
A Constraint-Based Approach to Fault
Management for Groupware Services

M. Sabinl A. Bakman2 E. C. Freuder~ R. D. Russell~

~Computer Science Department 2Candle Corp.

UniversiQ of New Hampshire 75 Market Street, Suite 302

Durham, NH 03824 Portland, ME 04101

mcs, ec$ rdr@cs. unh, edu Alex_Bakman @candle. com

Abstract
There is no standard model at the service layer. However, fault management to
distributed services and applications needs to construct and utilize complex models
of the participating objects and their interdependencies, Thus, model-based fault
management tools can predict the correct behavior of diagnosed systems and use the
resulting predictions to identify faults. When used on-line in real systems, diagnostic

tools based on such models should be able to provide prompt response and accurate,

comprehensive explanations of the root causes of faults, In this paper we propose

to address these requirements: modeling, proactive diagnosis, and explanation. We
apply a recent extension to the constraint satisfaction paradigm, called composite

constraint satisfaction, to facilitate modeling of complex systems, and we use con-
straint propagation techniques to support proactive diagnosis and explanation. We
demonstrate the applicability of our approach on an example of a basic groupware
service, namely, distributed database replication.

Keywords

Fault management, constraint satisfaction, groupware service, modeling, proactive

diagnosis, explanation.

1. Introduction

Modeling network resources represents the first, necessary step to developing net-
work and system management tools. However, the Managed Objects (MOS) are
not isolated from each other. They exhibit relationships that reflect the dependen-
cies among the underlying network resources. The 0S1 General Relationship Model
(GRM) provides the relationship construct to support the description of the behav-
ior of the interrelated MOS that participate in a relationship. Work by [1], [2], and
[3] demonstrates how GRM can leverage management and conformance testing, and
will most likely speed up the standardization process. Some questions, however,
remain open. As has been pointed out in [1], modelers of management informa-
tion have still to decide “when and where relationships have to be defined”. In

(c) 1999 IFIP

other words, what collection of relationships best reflect and respond to manage-
ment problems? Moreover, can the management information modelers benefit from
a knowledge-based language embedded in the standardized specifications? These

questions suggest that the design of suitable management services should consider
the representation and reasoning techniques used by knowledge-based management
systems. Among such systems, model-based systems have gained a rapidly increas-

ing acceptance for use in event and alarm correlation [4], [5], [6], as well as for fault
and configuration management of distributed services and applications [7], [8]. The
latter category poses new challenges, as there are no standard models at the service
layer. Therefore, management tools should provide flexible and powerful modeling
schemes along with effective reasoning support.

The constraint satisfaction paradigm meets these challenges. In order to address
hard combinatorial problems, such as diagnosing network services, constraint satis-

faction integrates modeling, search, and propagation. The contribution of this paper
is to:

1. facilitate modeling of complex systems such as groupware services, by employ-
ing advanced constraint satisfaction modeling concepts: composition, local mod-

els, and parameterized relationships or ports,

2. use constraint propagation to (1) support proactive diagnosis of the configuration
settings and the running service, and to (2) provide explanations in terms of the
root causes of the signaled or predicted fault.

The proposed approach enhances the fault management capabilities of the diagnos-
ticians described in our previous work [9] as follows. First, the modeling scheme,
called composite constraint satisfaction [10], embeds object-oriented design princi-
ples to facilitate modeling of complex network services. Second, we use constraint

propagation in the constraint model as a natural way to report the consequences of

observed inputs before a fault actually manifests itself in the real system. In [9] the
diagnoses are produced ajler a fault is signaled, by finding all the constraint vio-
lations which are precise indicators of the deviations of the constraint model from

the actual behavior of the diagnosed system. In this paper, besides search-based di-
agnosis, we consider also the consequences of observed inputs as these inputs are
monitored (as events) or configured (as configuration settings), before the real sys-
tem reaches an invalid state. In addition, constraint propagation supports explana-
tion, by recording which observations produce certain propagation effects. Finally,

we propose to implement this approach using the instrumentation capabilities of the
IntelliWatchl Monitor tool.

The paper is organized as follows. In Section 2 we present a sample manage-
ment problem, the replication service. We use this example of groupware services as
a running example throughout the paper to describe our approach to fault manage-

ment for groupware services. In Section 3 we introduce the constraint satisfaction

problem (CSP) paradigm, highlight its strengths, and discuss its applicability to fault
and configuration diagnosis. In Section 4 we present the composite CSP extension.

1IntelliWatchand IntelliWatchMonitorare trademarksor registeredtrademarksof CandleCorp.

(c) 1999 IFIP

Section 5 presents how constraint propagation can be used for proactive diagnosis
and explanation. Section 6 reviews other model-based approaches to network man-

agement. In the last section we summarize the contribution of our work and discuss
the proposed implementation support.

2. Sample Management Problem: Replication Service

Groupware services and applications allow widely dispersed groups of people to
communicate and collaborate with each other on projects. One example is Lotus
Notes2 [11], a large, versatile, and complex groupware environment of shared, dis-

tributed, and email-enabled databases. Replication is one of its basic groupware

services. Users working with different instances of a database are able to access and
modify the same information in a manner such that each update is propagated to all

users. In the Lotus Notes environment multiple instances of the same database resid-

ing on different servers and/or clients are called replicas and are identified by unique
replica ID numbers.

Connection type: LAN (status, bandwidth), serial, etc. I
Source server

Topology Destination server
Direction: one-way or two-way
Davs of the week

Schedule Time limit
Time: specific, list, or range
Repeat interval

Data Priority: low, medium, or high
Files and Directories

Table 1: Elements of the Connection Document for scheduled replication

Our working example refers to scheduled replication, whose controlling features
are partly summarized in Table 1. The configuration element central to setting up a

scheduled replication is the Connection Document, through which the Lotus Notes
administrator: (1) establishes the lines of communications among the participating
servers according to some topology information, (2) schedules the times when repli-

cation events are triggered, and (3) decides what data get exchanged.

Among possible topologies, hub-and-spoke topology is the most recommended.
In a hub-and-spoke topology, the hub server initiates replication and starts communi-
cating with each spoke server in turn. A hierarchical organization of hub-and-spoke
topologies is shown in Figure 1a, where H1 is both the hub of the A, B, and C spokes,

and one of the spokes of the H2 hub. Connection documents created on a hub desig-
nate the hub as the source server and the spokes as destination servers. The topology

information also specifies the connection type and the replication direction. The hub
can either request reception of (pull) changes from the spoke (Figure lb), or request
transmission of (push) its own changes to the spokes, or do both. Replication occurs

2Lo~s No& is ~trademk or registeredtrademarkof LotusDevelopmentcorporation.

(c) 1999 IFIP

Figure 1: a) (left) Hub-and-spoke topologies for scheduled replication
b) (right) One-way, pull-only replication from spokes X and Y to hub H2

at scheduled times. In between these scheduled times, as users add, edit, or delete
documents in a database, the replicas are not synchronized. Finally, another level of
control of the replication process includes the specific databases andlor directories a
user chooses to replicate.

3. Constraint Satisfaction

3.1 Framework

Constraint satisfaction is a well-known paradigm in the Artificial Intelligence com-
munity, and has been applied successfully for more than two decades to a variety
of tasks, such as scheduling and resource-allocation, design and configuration, ver-
ification and diagnosis [12]. At the center of this paradigm lies the concept of the

Constraint Satisfaction Problem (CSP). A CSP is expressed declaratively as a set of

variables with associated domains of va.lue~, and a set of constraints on some of

the variables, which restrict the values the constrained variables can take. Finding a
solution to a CSP means to assign values to all variables such that all constraints are
satisfied. A CSP solving technique is based on searching for such an assignment.

Modeling in CSP terms is straightforward. It simply requires the specification of
the entities of interest to the problem being solved, or the CSP variables with associ-
ated values, and the interdependencies among these entities, or the CSP constraints.

Figure 2: CSP description of scheduled replication elements

The CSP description in Figure 2 defines two variables corresponding to two
elements in the Connection Document in Table 1, and expresses a constraint be-
tween them. Variable time can take one of three possible values, while variable
repeat Interval can take a nonnegative integer. CSP values in general can be of type
numeric, string, time, or interval and sets of these types. The constraint 6’SChre-

(c) 1999 IFIP

stricts the value assignments to the two variables, and is written as a set of logical
implications. Constraints return boolean values, thus they can be represented by any

boolean function. For the Csch constraint to be satisfied, at least one of the logi-
cal implications has to be found true. Auxiliary functions on the currently assigned
value can be used in a constraint. The A (range) function in cs.h returns the span
time of the range interval.

One essential strength of the CSP paradigm is that, on one hand, constraint mod-
eling is the natural language of discourse for many applications, and, on the other
hand, its declarative character totally decouples the resolution techniques from the

design phase. Another advantage is the wealth of thoroughly examined CSP algo-

rithms, from which the most effective for the problem at hand can be chosen. From

this perspective, CSPS scale well: their profiles in terms of semantics of constraints

and the number of variables and constraints can indicate the appropriateness of the
algorithm to be used. Finally, constraint technology supports constraintpropagation,

or consistency inference, an efficient means of narrowing down the search space and
finding partial solutions, that is, consistent value assignments to subsets of the CSP
variables. Constraint propagation can be used prior to searching for solutions (e.g.
arc or path consistency preprocessing) or can be embedded within the search al-
gorithms (e.g. forward checking or maintaining arc-consistency algorithms [13]).
Eliminating inconsistent values, either before or during search, can lead to a signifi-
cant improvement in efficiency, Moreover, constraint propagation is a direct means

for automatically producing all the consequences of a change occurring in the model.

3.2 Fault and Configuration Diagnosis

The CSP framework is model-based. To diagnose a system within the CSP frame-
work, one must first represent the model of the system structure and correct behavior.
Recent research has demonstrated the success of model-based approaches in the area
of diagnosis [14]. In the constraint-based approach applied to diagnosing problems

with network services [9], the structural elements of the system being diagnosed,
or the MO descriptions, are modeled as CSP variables, and the behavioral relation-

ships among the constituent components are expressed as constraints. Instantiating

the model based on the observed values collected dynamically from the operational
network provides us with possible deviations from the predicted, correct behavior of

the model. The discrepancies are the violated constraints found by the CSP search
algorithm, and they indicate the inconsistencies between the model predictions and
system observations.

The solution in [9] relies on two extensions to the basic CSP framework. First,
if a fault exists, the algorithm does not settle for “no solution found”. Instead, it
records as diagnoses the partial solutions for which some constraints are violated.
In the example shown in Figure 2, one diagnosis can be indicated by the violation
of the constraint C’~Chwhen the observed values for the two variables do not satisfy

the constraint. Second, the distributed nature of network services and applications,

as well as dynamic changes in network configuration, imply that not all the MO

(c) 1999 IFIP

descriptions participate in diagnosing the observed problem. The active portions of
the model that capture dependencies related exclusively to the observed symptoms
and actual configuration can be isolated at run-time by the mechanism of activity
variables and constraints. The example in [9] of diagnosing configuration problems
with the Internet domain name service illustrates the use of a CSP framework that
embeds partial solutions and dynamic control of model activation.

4. Composite Constraint Satisfaction

CSP modeling as presented above does not cope with complex and heterogeneous
management data through means such those employed in object-oriented approaches.
Thus, there is no explicit support for a generic relationship that models aggregation
or composition of subcomponents into larger components. Another essential model-
ing principle that controls complexity and enables reusability is abstraction or clas-
sification. Types of components that exhibit some commonality can be specialized
or refined through is-a relationships, from a common, higher-level component type.

4.1 Composite Values

A natural way to extend the basic CSP to address these limitations is to allow values

to be composite values, which are, in fact, entire constraint satisfaction subprob-
lems. A composite CSP is defined in the same manner as a basic CSP [10]. The
difference is that the values a variable can take are not restricted to a simple type.
Instead, a value can stand for an entire CSP subproblem. Instantiating a variable to
a composite value leads to dynamically modifying the original CSP with the new
subproblem. While variable instantiation offers the mechanism of specialization, a
composite value captures directly the concept of aggregation.

.4ND timeLimit

KjzZ

OR speciti

schedule time list

Csch range

repeatInterv

C..h ; {ihrne # range d
repeatInterval = 0,

time = range +
repeattInterual < A(range)]

Figure 3: Variables and constraints of the schedule CSP model

In Figure 3 we show that the composite value schedule, corresponding to the
schedule field in the connection document (Table 1), introduces the variables days Week,
timeLimit, time, and repeatlnterval. We distinguish the values from the variables

by drawing values within rectangles, while variables are drawn within ovals; both
are labeled with their names.

(c) 1999 IFIP

The graphical representation of the CSP submodel for the replication schedule

shown in Figure 3 highlights the object oriented design principles of composition

and abstraction incorporated in the composite CSP approach. Since the direct de-

scendants of a composite value are all CSP variables which extend the current model,

we use the graphical convention of an AND double arc. For abstraction, on the other
hand, we use the OR single arc to show that a variable can be instantiated to one of its
values only. The variable time can be instantiated to either specific, list, or range.
Note that at the bottom of the abstraction hierarchy lie variables that take elementary
values. Both time Limit and repeat Interval have integer values, while daysWeek
takes sets of string values. How is this CSP model utilized by the CSP search al-
gorithm? When the composite value schedule becomes part of a CSP model at
run-time, its variables and constraints are dynamically added to the current model.

4.2 Local Models and Ports

Two important additions to the modeling capabilities of the basic CSP are intro-

duced by the composite CSP: the concept of a local model, and a mechanism for
defining types of relationships. A composite value defines only constraints among
the variables it contains. Therefore it represents a context-independent local model.

A subset of the variables of a local model are made visible through the model inter-
face. Whenever a particular instance of a local model is used in a specific context,

additional constrains can be imposed on the interface variables as required by the
context.

The schedule CSP model which contains only the constraints among schedule
variables is a local or context-free model. The context in which this local model is

used does not affect the model’s structure and behavior. However, when “plugged”
into different larger models, schedule can introduce different constraints between its
interface variables and the variables of the model that encompasses it. For example,
the schedule model can be used by both the replication service and the mail routing
service. In either case it preserves its local variables and constraints, but it instan-
tiates different contextual information, that is, constraints, based on the model’s us-

age. In the case of replication for example, we define the Csch.repl constraint to link

schedule elements to topology and database information. The Csch.repl Constraint is

defined on four variables: bandwidth, connTime, timeLimit, and sizeAllReplicas:

Cs&@ : sizeAllReplicas /bandwidth + connTime < timeLmit
1

The sizeAllReplicas variable belongs to the sourceserver composite value,

while bandwidth and connTime characterizes connectionType. The constraint
C,c~.rePt ensures that the transfer of all replicas on the source server meets the
schedule requirements while using the configured connection. In Figure 4 we show
how the C, Ch_,.Pl constraint models the interaction among topology and schedule

elements. We also provide a more detailed CSP model of the scheduled replication

service represented by the scheduledRepl composite value. This value expands

(c) 1999 IFIP

to the CSP model that contains the variables: connectionType, sourceServer,
destServer, direction, filesDirectories, priority, and the composite value schedule.
To avoid cluttering the picture, we marked only the AND edges; all the others are

assumed to be OR. Also, to keep the example simple, some of the bottom nodes in
the hierarchy, such as sourceServer or serial, are not expanded to their CSP local
models.

v/ ZIY!

~)..e
.,.

Topology Schedule

627). .

Data

Figure 4: CSP model of scheduled replication

Types of relationships can be defined in the composite CSP approach through a
special type of variable, called port. In general, a port is described by: (1) the type of
values (possibly composite) which are allowed to connect to the port, (2) the cardi-

nality of the port, and (3) additional constraints that filter further the values received

by the port. A complete description of this modeling concept and its application
within a constraint-based framework can be found in [10].

5. Constraint Propagation

Constraint-based fault management provides the set of minimal diagnoses by sys-
tematically instantiating variables to values according to the CSP model and the
current observations collected from the running network. The constraint violations
found in the search process correlate the triggered events and indicate the possible

causes [9]. This model-based method has the important advantage of reporting un-

expected faults without necessitating time for acquiring the empirical associations,

known as rules, between symptoms and causes. In a domain so dynamic and het-

erogeneous as computer networks, building such expertise has been proven to be a
severe limitation to the traditional rule-based management systems.

Although diagnosing network services is essential to fault management, aspects
such as proactive diagnosis and explanation considerably improve the quality of fault
management. The method proposed in [9] addresses only diagnosis: in response

(c) 1999 IFIP

to a network service error, an automatically generated constraint-based diagnosti-

cian produces the set of minimal diagnoses based on observations, in a batch pro-

cess. What we propose in this paper is to enhance the diagnostician capabilities with

proactive diagnosis and explanation. This task calls for integration of the constraint
propagation techniques with the basic search engine.

Constraint propagation allows for narrowing down the value domains by remov-

ing inconsistent values without ruling out any solution in a CSP. In this section we
discuss how to exploit the facility of propagating information in a constraint model
to enable proactive and explanatory support for diagnosis.

5.1 Proactive Diagnosis

The idea behind constraint-based proactiveness is simple. The constraint model of

the monitored network system mirrors the current state of the system: changes in
the real system translate into changes in the CSP model. Constraint propagation

produces in the model the consequences of observed inputs, If the model reaches an
invalid state, that is, it becomes inconsistent and no value assignments are possible
for some variables to satisfy their constraints, it means that a fault is discovered in
the model before the fault is actually signaled.

We consider again the very simple example of the four-variable constraint

C~~&~@ defined previously. The constraint requires that the replication time (trans-
fer and connection overhead time) be no larger than timeLimit, the configurable
parameter in the connection document. One possible scenario could be that the

connection time is within normal limits, i.e., does not exceed the threshold value

of connTime for the configured bandwidth value, but there is more data than can

be transferred at the given bandwidth within the remaining time. If this happens,
timeLimit will stop the replication process without reporting any replication error in
the server’s log. Since replH istory is not updated, we need to introduce the con-
straint:

I C(r-eplHistor-y, erzdReplTirne) : replHistory = endReplTirne h

so that violation of this constraint will indicate that replication did not have enough

time to complete.
It would be more useful to give a warning prior to stopping replication, to al-

low for some corrective action. This is possible if the values of the three variables:
bandwidth, connTime, and timeLimit are propagated according to the C,~~_~~Pt
constraint as soon as they are known from the system, usually at configuration time.
The constraint propagation will set up an upper bound value for sizeAllReplicas.
Dynamically monitoring a larger value for this variable during system operation
would render the four-variable submodel inconsistent, and the constraint violation
could be reported before the replication process fails to complete. This example is
limited to a singIe constraint, but the same scheme is applied when an inconsistency
is found as a result of propagating through several constraints, and of advancing

(c) 1999 IFIP

further in the model with predicted values of correct behavior. At any point in the

process, a contradiction between observed values and propagated values may arise
before the real system reaches the inconsistent state.

Another form of proactive diagnosis is the validation of configuration settings or
changes. “What-if” scenarios are possible because the model responds to the con-
figuration decisions, and reports incorrect configurations before their effects impact
the functioning of the network service.

5.2 Explanation

In this section we show a simple example of how constraint propagation is used for

explanation. Let us assume that in a hub-and-spoke topology, where the hub server
H initiates replication with the spoke servers A, B, and C, the access control levels
(ACLS) of the same replica, residing on all servers, should be set up according to the
following policy. Replica on server H can receive from A and C either new docu-
ments (Author access), or both new documents and updates to the other documents
(Edit or access). From server B, it can receive not only document updates, but also
changes to the database design elements (Designer access). H is authorized, ac-
cording to the ACL information of the replicas on spokes, to send all the types of

updates mentioned so far, as well as changes to the replica ACL (Manager access).
The access policy also imposes the following binary constraints: B is allowed higher

access than both A and C, and H is allowed higher access than B.

&
4H

obs2 @ <

A B c
obs1 @ 2

1 < >1

Figure 5: Constraint propagation supports explanation

In Figure 5 we illustrate the allowed domains of values permitted for each server,

and the three binary constraints represented as inequality constraints: CAB, CBG,

and CBH. For example, C’BH says that a valid value assignment to B and H satisfies
the constraint that the value at B is smaller than the value at H. We assume that the
replica ACLS: Manager, Designer, Editor, and Author can be represented
as numerical values 4,3,2, and 1, respectively.

If it is observed first that Editor access is allowed to A, that is, A = 2, the
effect of propagating this value instantiation through the constraint CAB is to elim-

inate value Edit or from B (B # 2). This happens because B = 2 would violate

CAB : A < B when A = 2 (2 <2 is false). When the second observation is made
and Des i gner access is granted to H, that is, H = 3, CBH propagates this input to
B and, as a consequence, value 3 is eliminated from the domain of B (B # 3). Since

no possible value at B is left to satisfy both CAB and CBH in the presence of the
two observations, the diagnosis tool reports the fault. Note that, using propagation,

(c) 1999 IFIP

the fault is reported before an actual value is assigned to B. Moreover, a better expla-
nation can be built, rather than reporting one constraint violation. The explanation
takes into account how the two observations correlate in rendering any instantiation

at B inconsistent. Each eliminated value at B records the observation that causes

this propagation effect. When no value is left for B, an explanation is produced
from concatenating the reasons for all value eliminations: “neither Des igner nor

Edit or will work for B because A has Editor and H has Designer access”.
This way, the administrator correlates all the factors contributing to the diagnosed

inconsistency.

6. Related Work

Several other model-based approaches have focused on modeling interobject depen-
dencies and have developed appropriate reasoning techniques to perform event cor-
relation or fault and configuration management of distributed services and applica-
tions. We present here some of these approaches and emphasize the key concepts

in their solutions: active configuration and alarm knowledge, relation exploration,
model instantiation and expansion, service graph of functional and environmental
dependencies. More important, we observe that the advances of knowledge-based

systems in the domain of integrated network management has led to the crystalliza-
tion of a recurring theme: expressive models which dynamically map to, mirror, and
respond to the managed system. Once these models have been constructed, they
are used as the basis of on-line tools that monitor operating networks to detect and
diagnose faults as they occur.

The solution to event correlation and fault isolation problems presented in [4]

and [5] is based on modeling network resources as objects in a generic object model,
and on developing relationships between them. The relationships model links across
layers of the protocol stack, and between connections at the same layer. To correlate
the network objects reporting fault events with the same root cause, the relationships
are used to “navigate” the model and build an equivalence relation on the network
objects. Similarly, the constraints in our approach are used to propagate the obser-
vations in the model. Model navigation in [4] can be obtained by propagating fault
events along equality constraints that would model the specified interobject relation-

ships. To isolate the root cause of those faults that belong to the same equivalence
class, [4] apply heuristic rules to navigate the causality relationships between objects

within each class.
Management of distributed services and applications poses additional challenges

with regard to what to represent and how to reason on the designed representation.
In the absence of standard models at the service layer, management systems rely on
complex, hierarchical structure of objects representing components and dependen-
cies among them [5]. Two effective frameworks are the work presented in [7] for
fault and configuration diagnosis of distributed applications, and the work in [8] for
service availability.

Based on the idea that to manage a system one should construct a description of

(c) 1999 IFIP

it, [7] propose Dolphin, an object-oriented modeling language for networked systems

and distributed applications management, in which the modeler provides a precise
description of the correct functioning of the system, Objects described in Dolphin
include fundamental components of the system to be managed. They are character-

ized by basic attributes, or elementary information about the objects’ properties, and
by derived attributes, also called rules, which give higher-level information about the
object behavior. The rules are in fact constraints, and the diagnostic task performs
constraint checks as observed values instantiate the constraints.

The modeling schema proposed in [8] for the availability task of distributed ap-
plications starts with a generic service graph of the functional dependencies among

the application’s underlying services. This graph is then gradually refined into a
more comprehensive availability graph that involves components and their associ-

ated functional and environmental dependencies. The same function is obtained in
our constraint-based approach through composite values, which bring in more details
about the management information as needed. Finally, the parameterized availability
graph is instantiated in the concrete environment in which the availability tests and
calculations of the involved components are performed.

7. Conclusion and Future Work

In this paper we have introduced a constraint-based approach to fault management,

and illustrated its application to the replication service of the Lotus Notes system.
We have shown that our approach provides a flexible and powerful framework for
modeling network services by aggregating context-independent models. Based on
the model and the observations collected through IntelliWatch monitoring tools, the
inference engine performs both reactive and proactive diagnosis, and provides expla-
nation capabilities.

A prototype based on our approach is currently under development. At the heart

of the system lies a library of C++ classes for representing variables and constraints.

The domains of variables can be both discrete and continuous. The library offers

a large variety of predefmed constraint operators, such as arithmetic, logical, rela-
tional, set membership, etc., and specialized constraints, In addition, the modeler

can create new types of constraints, expressed either extensionally, as a set of tuples
of allowed/disallowed values, or intentionally, by combination and derivation from
predefine constraint classes. The search engine uses one of the most performant
general-purpose CSP search algorithms [13]. While the minimum level of consis-
tency maintained by the prototype system is arc-consistency, more powerful forms
of inference are performed for the specialized constraints.

In order to perform its tasks of reactive and proactive diagnosis and explanation,

the system needs both the constraint-based model and some inventory tools which
supply observations about the replication service. As inventory tools we use the
IntelliWatch Monitor, a monitoring and management tool for Lotus Notes systems.

(c) 1999 IFIP

Acknowledgment

This material is based upon work supported in part by Candle Corporation, National
Science Foundation under Grant No. IRI-95043 16, and Trilogy, The paper has ben-

efited from many discussions of the members of the Constraint Computation Center

at UNH, and from the insightful comments of the reviewers.

References

[1] E, Nataf, O. Fester, and L, Andrey, “RelMan: A GRM-based relationship man-
ager,” in Proceedings of the Fifth IFIP/IEEE International Symposium on Inte-
grated Network Management, pp. 661–6’72, 1997.

[2] R, Eberhardt, S. Mazziotta, and D. Sidou, “Design and testing of information
models in a virtual environment,” in Proceedings of the F@h IFIP/IEEE Inter-

national Symposium on Integrated Network Management, pp. 461-472, 1997.

[3] B. Baer and A. Clemm, “Testing of relationships in an osi management infor-
mation base,” in Proceedings of the Forth IFIP/IEEE International Symposium

on Integrated Network Management, pp. 578–591, 1995.

[4] J. Jordaan and M. Paterok, “Event correlation in heterogeneous networks us-
ing the osi management framework,” in Proceedings of the Third IFIP/IEEE
International Symposium on Integrated Network Management, pp. 683-695,
1993.

[5] S. Katker and M. Paterok, “Fault isolation and event correlation for integrated
fault management;’ in Proceedings of the Fifih IFIP/IEEE International Synl-

posium on Integrated Network Management, pp. 583-596, 1997.

[6] D. Ohsie, A. Mayer, S. Klinger, and S. Yemini, “Event modeling with the

MODEL language:’ in Proceedings of the Fifth IFIP/IEEE International Sym-

posium on Integrated Network Management, pp. 625–637, 1997.

[7] A. Pen, K. Eshgi, J.-J. Moreau, and S. Towers, “Managing in a distributed
world,” in Proceedings of the Fourth IFIP/IEEE International Symposium on
Integrated Network Management, pp. 94-105, 1995.

[8] G. Dreo Rodosek and T. Kaiser, “Determining the availability of distributed
applications,” in Proceedings of the Fifth IFIP/IEEE International Symposium

on Integrated Network Management, pp. 207–2 18, 1997.

[9] M. Sabin, R. Russell, and E. Freuder, “Generating diagnostic tools for network
fault management;’ in Proceedings of the Fi@h IFIP/IEEE International Sym-

posium on Integrated Network Management, pp. 700–7 11,1997.

[10] D. Sabin and E, Freuder, “Composite constraint satisfaction for configuration;’
in Working Notes of the AAAI’96 Fall Symposium (E. Freuder, cd.), 1996.

[11] Lotus Notes, Getting Started with the Domino Server, 1997.

[12] E. Freuder and A. Mackworth, eds., Constraint-BasedReasoning (Special Issue

of Artificial Intelligence: An International Journal. MIT Press, 1994.

(c) 1999 IFIP

[13] D. Sabin and E. Freuder, “Understanding and improving the mac algorithm~’ in

Proceedings of the Third International Conference on Principles and Practice

of Constraint Programming, pp. 167–181, 1997.

[14] W. Hamscher, L. Console, and J. de Kleer, eds., Readings in Model-Based

Diagnosis, (San Mateo, CA), Morgan Kaufmann Publishers, 1992.

Biography

Mihaela Sabin is currently pursuing her Ph.D. degree at the Department of Com-
puter Science, University of New Hampshire. Her research interests include con-
straint satisfaction, modeling, configuration, and network management. Her home

page is http: //www. cs .unh. edu/-rncs.

Alex Bakman is vice president of Candle Corp. He is recognized as one of the

leading experts in Notes systems management and is a member of Lotus Technical

Advisory Group. Alex has authored many articles on Notes systems management,

Candle’s Lotus Notes administrator survival guides and a book called “How to De-
liver Client/Server Applications that Work” published by Prentice Hall.
Eugene C. Freuder is a professor in the University of New Hampshire Department
of Computer Science and Director of its Constraint Computation Center. A Fellow
of the American Association of Artificial Intelligence he is the founding editor-in-
chief of Constraints, An International Journal (Kluwer Academic Publishers) and
the executive chair of the Organizing Committee of the International Conference

on Principles and Practice of Constraint Programming. His home page address is

http: //www. cs .unh. edu/Personal/ecf .html.
Robert D. Russell is an associate professor in the University of New Hampshire

Department of Computer Science. His research interests include network protocol
development, and network management. He is a member of IEEE and ACM. His
home page is http: //www. cs .unh. edu/-rdr.

(c) 1999 IFIP

