to GDMO behaviour definition based on pre- and
post-conditions.

The other approaches combine several FDTs with GDMO. Mazaher and Moller-
Pedersen, [8], have proposed a set of translation rules from a GDMO specification
to an SDI-92 formal model, including data types and behaviour definitions. This
method is based on mapping: i) managed object classes into SDL-92 process types;

Unternational Telecommunications Union

(c) 1999 IFIP

ii) attributes into variables of process; and iii) operations (predefined, actions, and
notifications) into remote procedures and signals. With this mapping, every opera-
tion request on a managed object is translated into a remote procedure call. As every
managed object class will have different operations, there will be many possible dif-
ferent remote procedure calls. This fact complicates the design of agent and manager
processes. A mapping based on signal exchange and local procedures will be more
appropriated, as there will be only one signal for each kind of management operation
(the signal parameters would select the specific operation).

Bartocci, Larini and Romellini, {9], have also proposed a mapping based on
ASN.1 data types translation into SDL. ADTs? and the definition of an SDL pro-
cess type to represent the managed object behaviour. This work was continued by
Bartocci and Ferrrero in [10] and [11]. In the last two papers, they propose the intro-
duction of SDL procedures in the behaviour templates. A model of a managed object
and the interface with its agent (based on signal exchange) is also presented. This
method does not clearly show how to obtain, automatically, a SDL specification of a
managed system from a GDMO information model. Support of multiple inheritance
is not explained either.

Another work of interest is the method proposed by Samir Tata, Laurent Andrey
and Olvier Festor, [12], which takes advantage of the new facilities in the Z.105
recommendation for the use of ASN.1 together with SDL abstract data types. This
method is based on the previous ones, but the differences are not clearly explained.

Our translation algorithm is mainly based on the work of Bartocci and Ferrero,
but introducing some changes: i) the use of initializing procedures to automate the
translation algorithm and to support conditional packages; ii) the use of procedures
for combining properties to support multiple inheritance of static properties; and
finally, iii) some minor changes in the ASN.1 data type definitions.

The resulting algorithm is presented in the following sections.

2.2 GDMO-SDL translation

The proposed approach is based on the direct translation of elements in the GDMO
templates into SDL constructs and/or ASN.1 data types definitions. For each element
that can be a part of a managed object (parameter, attribute, attribute group, action
and notification) an ASN.1 data type is defined. Every data type (named as generic
data type) has the capability of storing the static properties of one of those elements.
These data types will be used in the declaration of variables in the SDL model of a
managed object.

“abstract data type

(c) 1999 IFIP

Because of the definitions of parameters, attributes, attribute groups, actions and
notifications described in the GDMO templates, can be included in different man-
aged object classes, a value returning procedure is defined for each template (except
for the behaviour one). Every procedure (named as initialization procedure) will
store the static properties defined in the template in the different fields of a variable
of the proper generic data type, and will return its value to the calling entity.

Among the static properties of a managed object are the ASN.1 data type of para-
meters, attributes, and actions and notifications associated data. The CMIP protocol
uses the ASN.1 predefined type ANY to transport these values, but the value syntax of
this type is not supported by the language defined in the Z.105 ITU-T recommend-
ation. The solution suggested in this recommendation is to substitute the ANY type
with the predefined type CHOICE. Thus, a CHOICE type will be defined to transport
the parameter values, another one for the attribute values, and so on. Every CHOICE
will have several fields, one for each element of the same kind in the information
model.

The present algorithm simplifies the automatic generation of managed object
SDL specifications because the implementation of the static properties of a man-
aged object only involves the call to the procedures corresponding to the mandatory
GDMO packages and the conditional ones whose associated condition is fulfilled,
and the call of procedures corresponding to the superclasses of the object. The pro-
cedures corresponding to packages will also call the procedures resulting from the
translation of the attributes, attribute groups, actions and notifications belonging to
the packages. This method also allows the reuse of GDMO definitions: a GDMO
template definition is translated into a SDL procedure, which will be called as many
times as references from other templates.

Dynamic properties of managed objects, expressed in the behaviour templates
using natural language, should be substituted by one or more SDL procedures (be-
haviour procedures). According to MIM, GDMO, and the draft of GDMO+, we can
distinguish the following behaviours types:

o Preconditions. conditions that must be true just before the execution of a task
(for instance, the emission of a notification), A precondition can be modeled by
a boolean returning value SDL procedure which returns true if the precondition
is fulfilled.

o Invariants: conditions that must be true for some time interval. For instance,
during object life-time, or before and after an action execution. In the last case,
the invariant can be modeled by a boolean returning value procedure that can be
invoked before and after the task execution.

(c) 1999 IFIP

e Postconditions: conditions that must be true just after the execution of some
task. The postcondition can be modeled by a SDL procedure that executes the
statements needed to force the postcondition to be true.

e Events: that can cause the execution of some task (if the existing preconditions
and invariants are true). The events may change the managed object behaviour
and can be represented by boolean value returning SDL procedures. Every one
return a true value if the event has occurred. These procedures should be invoked
periodically to know if a management operation depending on this event must be
executed.

If the event is due to a change in the managed resource, it cannot be full specified
in GDMO, because of the fact that GDMO specifies managed objects, not real
resources. The specification of this kind of behaviour in the SDL model cannot
be obtained directly from GDMO, and depends on the SDL model chosen to
represent the real resources and their communications with the related managed
objects.

o Action behaviour: is the sequence of simple operations that are executed when
an action is invoked. It can be represented by a SDL procedure that executes the
operations.

e Attributes relationship: it represents some rules affecting the values that an at-
tribute may take depending on the values of another related attributes. This be-
haviour can be represented by a SDL procedure that executes the tasks needed
to guarantee that the rules about attributes values relationship are fulfilled. They
should be invoked after modification of the value of any of the attributes involved
in the relationship, or when the managed object is not processing any manage-
ment operation.

e Managed object creation and deletion rules: they are the preconditions, invari-
ants and postconditions related to the managed object creation and deletion, and
the events that trigger these operations (in addition to the corresponding CMIP
operation requests). These rules depend on the name binding used to name the
object instances.

e Attribute matching rules: they identify how the matching rules related to the
filtering task are applied to an attribute. These rules can be modeled by boolean
value returning SDL procedures. The procedure parameter is the value we are
interested in to compare with the attribute value. It returns true if both values
match according to the rule.

To simplify the translation algorithm, the name of procedures can reflect their
functionality. For instance, the names might take the form templateType_be-

(c) 1999 IFIP

haviourType_templateName. templateType should be replaced with the
type of the template, behaviourType with the type of behaviour procedure
(createPrecondition,orderingFilter,etc.), and templateName with
the name of the behaviour template.

An scheme of the translating algorithm is shown in Figure 1. The solid lines
represent the result of the translation, and the dashed ones the auxiliary data used in
the process.

GDMO
Template
ASN.1 SDL SDL
CHOICE Initialization Behaviour
Data Type Procedure Procedure
T i
ASN.1 ? ! !
Generic [-------~ e bemmmmmm e
Data types

Figure 1: Translating algorithm scheme

The results of the translation of a information model (ASN.1 data types defin-
itions, initialization and behaviour procedures) will be grouped in a SDL package
which will be used in the definition of the SDL model of the managed system.

2.3 Managed object specification

With the translation algorithm presented in previous section, we obtain ASN.1 data
types specifications and a set of initialization procedures that can be used to store in
variables the static properties of a managed object, and a set of behaviour procedures
to represent the object specific dynamic behaviour. In this section we present the
SDL model of a managed object, which integrates those aspects with the behaviour
common to all managed objects.

Every managed object is modeled as a SDL process type. This process inherits
its generic static and dynamic properties from a generic managed object process
type (genericManagedObject process type), which can receive management
operations and emit notifications as defined in the MIM recommendation. It also
includes all the managed object specific properties defined in the procedures obtained
in the previous section. The communications between the managed object process
and its agent are done through signal exchange. There will be a signal for each kind

(c) 1999 IFIP

of management operation. The parameters of every signal will be a subset of those
associated to the corresponding CMIP operation.

Managed object attributes, attributes groups, actions and notifications static prop-
erties are stored in array variables defined in the SDL process type. The data types
of the arrays elements are the generic data types cited in section 2.2.

The multiple inheritance mechanism permitted in GDMO cannot be directly
translated into SDL, because SDL only admits simple inheritance. This feature can
be included in the SDL model by calls to the initialization procedures corresponding
to the managed object super-classes. The static properties obtained from these pro-
cedures will be combined according to the rules expressed in MIM. This task will be
done by the SDL procedure addProperties.

Figure 2 shows the definition of a SDL process type modeling a generic managed
object. It shows the signals the process can receive corresponding to the different
management operations requested by a manager, and sent via the local agent (signals
from signal list MOCMIPreq). Receiving a signal determines the execution of a
procedure that performs the proper tasks, including the sending of a signal to the
agent with the operation response data (signal from the signal list MOCMIPresp).
The procedures whose tasks depend on the managed object class being modeled,
have been defined as virtual. This fact lets the procedure redefinition in the SDL
process subtype modeling the specific class.

The initial transition consists in the execution of the init procedure, used to ini-
tialize the data structures of the process type. This procedure will be redefined in
each specific process type to call the initializing procedure corresponding to the man-
aged object class modeled by the process type (this procedure is obtained from the
translation method explained in the previous section). After that, the process enters
in the monitor state where it waits for management operation requests. These oper-
ations are performed by the shown procedures, which will execute the apropriated
behaviour procedures defined in section 2.2.

2.4 Agent specification

An agent can be modeled by a SDL process which communicates with the man-
ager processes using signal exchange. Each signal represents a kind of management
operation in a similar way as the ones used in the interface between agent process
and its managed objects processes. The parameters of every signal will be the ones
associated to the corresponding CMIP operation.

The agent behaviour consists of a generic one, inherited from a generic agent
process type (process type genericAgent), and a specific one that depends on the

(c) 1999 IFIP

PROCESS TYPE genencManagedObject 1(1)

| —— ™
H Ly VIRTUAL
H i init

GetManager
objectData =
CALL Init
VIRTUAL
- NotificationManager
Mortor
[1

MOGetRequest(MOSetRequest(MOActionRequest
attributeldList, modificationtist, (actioninto,
testMode) testMode) testMode)

\—

VIRTUAL
ActonManager

VIRTUAL
SetManager

—

objectData ManagedObjectData,
objeciClass ObjectClass,
objectinstance Objectinstance,
atinbuteList Atnbutebist,
attnbutsldList AttributeldList,
actioninfo Actioninto,

testMode Boolean,

attributsld Attributeld,
maodiflcationList MogificationLust,

GetManager(SetManager(ActionManager{
objectData objectData objectData,
attnbutelglst, modificatonList, actioninfo,
testMode) testModie) testMode)
CMIPGate
[(MOCMIPresp)]

[(MOCMIPreq)]

Monitor

True >
MODeleteRequest

MODsloteResponse

Figure 2: Generic managed object process type

objects properties of its Management Information Base (MIB).
The tasks that a SDL process acting as a OSI generic agent should be able to

perform are the following:
o Scoping: if the requested operation includes a scoping field, the agent must select
a set of object instances in the naming tree according to the scoping type and base

object specified.

e Filtering: if the requested operation includes a filtering field, the agent must
apply the filter requested to the objects previously selected by scoping (or to the
base object if no scoping is specified). A filter is a logical union of attribute value
assertions and/or tests of the presence of attributes in a managed object. To test

(c) 1999 IFIP

these assertions we can use the procedures equality attributeName,
ordering_attributeName, etc. defined in section 2.2 that model how a
matching rule can be applied to a particular attribute. Only the objects whose
attributes verify the filter will be selected to receive the management opera-
tion. In our model, scoping and filtering functions will be implemented by the
scopeAndFilter procedure, which returns a list of process identifiers corres-
ponding to the selected objects.

e Synchronization. a management operation affecting several objects can specify
two types of synchronization; i) atomic, if the operation must be executed on all
the objects or not, if some of them cannot execute it (for instance, if a precondi-
tion is not fulfilled); or ii) best-effort, if it is admissible to execute the operation
only on some of the selected objects. If the operation includes the atomic syn-
chronization, operation will be invoked on all the selected objects using the true
value in the parameter modeTest to test if the operation is possible in all of
them. If this is true, it will really invoke it on them (modeTest = False).
Otherwise, an error to the manager requesting the operation will be sent. If the
operation only needs best-effort synchronization, the agent can really invoke the
operation on the objects (some of them can reply that the operation is not pos-
sible).

e Processing of operations on several objects: the agent should translate every op-
eration into a set of operations applied to each of the objects selected by scoping
and filtering,.

e Event discrimination: notifications emitted by managed objects are sent to the
local agent, but they do not include address information about the managers that
should receive them. Thus, managers should register at the agent which handles
the corresponding objects, the notifications they want to receive. With this in-
formation, the agent can forward the received notifications to the proper man-
agers.

o Communication with the SDL processes that model managed objects: the agent
has to translate the naming information of a management operation (object class
and instance) into a SDL process identifier (PId).

There are some behavioural aspects expressed in GDMO templates that are not
really dynamic properties of the managed object but agent properties. These proper-
ties, that also must be implemented by the agent process, are the following:

o Constraints about managed object instance creation: as the managed object is
not created yet, the agent is responsible for checking if the create constraints

(c) 1999 IFIP

are fulfilled. These constraints depend on the name binding used for instance
naming.

As shown in section 2.2, these constraints can be expressed in the SDL proced-
ures obtained from the translation of the behaviour templates referenced from the
name binding ones (procedures named nameBinding_CreatePrecondi-
tions_..., nameBinding Createlnvariants_...) These proced-
ures can be used by the agent to check if the new object can be really created.
After creation, agent must guarantee that object creation invariants and postcon-
ditions are fulfilled by executing the procedures nameBinding Createln-
variants_nameand nameBinding_CreatePostconditions_name.
The agent also has to obtain the initial values for each attribute if the create beha-
viour includes an IVMO? as source of values, and to send them to the managed
object process.

e Delete constraints: before deleting an object, the agent has to check if the delete
constraints from the name binding are true. This can be done by the proced-
ure nameBinding DeletePreconditions_name. If preconditions are
true, the object can be really deleted; otherwise, the agent sends an error to the
manager requesting the delete operation.

Informally, the complete behaviour of the agent process could be as follows. The
agent process can receive management operations requests (mapped to signals in our
model) from several manager processes. The information about base object, scoping
and filtering associated to the request is used by the agent to obtain the set of target
managed object processes (identified by their PId). The agent requests the operation
to each of these objects and wait for the responses. Response information received
by the agent may be used to build the response information returned to the manager
(if the operation is confirmed).

If the agent receives a notification issued by some of its managed objects, it will
find the managers that should received it using the event discrimination function.
With this information, notification will be forwarded to the proper managers.

The agent and generic managed object model are combined with the data type
definitions and procedures result of the translation of the MIB to obtain the complete
SDL model of the managed system.

Figure 3 shows the integration of the translation algorithm results with the gen-
eric managed object and agent models to obtain the specific managed system model.
The solid line represents the result of translation of the GDMO MIB, while the
dashed ones represent the data used to obtain a specific part of the system.

3Initial Value Managed Object.

(c) 1999 IFIP

GDMO MIB

ASN.1
Generic
Data types

i
Y

ASN.1 SDL SDL
CHOICE intialization Behaviour tSyI;)Ie_sprocess
Data Types procedures Procedures
T T I T I [! L T
SDL/ASN.1 definitions
T
1
'
Generic ﬁgﬂ?'gd Specific Managed
Agent Objec? == Agent Object
Process type Process type Process Processes
Generic Managed System Managed System

Figure 3: Overall translation procedure

Currently, we are developing a tool to automate the presented algorithm. The
actual beta version of the tool is able to obtain the ASN.1 CHOICE data types, SDL
initialization procedures and a skeleton of the managed object process types from
a GDMO MIB description. To analyze and validate the SDL definitions obtained
from the translation tool and to develop the generic managed object and agent SDL

models, the SDT tool from Telelogic is been used.

3. Translating algorithm examples

An example of the translation algorithm proposed is presented in this section.

The example chosen is the vpServiceId attribute, defined in [13].

3.1 Attribute vpServiceld

The definition of the vpServiceId attribute is as follows:

vpServiceId ATTRIBUTE

WITH ATTRIBUTE SYNTAX ASNlXuserModule.VpServicelId;

MATCHES FOR EQUALITY;

BEHAVIOUR vpServiceIdBeh;
REGISTERED AS {xuserAttribute 29};

(c) 1999 IFIP

PROCEDURE AttributeData_vpServiceld (D

o ™)
| RETURNS PropInAttribTemplateTyp'e:\l
1 H l
R - - - -
attribData!
DCL . attributeName ‘=
attribData PropInAittribTemplateType; *vpSetviceld®
aux PropInAttribTemplateType;
attribData!
matchQualifiers =

attribData!
matchQualifiers OR
equality_Qualif

attribData!
attributeld!
globalForm =
xuserAttribute //
MkString(17)

attribData

Figure 4: Attribute vpServiceId initialization procedure

The translation of the vpServicelId attribute will result in:

The modification of the ASN.1 CHOICE type AttributeValue (used to
transport attribute values in management operations) to reflect the presence of
anew attribute in the information model. This data type definition will include a
new field with the vpServiceld attribute syntax (extracted from the GDMO tem-
plate construct WITH ATTRIBUTE SYNTAX):

Attributevalue ::= CHOICE {

-~ vpServiceId attribute syntax --
attributeType_vpServicelId Type_vpServiceIld
}

Type_vpServiceId ::= ASN1lXuserModule.VpServiceId

The initialization procedure At tributeData_vpServiceld,showninFig.
4. This procedure will store the attribute template name, the filtering operation

(c) 1999 IFIP

supported and the object identifier of the attribute in the proper fields of a vari-
able of a generic ASN.1 type. The value of this variable will be returned as
the result of the procedure. This procedure will be called from the procedures
corresponding to the packages including this attribute.

e The behaviour procedure equality_vpServiceld that may be used by the
agent process in a filtering operation involving this attribute (this information is
extracted from the MATCHES FOR section of the GDMO template and from
the attribute behaviour).

4. Conclusions

The mapping of management information models expressed in GDMO to SDL
specifications has been investigated in this paper. The approach is based on the
mapping of the whole set of GDMO templates to SDL procedures which describe
the corresponding static and dynamic properties and ASN.1 data type definitions.
These procedures will be used in the SDL process types that model the managed
objects. This solution facilitates the reuse of templates definitions , and simplifies the
automatic translation between both languages. It also solves some of the problems
due to the differences between them (i.e. GDMO conditional packages and multiple
inheritance, not directly supported in SDL).

Since SDL-92 is intended for the specification of whole systems, SDL might be
used to specify the managed system (agent and managed objects) and the managing
system. The presented method can also help in this task because some of the proced-
ures and data types definitions obtained from the translation procedure could be used
for the specification of the agent process and for the partial definition of the manager
process (at least the interface with the agent). The formal definition of managed
systems could be of interest for analysis and simulation purposes.

Future works will have to consider the problem of modeling object behaviour
inherited from several superclasses and/or packages.

References

[1]. ITU-T Recommendation X.720: Management Information Mode!, January
1992.

[2]. ITU-T Recommendation X.722: Guidelines for the Definition of Managed
Objects, 1992.

[3]. ITU-T Recommendation Z.100. SDL: Specification and Description Lan-
guage, 1992,

(c) 1999 IFIP

[4].

(5]

[6].

[7].

[8].

91

[10].

[11].

[12].

[13].

ITU-T Recommendation X.208: Abstract Syntax Notation One (ASN.1),
1988.

ITU-T Recommendation Z.105: SDL combined with ASN.1 (SDL/ASN.1),
March 1995.

J. Keller. An Extension of GDMO for Formalizing Managed Object Behaviour.
In FORTE’95, 1995.

ITU-T Recommendation X.722, Draft Amendment 4: GDMO+ Specifying the
Behaviour of Managed Objects, January 1997.

Shahrzade Mazaher and Birger Moller-Pedersen. On the use of SDL-92 for
the Specification of Behaviour in OSI Network Management Objects. In
O. Faergemand and A.Sarma, editors, SDL’93: Using Objects. SDL Forum,
Elsevier Science Publishers B.V., 1993.

A. Bartocci, G. Larini, and C. Romellini. A first attempt to combine GDMO
and SDL techniques. In O. Faergemand and A.Sarma, editors, SDL’93: Using
Objects. SDL Forum, Elsevier Science Publishers B.V., 1993.

A. Bartocci and A. Ferrero. Integrated Use of SDL and GDMO. In R. Braek
and A. Sarma, editors, SDL’95 with MSC in CASE. SDL Forum, Elsevier Sci-
ence Publishers B.V., 1995.

A. Ferrero and A. Bartocei. SDL and GDMO Integration. Technical report,
CSELT, September 1995.

Samir Tata, Laurent Andrey, and Olivier Festor. A practical experience on
validating GDMO-based Information Models with SDL’88 and 92. In SDL’97.
SDL Forum, September 1997.

EURESCOM. Pan-European TMN - Experiments and Field Trial Support. De-
liverable 7: Specifications of the Xuser Interfuce for ATM Network Manage-
ment. Volume 4 of 5: Annex 3 - Xuser Interface Information Model, November
1996.

(c) 1999 IFIP

