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Abstract

Prediction of network failures at the router level has been achieved using an Intelligent
Agent. Theintelligent agent gathersrelevant MIB datafrom the router and providestemporally
and spatially correlated predictive alarms. The time correlated abnormal changesin the indi-
vidual MIB variables are spatially correlated using a novel combining scheme. The agent was
implemented on a real network and seven out of nine faults were predicted. Two typical case
studies are presented. The prediction time was in the order of minutes.
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I. INTRODUCTION

Routersform the primary nodes of a Wide Area Network(WAN). The ability to pre-
dict abnormal or faulty conditionsat a router [13] is vita to providing Quality of Ser-
vice (QoS) guarantees for real time services. Prediction of impending faultswill alow
for control measures to be taken which will result in traffic being routed away from a
problem zone. Theability to predict router level failurescould avert large scale network
outages.

The challenge presented in the predicton of router level faultsisto achieve accurate
prediction with very low false alarm rate at the appropriate time scale. The occurrence
of false dlarms could add to instability in the network. Furthermore, since the agent is
implemented at the router, the processing overhead due to the agent must be kept to a
minimum. The agent implemented in this work addresses these issues and is capable
of fault prediction.

Current commercia network management packages do not provide onlinefault pre-
diction. Earlier work focussed on fault identification using fault models described by
Finite State Machine models [16] [3] and using graph based identification techniques
[12]. A review of network fault detection and identification can be found in [14]. As
described in[11] these methods assumed that the alarms pertaining to fault eventswere
provided along with accurate temporal information. However, the generation of predic-
tive and reliable time correlated alarms till remained an open problem.

A new approach was proposed and i mplemented by Maxion and others[15] [ 7] which
described faultsas deviationsfrom normal behavior. Thismethod required feature vec-
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tors which describe the faults. A promising approach employing Management Infor-
mation Base (M1B) variables was introduced in our previouswork [9]; a segmentation
algorithm for online feature extraction and a combining scheme using Bayesian belief
networkswas implemented. Asanimprovement on thismethod we recently devel oped
a change detection algorithm based on the Generdized Likelihood Ratio (GLR) test to
generate feature vectors from a select set of MIB variables. These vectors were com-
bined using a simple duration filter to get node level darms[17][18].

In thiswork, an intelligent agent which providestemporally and spatially correlated
predictivealarmswas developed for therouter. The new distributed architectureisscal-
able to any number of routers and is amenable for online implementation. The agent
was implemented on real network data. Two case studiesare presented to illustratethe
capability of the agent. The approach used here provides a theoretical framework to
the problem of fault prediction. The operator matrices introduced provide ageometric
interpretation of the fault domain.

Il. INTELLIGENT AGENT: THE MODEL

The intelligent agent implemented at a router should pose minimal computational
overload. Hence the agent was developed in adistributed framework as shownin Fig-
ure 1, where the agent uses the local MIB data to generate predictive alarms. Such a
scheme was motivated by the work done on management by delegation [8]. The lo-
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Fig. 1. Distributed Processing

cal processing done by the agent alowsit to scale easily for any number of routersin
the network. Theinformation obtained at the router isthe aggregate of the information
from al the subnets. The router, which is primarily a network layer device, processes
theip layer informationwhichisamultiplexingof traffic fromall of theinterfaces. This
distributed scheme alows for problem isolation to a specific subnetwork.

The Intelligent Agent is a processing algorithm much like a software entity that has
asitsinputsthe MIB variables that are specific to the router and its output provides a
parameter that is a predictiveindicator of network health.
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The implementation of the agent consists of two stages as shown in Figure 2. The
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Fig. 2. Model of theIntelligent Agent

first stage detects abnormal changes at the variable level using the differenced MIB
data. A time-correlated indicator of the abnormality level is produced for each of the
variables. These indicators, which are computed based on the Generalized Likelihood
Ratio (GLR) test and scaled between [0,1], correspond to variablelevel probabilitiesof
abnormality. The variable level indicators are used to construct an input vector which
is fed into the second stage, called the combiner. The combiner incorporates spatial
correlation from the variable level to compute a scalar indicator of abnormality for the
network node. Thisindicator, which isaso bounded between [0,1], isinterpreted as a
measure of the probability of abnormality in the network node.

A. Choiceof Variables

The Management Information Base variables (MIB I1), which are standardized for
the SimpleNetwork Management Protocol (SNMP) version (1), fall into different groups.
The Internet Protocol (ip) group variables were determined sufficient to describe the
functionality of the router [17][18].

The variables used in the intelligent agent represent cross sections of the traffic at
different pointsin the ip layer. The variablesipIR (In Receives) represents the total
number of datagrams received from al interfaces of therouter, ipIDe (In Delivers) rep-
resents the number of datagrams correctly delivered to the higher layers, as this node
was their fina destination, and ipOR (Out Requests) represents the number of data-
grams passed on from the higher layers of the nodeto be forwarded by theip layer. The
MIB variables chosen, athough non-redundant, are not strictly independent and there-
| ati onshi psbetween them have been incorporated at the combination stage described in
Section V.
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1. STAGE 1: TEMPORALLY CORRELATED VARIABLE LEVEL DETECTION

The increments in the MIB variable data congtitutes a time series. The time series
data for each variable was processed independently using a sequentia change detec-
tion agorithm[2]. The underlying premiseisthat the statistical properties of the MIB
variables change in response to impending fault conditions [10][7][15]. Since these
changes are subtlethey cannot be captured by conventional adaptivethresholding schemes
that use only the mean and variance of theraw data[10]. Figure 3 showsatypica data
trace of a MIB variable during normal functioning of the network and during a fault
period (the asterisks denote the fault period as identified by syslog messages). At first
glance, thetwo data series seem indistinguishable. Our challenge was to detect the sub-
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Fig. 3. Representativetraceof ipIR variable

tlechangesthat precede thefault inthe presence of intrinsically non-stationary behavior
in the variables. To acheive this, the Auto-Regressive (AR) model was used. The AR
parameters go beyond the mean and variance by including the dependency structurein
the underlying time series over a short range.

Piecewise stationary AR model sare commonly used to describe non-stationary stochas-
tictimeseriessignals[4]. Theinput MIB datawere sequentially processed by consider-
ing the time series of each of the variables over piecewise stationary windows. Within
agiven window the MIB data were linearly modelled using afirst order AR process.
Using two adjacent piecewise stationary windows, the learning window L(t) and the
test window T'(¢), a sequential hypothesis test was performed using the Generalized
Likelihood Ratio (GLR) test [1] [6]. The complete derivation of the test statistic can
befoundin[17] [18].
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The joint likelihood | of the residua errors in the two windows L(¢) and T'(¢) of
length N, and Nt respectively isgiven as,

NL NT , ,
1 1 —Np6% —Np62, )
= exp | ——5— | exp ;
\/2mo? /272 20% 202,

where o2 and o2 are the variance of the residuals in windows L(t) and T(t), N, =
Nz, —p, Ny = Np —pand, 52 and 62, are the covariance estimates of o2 and 2. [6].
The expression for | is asufficient statistic and is used to perform abinary hypothesis
test. Under the hypothesis Hy, implying that no change is observed between the two
windows, we have the likelihood [j:

>N’L+N'T - (_(NL+NT) &123) o

2
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where o is the pooled variance. Under hypothesis H, implying that a change is ob-
served between the two windows we have, I; = [. In order to obtain a value for the
likelihood ratio 7 that is bounded between [0 1], we define n; as follows,

L+l

n (©)

Furthermore, onusing themaximum likelihoodestimatesfor thevariancetermsin equa-
tions (1) and (2) we get;

~—Np ~—Np
0, Or

n= (4)

&Zwi&;x%_%&;<NL+NT>
Using thisapproach, we obtai n asequentia measure of abnormality for each of theMIB
variablesastheoutput of thefirst stage. Theseindicators, which arefunctionsof system
time, are updated every Nr lags.

The implementation of stage (1) depends on the choice of the test window size N,
and the order of the AR process p. A trade off study on these issues was donein [18].
A study on the statistical properties of the residuals of the adjacent windows can be
found in [17]. The length of the learning window N, was experimentally optimised
for the MIB variables, iplDe, and ipOR to be 120 mins. The variableipl R had an opti-
mal learning window of 5 mins. We believethat thisdifference can be attributed to the
bursty behavior of theiplRvariable.

IV. STAGE 2: SPATIAL CORRELATION USING A COMBINER

The goa of the combiner isto incorporatethe spatial dependenciesinto thetime cor-
related variablelevel indicatorsin order to compute asinglescaar valuethat ispredic-
tiveand represents the probability of node level dbnormality. In most alarm correlation
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and fault identification schemes [ 12][16] sometype of fault model isrequired to incor-
porate spatial dependencies. When predicting a fault, no models exist that capture the
MIB variable behavior before the fault occurs. In this work we attempt to provide a
combining scheme that is independent of specific fault descriptions and amenable for
online implementation.

Our combining scheme consisted of an operator matrix to incorporate the spatial de-
pendencies. In analogy to quantum mechanics [5] the observable of this operator was
interpreted as the abnormality of the network and the expectation of the observablewas
the scalar quantity A used to indicate the abnormality of the network node.

Firsta (1 x n) input vector ¢ was constructed with components:

Y= [ m o - - - Tn ] (5)

Each component of thisvector correspondsto the probability of abnormality associated
with each of the MIB variables. In order to complete the basis set so that al possible
states of the system are included, an additional component 7, that corresponds to the
probability of norma functioning of the network was created. The final component
allowsfor proper normalisation of the input vector. The new input « vector,

1/1204[771 - - M 770] (6)

was normalised with « as the normaisation constant. By normalising the input vec-
tor, we obtain avalue between [0 1] for the expectation of the observable A, which we
interpreted as the probability of node level abnormality.

Theoperator matrix A was designed to be Hermetian. The entriesof thematrix show
how the operator causes the components of the input vector to interact with each other.
Since matrix A is Hermetian, its eigenvectors ¢, are orthogona. Once normalized,
these eigenvectors were used to form an orthonormal basis set. Therefore any input
vector ¢ can be decomposed onto its eigenvector basis as follows:

n

pi=> cio (7)
=1
The input vector 4! that is transformed by the operator A can be written as
AwT = A Z cidi (8)
1=1
1=1

where )\;, arethe eigenvalues of A. Inorder to obtain a scalar value of the measure of
the transformation we perform the following operation:

PpAYT = ch)\q (20)
i=1
- B (1)
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where ¢; istheamplitude of the projection of any input vector ¢ onto thei-th eigenvec-
tor. This quantity 1»Av” providesthe scalar value that corresponds to the expectation
of theeigenvalue E()).

A. Design and Interpretation of The Operator Matrix

At therouter threevariables (viz) ipl R, iplDe, and ipOR were considered. Including
the normal probability, a1 x 4 input vector was required:

VYip=ar| MR Nipe 7NOR Mipyormal | - (12)

Theinput vector corresponding toacompletely faulty probabilityisy = ar [ 1 1 1
(thefourthcomponent isO, sincethe systemiscompletely faulty). Using thisvector the
normalization constant o for the router was calculated to be ig

The appropriate operator matrix A;, will be 4 x 4. We design the operator matrix
to be Hermetian. Taking the normal state to be uncoupled to abnormal states we get a
block diagonal matrix witha3 x 3 upper block A;p, pper @d al x 1 lower block:
a1 a2 aiz 0
az1 az2 a3 0
az1 azz azz O

0 0 0 aq4
The a44 element indicates the contribution of the healthy state to the indicator of ab-
normality for the network node (E])\]). Sincethe healthy state should not contributeto
the a@bnormality indicator, we assigned a44 = 0.

The elements in the upper block A;p,,, pper represent the interaction between the ab-
norma states of the M 1B variables under the action of the operator (theelement a,,,, is
theprojectionof A;p, pperin ONtothe basisvector v,,). The elements a,,, of Aip, pper
were assigned based on the spatial correlation between the variables. The coupling of
the ipIR variable with ipOR and iplDe variables (a12 and a;3) were assigned values
0.08 and 0.05 respectively. This was because the majority of packets received by the
router are forwarded at the ip layer and not sent to the higher layers. The coupling be-
tween ipIDe and ipOR (a23) issignificantly higher since both variables relate to router
processing which is performed at the higher layer. These assignments were based on
the flow of traffic and the statistical correlations between the variables. By symmetry:
a21 = a1z, a31 = ai3, ad asz = aze. The main diagona terms are assigned such that
the rows and columns sumto 1. Thusour A;;,, pper Matrix becomes:

0.87 0.08 0.05
Aipupper = | 0.08 0.6 0.32

0.05 0.32 0.63
Note that the lower block does not affect the indicator of network abnormality. Hence
our computation only uses the upper block. Therefore equation(11) becomes:

B[N = wuppeTAipuppengppeT (13)

Ay =

where Yupper = ar [ Ntr Mipe NMor |-
Geometric Interpretation
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The eigenvalues of the upper block matrix A;p,, pper are A1 =0.2937, Ao = 0.8063, and
A3 = 1. The corresponding eigenvectorsare ¢, = | —0.0414 0.7269 —0.6855 |,
¢2 = [ 0.8154 —0.3718 —0.4436 ], and ¢3 = [ 0.5774 0.5774 0.5774 |.
These vectors are shown in Figure 4. The fourth eigenvector, which is not shown is
pa=1[0 0 0 1 ]witheigenvalue\s = 0. The cube shown in thefirst sector of

u)OR

RPN

IDe

U=

Fig. 4. Eigenvectorsand Problem Domain

thethree dimensional spacein Figure4 representsthe problem domain. Thisisbecause
theinput variablesto the combiner rangefrom[01]. The eigenvector ¢3 correspondsto
thetotal fault vector ( al input components abnormal) and is present at the center of the
cube. Eigenvectors ¢, and ¢- are necessarily outside the problem domain since they
must be orthogonal to ¢3. Thus in our problem, unlike in Quantum Mechanics, two
of the eigenvectors are outside the problem domain: however projectionsof ) onto ¢,
and ¢, are alowed.
Suppose the input vectors were only composed of ¢, and ¢3, then

Y = cag2 + c3ds3 (14)

Since ¢ was normalised,
cs+ci=1 (15)

Substituting v into Equation ( 11) we get the abnormality indicator:
E[)\] = C%)\Q + C%)\g. (16)

Inthiscase E[\] isbounded by A, = 0.8063 and A3 = 1. Thisresultled ustouse \, as
thethreshold to indicate node level alarms. Notethat input vectors which are not com-
posed exclusively by ¢- and ¢3 could still yieldan E[A] > Az, but these vectorswould
necessarily have large projectionson ¢, and/or ¢3. The abnormal region isdefined as:

A2 < E[A] < A3 = abnormal region 17)

V. EXPERIMENTAL WORK

Theexperimentswere conducted ontheLocal AreaNetwork (LAN) of the Computer
Science (CS) Department at Rensselaer Polytechnic Institute. The network topology is
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asshownin Figure 5. The CS network forms one subnet of the main campus network.
Within the CS network there are seven smaller subnets and two routers. One router is
used for internal routing and the other serves mainly as a gateway to the campus back-
bone. The internal router has 6 interfaces with the CS subnets. The magjority of the

< gateway internal

To campus network

Fig. 5. Configuration of the monitored network

traffic isfile transfers or web traffic which involves the workstations accessing thefile
servers. Theinterna router is an SNMP agent. The Management Information Base on
thisagent was polled (usingaPERL script) every 15 secondsto obtai n the measurement
variables. Data was collected from the internal router.

There were no network management measures in place on this network. Each ma
chine on the network ran the UNIX syslog function. Thisfunction generated messages
that related to problems associated with the network, applications, or the specific ma-
chineitself. These sydog messages were used to identify the network problems. One
of the most common network problems was NFS server not responding. The syslog
messages only reported that the file server was not responding, but was unableto iden-
tify the cause of the problem. Possible reasons for this problem are unavailibility of
network path or that the server was down. Although not al problems could be associ-
ated with syslog messages, those problems which were identified by syslog messages
were accurately correlated with fault incidents. A description of the data sets used is
provided in the Table( I). In most cases the agent was able to predict the occurrence of
afault significantly ahead of the syslog messsage reports.

A. Case Sudy (1):

Here we describe a fault scenario corresponding to afile server failure on subnet 2
(dataset 2 fault 1 in Table1). 12 machines on subnet 2 and 24 machines outside sub-
net 2 reported the problem via syslog messages. The duration of the fault was from
11.10am to 11.17am (7mins) as determined by the syslog messages. The cause of the
fault was confirmed to be excessive number of ftp requests to the specific file server.
Figure 6 shows the output of the agent at the router and at the ip layer variable level.
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TABLEI
DESCRIPTION OF FAULT DATA SETS: FAULT LOCATION AND TIME

Data No of Fault Time and/ Number of
set no faults location duration of machines outside
indataset || (subnet) faults fault subnet
1 1 2 4.19-4.21pm 24
2 1 2 11.10-11.17am 24
3 3 2 8.23 - 8.26pm 14
2 1.23- 1.25am 0
2 9.48 - 9.52am 15
4 1 2 6.33 - 6.36am 6
5 1 2 9.36-9.41pm 10
6 2 3 11.17-11.21pm 2
11.28 - 11.30pm
3 3.22-3.26pm 3

The indicators provide the trends in abnormality. The variable level abnormality in-
dicator contains the temporal information. The fault period is shown by the vertica
dotted lines. In Figure 6 for router hedlth, the 'x’ denotes the alarms that correspond
to input vectorsthat are faulty. Note that there are very few such alarms at the router
level. The mean time between false larms in this case was found to be 98 mins. The
fault was predicted 29 minsbefore the crash occurred. The persistence in theabnormal
behavior of therouter is a so captured by theindicator. The on-off nature of theipl DE
and ipORindicators was attributed to the less bursty behavior of those variables. Note
also that the router shows abnormal behavior soon after the fault. This was attributed
to the hysteresis. In our present scheme no measures are taken to combat this effect.

B. Case Sudy (2):

This case corresponds to a file server failure on subnet 3 (data set 6 fault 2 in Ta
blel). 8 machines on subnet 3 and 3 machines outside subnet 3 reported the problem.
The duration of thefault wasfrom 3.22pmto 3.26am (4 mins). Figure 7 showsthe out-
put of the agent. In this case the mean time between false alarms was found to be 34
mins. The fault was predicted less than 1 minute before the crash occurred. However
thepersistencein abnormal behavior of therouter was observed several minutesbefore
the actua crash.

Inthe above two cases we have shown that the agent is capabl e of predicting faultsat
different times of the day. Regardless of the number of machines that are affected (24
inthefirst case and 3 in the second case) outsidethe subnet, the agent isableto predict
the problem as long as there is some traffic that affects the network layer variables.
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Fig. 6. Abnormality indicatorsat the Router

VI. PERFORMANCE OF THE AGENT AND COMPOSITE RESULTS
The performance of the agorithmis expressed in terms of the probability of predic-
tion P,, predictiontime 7,,, and the mean time between false darms 7.

B Tota Number of True Alarms
" Total Number of Known Faults

(18)

p

We distinguished between atrue dlarm and afal sealarm asfollows: atruealarm corre-
spondsto a set of one or more consecutive alarms subject to the following constraints:

T < 15mins (19)
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Tp < Tf (20)

where 7, is the time between any two consecutive alarms and corresponds to 3 lags.
These quantities are depicted in Figure 8. The composite resultsfor the data obtained
fromtheinternal router arecompiled in Table( ). Notethe average predictiontime (23
mins) islessthan half the mean time between false darms (52 mins). The time scal e of
prediction is large enough to alow time for potential corrective measures. Seven out
of nine faults were predicted making the average probability of prediction P, = 0.78.
In data set 3, fault 2 was reported by only two machines on the same subnet on which
the faulty file server was located. This suggests that for this fault there was minimal
impact on theip leve traffic which resulted in no prediction.
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Data Set no || Fault No || Prediction Time Mean Time Between P,
T, (mins) False Alarms T’ (mins)

1 1 - 53 0

2 1 29 98 1

3 1 34 55 0.67
2 -
3 16

4 1 29 37 1

5 1 27 32 1

6 1 23 34 1
2 <1

Avg 23 52 0.78
TABLE Il

PREDICTION OF FAULTSAT THE INTERNAL ROUTER

The algorithmis based on alinear model, rendering it feasible for onlineimplemen-
tation. The complexity as a function of the number of model parameters is O(4N),
where N isthe number of input MIB variables. For the work discussed here we have
N = 3. The computationa complexity expressed in terms of the number of floating
point operations performed is approximately 9 per sec.

VIl. DiscussioN AND CONCLUSION

Theintelligent agent was shown to be capabl e of predicting network problemswitha
very high probability. The agent captures most of the salient features of fault behavior.
Thetimescale of predictionissufficient to allow for triggering corrective mechanisms
to aleviatetheimpending problem. The agent has been implemented in an onlinefash-
ion.

The current architecture allows the agent to scale easily to multiplenodes. The vari-
able level detection was done using sequential testing. The variable level indicators
were designed to maximize information by avoiding thresholds. Since strict modelling
of the signal was not required but rather accurate prediction and simplicity, an AR(1)
model was used. The new combination scheme incorporates the spatia dependencies
more naturally than the duration filter used previously [17] and as expected performed
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better under the stricter criteriafor prediction used in this paper. Theidea of fault vec-
tors provides a structure for understanding the multivariableinput vectors aswell asa
good criteriafor declaring node level alarms.

Future effortswill be made in adapting the agent to gateways and switches. A simi-
lar agent has already been developed for the interface level traffic. Using information
from both theinterface if and the network ip layers we were able to isol ate the problem
to the subnet level and locate the possible origin of the problem. Work is under way
to combine the information fromthe ip and the if layers to reduce false darms and ob-
tain the average abnormdlity of the entire network. Effortswill aso be concentrated on
finding better time series models for the bursty variable(ipl R). We are a so working on
fault smulations to aid the bench marking of the agent. Currently data obtained from
alarger enterprise network is being used to test the scalability of the agent.
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