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Abstract

Prediction of network failures at the router level has been achieved using an Intelligent
Agent. The intelligent agent gathers relevant MIB data from the router and provides temporally
and spatially correlated predictive alarms. The time correlated abnormal changes in the indi-
vidual MIB variables are spatially correlated using a novel combining scheme. The agent was
implemented on a real network and seven out of nine faults were predicted. Two typical case
studies are presented. The prediction time was in the order of minutes.
Research Paper with Case Studies
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I. INTRODUCTION

Routers form the primary nodes of a Wide Area Network(WAN). The ability to pre-
dict abnormal or faulty conditions at a router [13] is vital to providing Quality of Ser-
vice (QoS) guarantees for real time services. Prediction of impending faults will allow
for control measures to be taken which will result in traffic being routed away from a
problem zone. The ability to predict router level failures could avert large scale network
outages.

The challenge presented in the predicton of router level faults is to achieve accurate
prediction with very low false alarm rate at the appropriate time scale. The occurrence
of false alarms could add to instability in the network. Furthermore, since the agent is
implemented at the router, the processing overhead due to the agent must be kept to a
minimum. The agent implemented in this work addresses these issues and is capable
of fault prediction.

Current commercial network management packages do not provide online fault pre-
diction. Earlier work focussed on fault identification using fault models described by
Finite State Machine models [16] [3] and using graph based identification techniques
[12]. A review of network fault detection and identification can be found in [14]. As
described in [11] these methods assumed that the alarms pertaining to fault events were
provided along with accurate temporal information. However, the generation of predic-
tive and reliable time correlated alarms still remained an open problem.

A new approach was proposed and implemented by Maxion and others [15] [7] which
described faults as deviations from normal behavior. This method required feature vec-
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tors which describe the faults. A promising approach employing Management Infor-
mation Base (MIB) variables was introduced in our previous work [9]; a segmentation
algorithm for online feature extraction and a combining scheme using Bayesian belief
networks was implemented. As an improvement on this method we recently developed
a change detection algorithm based on the Generalized Likelihood Ratio (GLR) test to
generate feature vectors from a select set of MIB variables. These vectors were com-
bined using a simple duration filter to get node level alarms [17][18].

In this work, an intelligent agent which provides temporally and spatially correlated
predictive alarms was developed for the router. The new distributed architecture is scal-
able to any number of routers and is amenable for online implementation. The agent
was implemented on real network data. Two case studies are presented to illustrate the
capability of the agent. The approach used here provides a theoretical framework to
the problem of fault prediction. The operator matrices introduced provide a geometric
interpretation of the fault domain.

II. INTELLIGENT AGENT: THE MODEL

The intelligent agent implemented at a router should pose minimal computational
overload. Hence the agent was developed in a distributed framework as shown in Fig-
ure 1, where the agent uses the local MIB data to generate predictive alarms. Such a
scheme was motivated by the work done on management by delegation [8]. The lo-
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Fig. 1. Distributed Processing

cal processing done by the agent allows it to scale easily for any number of routers in
the network. The information obtained at the router is the aggregate of the information
from all the subnets. The router, which is primarily a network layer device, processes
the ip layer information which is a multiplexingof traffic from all of the interfaces. This
distributed scheme allows for problem isolation to a specific subnetwork.

The Intelligent Agent is a processing algorithm much like a software entity that has
as its inputs the MIB variables that are specific to the router and its output provides a
parameter that is a predictive indicator of network health.

(c) 1999 IFIP



The implementation of the agent consists of two stages as shown in Figure 2. The

MIB variables
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Fig. 2. Model of the Intelligent Agent

first stage detects abnormal changes at the variable level using the differenced MIB
data. A time-correlated indicator of the abnormality level is produced for each of the
variables. These indicators, which are computed based on the Generalized Likelihood
Ratio (GLR) test and scaled between [0,1], correspond to variable level probabilities of
abnormality. The variable level indicators are used to construct an input vector which
is fed into the second stage, called the combiner. The combiner incorporates spatial
correlation from the variable level to compute a scalar indicator of abnormality for the
network node. This indicator, which is also bounded between [0,1], is interpreted as a
measure of the probability of abnormality in the network node.

A. Choice of Variables

The Management Information Base variables (MIB II), which are standardized for
the Simple Network Management Protocol (SNMP) version (1), fall into different groups.
The Internet Protocol(ip) group variables were determined sufficient to describe the
functionality of the router [17][18].

The variables used in the intelligent agent represent cross sections of the traffic at
different points in the ip layer. The variables ipIR (In Receives) represents the total
number of datagrams received from all interfaces of the router, ipIDe (In Delivers) rep-
resents the number of datagrams correctly delivered to the higher layers, as this node
was their final destination, and ipOR (Out Requests) represents the number of data-
grams passed on from the higher layers of the node to be forwarded by the ip layer. The
MIB variables chosen, although non-redundant, are not strictly independent and the re-
lationships between them have been incorporated at the combination stage described in
Section IV.
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III. STAGE 1: TEMPORALLY CORRELATED VARIABLE LEVEL DETECTION

The increments in the MIB variable data constitutes a time series. The time series
data for each variable was processed independently using a sequential change detec-
tion algorithm [2]. The underlying premise is that the statistical properties of the MIB
variables change in response to impending fault conditions [10][7][15]. Since these
changes are subtle they cannot be captured by conventional adaptive thresholdingschemes
that use only the mean and variance of the raw data [10]. Figure 3 shows a typical data
trace of a MIB variable during normal functioning of the network and during a fault
period (the asterisks denote the fault period as identified by syslog messages). At first
glance, the two data series seem indistinguishable. Our challenge was to detect the sub-
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Fig. 3. Representative trace of ipIR variable

tle changes that precede the fault in the presence of intrinsicallynon-stationary behavior
in the variables. To acheive this, the Auto-Regressive (AR) model was used. The AR
parameters go beyond the mean and variance by including the dependency structure in
the underlying time series over a short range.

Piecewise stationary AR models are commonly used to describe non-stationary stochas-
tic time series signals [4]. The input MIB data were sequentially processed by consider-
ing the time series of each of the variables over piecewise stationary windows. Within
a given window the MIB data were linearly modelled using a first order AR process.
Using two adjacent piecewise stationary windows, the learning window L(t) and the
test window T (t), a sequential hypothesis test was performed using the Generalized
Likelihood Ratio (GLR) test [1] [6]. The complete derivation of the test statistic can
be found in [17] [18].
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The joint likelihood l of the residual errors in the two windows L(t) and T (t) of
lengthNL and NT respectively is given as,

l =
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where σ2
L and σ2

T are the variance of the residuals in windows L(t) and T(t), ŃL =
NL− p, ŃT = NT − p and, σ̂2

L and σ̂2
T are the covariance estimates of σ2

L and σ2
T [6].

The expression for l is a sufficient statistic and is used to perform a binary hypothesis
test. Under the hypothesis H0, implying that no change is observed between the two
windows, we have the likelihood l0:

l0 =

(
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ŃL + ŃT
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where σ2
P is the pooled variance. Under hypothesisH1, implying that a change is ob-

served between the two windows we have, l1 = l. In order to obtain a value for the
likelihood ratio η that is bounded between [0 1], we define η as follows,

η =
l1

l1 + l0
(3)

Furthermore, on using the maximum likelihoodestimates for the variance terms in equa-
tions (1) and (2) we get;

η =
σ̂−ŃL

L σ̂−ŃT

T

σ̂−ŃL

L σ̂−ŃT

T + σ̂
−(ŃL+ŃT )
P

(4)

Using this approach, we obtain a sequential measure of abnormality for each of the MIB
variables as the output of the first stage. These indicators, which are functions of system
time, are updated every NT lags.

The implementation of stage (1) depends on the choice of the test window size NT ,
and the order of the AR process p. A trade off study on these issues was done in [18].
A study on the statistical properties of the residuals of the adjacent windows can be
found in [17]. The length of the learning window NL was experimentally optimised
for the MIB variables, ipIDe, and ipOR to be 120 mins. The variable ipIR had an opti-
mal learning window of 5 mins. We believe that this difference can be attributed to the
bursty behavior of the ipIR variable.

IV. STAGE 2: SPATIAL CORRELATION USING A COMBINER

The goal of the combiner is to incorporate the spatial dependencies into the time cor-
related variable level indicators in order to compute a single scalar value that is predic-
tive and represents the probability of node level abnormality. In most alarm correlation
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and fault identification schemes [12][16] some type of fault model is required to incor-
porate spatial dependencies. When predicting a fault, no models exist that capture the
MIB variable behavior before the fault occurs. In this work we attempt to provide a
combining scheme that is independent of specific fault descriptions and amenable for
online implementation.

Our combining scheme consisted of an operator matrix to incorporate the spatial de-
pendencies. In analogy to quantum mechanics [5] the observable of this operator was
interpreted as the abnormality of the network and the expectation of the observable was
the scalar quantity λ used to indicate the abnormality of the network node.

First a (1× n) input vector ψ was constructed with components:

ψ =
[
η1 . . . ηn

]
(5)

Each component of this vector corresponds to the probability of abnormality associated
with each of the MIB variables. In order to complete the basis set so that all possible
states of the system are included, an additional component η0 that corresponds to the
probability of normal functioning of the network was created. The final component
allows for proper normalisation of the input vector. The new input ψ vector,

ψ = α
[
η1 . . . ηn η0

]
(6)

was normalised with α as the normalisation constant. By normalising the input vec-
tor, we obtain a value between [0 1] for the expectation of the observable λ, which we
interpreted as the probability of node level abnormality.

The operator matrixAwas designed to be Hermetian. The entries of the matrix show
how the operator causes the components of the input vector to interact with each other.
Since matrix A is Hermetian, its eigenvectors φi are orthogonal. Once normalized,
these eigenvectors were used to form an orthonormal basis set. Therefore any input
vector ψ can be decomposed onto its eigenvector basis as follows:

ψT =
n∑

i=1

ciφi (7)

The input vector ψT that is transformed by the operator A can be written as

AψT = A

n∑
i=1

ciφi (8)

=
n∑

i=1

ciλiφi (9)

where λi, are the eigenvalues of A. In order to obtain a scalar value of the measure of
the transformation we perform the following operation:

ψAψT =
n∑

i=1

c2iλi (10)

= E(λ) (11)
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where ci is the amplitude of the projection of any input vectorψ onto the i-th eigenvec-
tor. This quantity ψAψT provides the scalar value that corresponds to the expectation
of the eigenvalue E(λ).

A. Design and Interpretation of The Operator Matrix

At the router three variables (viz) ipIR, ipIDe, and ipOR were considered. Including
the normal probability, a 1× 4 input vector was required:

ψip = αR

[
ηIR ηIDe ηOR ηipnormal

]
. (12)

The input vector corresponding to a completely faulty probability isψ = αR

[
1 1 1 0

]
(the fourth component is 0, since the system is completely faulty). Using this vector the
normalization constant αR for the router was calculated to be 1√

3
.

The appropriate operator matrix Aip will be 4 × 4. We design the operator matrix
to be Hermetian. Taking the normal state to be uncoupled to abnormal states we get a
block diagonal matrix with a 3× 3 upper block Aipupper and a 1× 1 lower block:

Aip =



a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
0 0 0 a44




The a44 element indicates the contribution of the healthy state to the indicator of ab-
normality for the network node (E[λ]). Since the healthy state should not contribute to
the abnormality indicator, we assigned a44 = 0.

The elements in the upper block Aipupper represent the interaction between the ab-
normal states of the MIB variables under the action of the operator (the element amn is
the projection ofAipupperψn onto the basis vectorψm). The elements amn ofAipupper

were assigned based on the spatial correlation between the variables. The coupling of
the ipIR variable with ipOR and ipIDe variables (a12 and a13) were assigned values
0.08 and 0.05 respectively. This was because the majority of packets received by the
router are forwarded at the ip layer and not sent to the higher layers. The coupling be-
tween ipIDe and ipOR (a23) is significantly higher since both variables relate to router
processing which is performed at the higher layer. These assignments were based on
the flow of traffic and the statistical correlations between the variables. By symmetry:
a21 = a12, a31 = a13, and a23 = a32. The main diagonal terms are assigned such that
the rows and columns sum to 1. Thus our Aipupper matrix becomes:

Aipupper =


 0.87 0.08 0.05

0.08 0.6 0.32
0.05 0.32 0.63




Note that the lower block does not affect the indicator of network abnormality. Hence
our computation only uses the upper block. Therefore equation(11) becomes:

E[λ] = ψupperAipupperψ
T
upper (13)

where ψupper = αR

[
ηIR ηIDe ηOR

]
.

Geometric Interpretation
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The eigenvalues of the upper block matrixAipupper are λ1 = 0.2937, λ2 = 0.8063, and
λ3 = 1. The corresponding eigenvectors are φ1 =

[ −0.0414 0.7269 −0.6855
]
,

φ2 =
[

0.8154 −0.3718 −0.4436
]
, and φ3 =

[
0.5774 0.5774 0.5774

]
.

These vectors are shown in Figure 4. The fourth eigenvector, which is not shown is
φ4 =

[
0 0 0 1

]
with eigenvalue λ4 = 0. The cube shown in the first sector of
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Fig. 4. Eigenvectors and Problem Domain

the three dimensional space in Figure 4 represents the problem domain. This is because
the input variables to the combiner range from [0 1]. The eigenvectorφ3 corresponds to
the total fault vector ( all input components abnormal) and is present at the center of the
cube. Eigenvectors φ1 and φ2 are necessarily outside the problem domain since they
must be orthogonal to φ3. Thus in our problem, unlike in Quantum Mechanics, two
of the eigenvectors are outside the problem domain: however projections of ψ onto φ1

and φ2 are allowed.
Suppose the input vectors were only composed of φ2 and φ3, then

ψ = c2φ2 + c3φ3 (14)

Since ψ was normalised,
c22 + c23 = 1 (15)

Substitutingψ into Equation ( 11) we get the abnormality indicator:

E[λ] = c22λ2 + c23λ3. (16)

In this case E[λ] is bounded by λ2 = 0.8063 and λ3 = 1. This result led us to use λ2 as
the threshold to indicate node level alarms. Note that input vectors which are not com-
posed exclusively by φ2 and φ3 could still yield an E[λ] > λ2, but these vectors would
necessarily have large projections on φ2 and/or φ3. The abnormal region is defined as:

λ2 < E [λ] ≤ λ3 ⇒ abnormal region (17)

V. EXPERIMENTAL WORK

The experiments were conducted on the Local Area Network (LAN) of the Computer
Science (CS) Department at Rensselaer Polytechnic Institute. The network topology is

(c) 1999 IFIP



as shown in Figure 5. The CS network forms one subnet of the main campus network.
Within the CS network there are seven smaller subnets and two routers. One router is
used for internal routing and the other serves mainly as a gateway to the campus back-
bone. The internal router has 6 interfaces with the CS subnets. The majority of the

To campus network

gateway internal 

router

subnet 3

subnet 1

subnet 4

subnet 2 subnet 5

subnet 6

subnet 7

fs 1

fs 2

Fig. 5. Configuration of the monitored network

traffic is file transfers or web traffic which involves the workstations accessing the file
servers. The internal router is an SNMP agent. The Management Information Base on
this agent was polled (using a PERL script) every 15 seconds to obtain the measurement
variables. Data was collected from the internal router.

There were no network management measures in place on this network. Each ma-
chine on the network ran the UNIX syslog function. This function generated messages
that related to problems associated with the network, applications, or the specific ma-
chine itself. These syslog messages were used to identify the network problems. One
of the most common network problems was NFS server not responding. The syslog
messages only reported that the file server was not responding, but was unable to iden-
tify the cause of the problem. Possible reasons for this problem are unavailibility of
network path or that the server was down. Although not all problems could be associ-
ated with syslog messages, those problems which were identified by syslog messages
were accurately correlated with fault incidents. A description of the data sets used is
provided in the Table( I). In most cases the agent was able to predict the occurrence of
a fault significantly ahead of the syslog messsage reports.

A. Case Study (1):

Here we describe a fault scenario corresponding to a file server failure on subnet 2
(data set 2 fault 1 in Table I). 12 machines on subnet 2 and 24 machines outside sub-
net 2 reported the problem via syslog messages. The duration of the fault was from
11.10am to 11.17am (7mins) as determined by the syslog messages. The cause of the
fault was confirmed to be excessive number of ftp requests to the specific file server.
Figure 6 shows the output of the agent at the router and at the ip layer variable level.
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TABLE I

DESCRIPTION OF FAULT DATA SETS: FAULT LOCATION AND TIME

Data No of Fault Time and/ Number of
set no faults location duration of machines outside

in data set (subnet) faults fault subnet
1 1 2 4.19 - 4.21pm 24
2 1 2 11.10 - 11.17am 24
3 3 2 8.23 - 8.26pm 14

2 1.23 - 1.25am 0
2 9.48 - 9.52am 15

4 1 2 6.33 - 6.36am 6
5 1 2 9.36 - 9.41pm 10
6 2 3 11.17 - 11.21pm 2

11.28 - 11.30pm
3 3.22 - 3.26pm 3

The indicators provide the trends in abnormality. The variable level abnormality in-
dicator contains the temporal information. The fault period is shown by the vertical
dotted lines. In Figure 6 for router health, the ’x’ denotes the alarms that correspond
to input vectors that are faulty. Note that there are very few such alarms at the router
level. The mean time between false alarms in this case was found to be 98 mins. The
fault was predicted 29 mins before the crash occurred. The persistence in the abnormal
behavior of the router is also captured by the indicator. The on-off nature of the ipIDE
and ipOR indicators was attributed to the less bursty behavior of those variables. Note
also that the router shows abnormal behavior soon after the fault. This was attributed
to the hysteresis. In our present scheme no measures are taken to combat this effect.

B. Case Study (2):

This case corresponds to a file server failure on subnet 3 (data set 6 fault 2 in Ta-
ble I). 8 machines on subnet 3 and 3 machines outside subnet 3 reported the problem.
The duration of the fault was from 3.22pm to 3.26am (4 mins). Figure 7 shows the out-
put of the agent. In this case the mean time between false alarms was found to be 34
mins. The fault was predicted less than 1 minute before the crash occurred. However
the persistence in abnormal behavior of the router was observed several minutes before
the actual crash.

In the above two cases we have shown that the agent is capable of predicting faults at
different times of the day. Regardless of the number of machines that are affected (24
in the first case and 3 in the second case) outside the subnet, the agent is able to predict
the problem as long as there is some traffic that affects the network layer variables.
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Fig. 6. Abnormality indicators at the Router

VI. PERFORMANCE OF THE AGENT AND COMPOSITE RESULTS

The performance of the algorithm is expressed in terms of the probability of predic-
tion Pp, prediction time Tp, and the mean time between false alarms Tf .

Pp =
Total Number of True Alarms

Total Number of Known Faults
(18)

We distinguished between a true alarm and a false alarm as follows: a true alarm corre-
sponds to a set of one or more consecutive alarms subject to the following constraints:

τ < 15mins (19)
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Fig. 7. Abnormality indicators at the Router

Tp < Tf (20)

where τ , is the time between any two consecutive alarms and corresponds to 3 lags.
These quantities are depicted in Figure 8. The composite results for the data obtained
from the internal router are compiled in Table( II). Note the average prediction time (23
mins) is less than half the mean time between false alarms (52 mins). The time scale of
prediction is large enough to allow time for potential corrective measures. Seven out
of nine faults were predicted making the average probability of prediction Pp = 0.78.
In data set 3, fault 2 was reported by only two machines on the same subnet on which
the faulty file server was located. This suggests that for this fault there was minimal
impact on the ip level traffic which resulted in no prediction.
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Data Set no Fault No Prediction Time Mean Time Between Pp

Tp(mins) False Alarms Tf (mins)
1 1 - 53 0
2 1 29 98 1
3 1 34 55 0.67

2 -
3 16

4 1 29 37 1
5 1 27 32 1
6 1 23 34 1

2 <1
Avg 23 52 0.78

TABLE II

PREDICTION OF FAULTS AT THE INTERNAL ROUTER

The algorithm is based on a linear model, rendering it feasible for online implemen-
tation. The complexity as a function of the number of model parameters is O(4N),
where N is the number of input MIB variables. For the work discussed here we have
N = 3. The computational complexity expressed in terms of the number of floating
point operations performed is approximately 9 per sec.

VII. DISCUSSION AND CONCLUSION

The intelligent agent was shown to be capable of predicting network problems with a
very high probability. The agent captures most of the salient features of fault behavior.
The time scale of prediction is sufficient to allow for triggering corrective mechanisms
to alleviate the impending problem. The agent has been implemented in an online fash-
ion.

The current architecture allows the agent to scale easily to multiple nodes. The vari-
able level detection was done using sequential testing. The variable level indicators
were designed to maximize information by avoiding thresholds. Since strict modelling
of the signal was not required but rather accurate prediction and simplicity, an AR(1)
model was used. The new combination scheme incorporates the spatial dependencies
more naturally than the duration filter used previously [17] and as expected performed
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better under the stricter criteria for prediction used in this paper. The idea of fault vec-
tors provides a structure for understanding the multivariable input vectors as well as a
good criteria for declaring node level alarms.

Future efforts will be made in adapting the agent to gateways and switches. A simi-
lar agent has already been developed for the interface level traffic. Using information
from both the interface if and the network ip layers we were able to isolate the problem
to the subnet level and locate the possible origin of the problem. Work is under way
to combine the information from the ip and the if layers to reduce false alarms and ob-
tain the average abnormality of the entire network. Efforts will also be concentrated on
finding better time series models for the bursty variable(ipIR). We are also working on
fault simulations to aid the bench marking of the agent. Currently data obtained from
a larger enterprise network is being used to test the scalability of the agent.
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