
An Event Noti�cation Framework

based on Java and CORBA

M. TOMONO
1st Transmission Division, NEC Corporation
1753 Shimonumabe, Nakahara-Ku, Kawasaki, 211
JAPAN
tomono@trd.tmg.nec.co.jp

Abstract

Event noti�cation is essential in network management. Many components
in a distributed NMS need an event noti�cation mechanism, and so an event
noti�cation framework is expected to facilitate the development of the com-
ponents. CORBA is a promising platform to build such a framework, but
its performance is not su�cient for monitoring large-scale networks. This
paper proposes an event noti�cation framework that has high performance
and customizability. The framework is based on Java and CORBA, and has
customization points at which event handling capabilities can be added. Java
gives the framework
exibility in the sense that event handling capabilities
can be added and replaced dynamically by using downloadable Java programs.
High throughput of more than 1000 events per second has been achieved by
event batching.

Keywords

Event Noti�cation, Network Management, Java, CORBA, Performance
Evaluation, Object-oriented Framework

1. Introduction

The increasing size and complexity of managed networks require network man-
agement systems (NMSs) to be distributed and
exible. CORBA is considered
to be a promising platform to build distributed NMSs, and CORBA-based
NMS architectures have been discussed [7, 6, 10]. CORBA is a distributed
object middleware standard, on which client objects invoke operations on
server objects in a location transparent fashion. CORBA provides various
services named CORBAservices that are useful in developing distributed ap-
plications [8]. These features are expected to facilitate the development of
distributed NMSs, and also to give NMSs high
exibility and scalability.

Event noti�cation informs network operators of failures and state changes
of managed networks. Since more than 1000 events can occur in an event rush
because of failure propagation among network elements, NMSs need high

1

(c) 1999 IFIP

performance. The CORBA Event Service included in the CORBAservices
can be used to implement event noti�cation in CORBA-based NMSs, but
the services are built on top of the CORBA remote invocation mechanism,
which takes milliseconds on standard-class computers. This implies that the
naive use of the Event Service results in noti�cation throughput that is not
su�cient for monitoring large-scale networks. Thus, the implementation of
high-performance event noti�cation is crucial in developing CORBA-based
NMSs.

On the other hand, the customizability of event noti�cation is important
from the point of view of software productivity, since many components in
distributed NMSs are needed to have various event handling capabilities, e.g.,
event forwarding, format conversion, event classi�cation, event �ltering, and
so on. The CORBA Noti�cation Service, which is an extension of the Event
Service, provides capabilities including event �ltering and QoS [9], but does
not provide an interface to add general event handling capabilities which
NMS components need. An event noti�cation platform that has a general
interface for customization would bring the high productivity in developing
NMS components.

We propose an event noti�cation framework that has high performance
and customizability. Implemented as an object-oriented framework [1], the
framework has customization points at which event handling capabilities can
be added. Since the framework is implemented in Java, it has
exibility in the
sense that event handling capabilities can be added and replaced dynamically
by using downloadable Java programs. High throughput of more than 1000
events per second has been achieved by batching events into a sequence and
invoking a sending operation for the sequence instead of for each event.

Section 2 presents event noti�cation in CORBA-based NMSs and its is-
sues. Section 3 illustrates the architecture of the proposed event noti�cation
framework. Section 4 shows the results of performance experiments. Section
5 discusses the merits and issues of the framework followed by the concluding
remarks.

2. Event Noti�cation in Distributed NMSs

2.1 A Distributed NMS

Figure 1 shows a basic architecture of distributed NMSs. The system consists
of clients and servers, which are connected using CORBA. Each NMS client
comprises GUI components with which network operators monitor and control
managed networks. NMS Servers are connected with network elements (NEs)
by particular management protocols, e.g., CMIP, SNMP, and store managed
objects (MOs), which model NEs. Servers receive events from NEs and dis-
seminate them to clients. Clients display the received events on the screen in
appropriate fashions.

Both servers and clients comprise a variety of components, most of which
behave as an event supplier, an event consumer, or both. This means that
many NMS components are needed to have the capabilities of event genera-
tion, event queuing, and event dissemination.

Figure 2 illustrates a detailed architecture. All the components are con-
nected using CORBA except for the connections between NEs and Gateways.
This paper explains the components focusing on the event noti�cation aspect,
although NMSs have two kinds of control
ows, request
ows from clients to
servers and event noti�cation
ows from servers to clients.

2

(c) 1999 IFIP

NMS
Client

NMS
Client

NMS
Client

CORBA

NMS
Server

NMS
Server

NMS
Server

NENENENENENE

Figure 1: A Distributed NMS

� Gateway
A gateway mediates between NEs and an alarm manager. NEs generate
and emit events in various formats depending on NE types, while a gateway
receives the events and converts them into the common format that an
alarm manager accepts.

� Alarm manager
An alarm manager is responsible for classifying, storing, and disseminating
events. It receives events from gateways and forwards them to clients and
an MOmanager. It gives an identi�er to each event and classi�es events into
alarms, state changes of NEs, and the others. It also �nds the correspon-
dence between an event that informs a failure and an event that informs
the restoration of the failure. Alarm correlation is another task of alarm
managers.

� Log manager
A log manager stores events as a log. It receives events from an alarm man-
ager and stores them into a database. It responds to log retrieval requests
from clients.

� MO manager
An MO manager stores MOs in a database and provides operations for ma-
nipulating the MOs. It forwards the events received from an alarm manager
to a map manager, converting the event format into the one that can be
accepted by the map manager.

� Map manager
A map manager stores network maps, which describe network topologies
using symbols, links, and background pictures. Browsing the network maps,
operators identify the MOs that they must monitor and control. A map
manager receives events from an MO manager and changes the color of the
symbols corresponding to the MOs that are involved in the events. The
manager propagates the color changes from the bottom to the top of the
network map hierarchy. The manager generates events that inform the
symbol color changes, and disseminates them to clients.

� Alarm table
An alarm table receives alarms from alarm managers, and lists them on the
screen.

3

(c) 1999 IFIP

� Mapview/Treeview

A mapview displays network maps on the screen, and a treeview displays
the hierarchy of network maps. Both of them receive symbol color change
events from map managers and change the symbol colors on the screen to
help a network operator identify the MOs at which failures have occurred.

Gateways, alarm managers, MO managers, and map managers are needed
to have the capabilities of event generation, format conversion, queuing, dis-
semination, and so on. The other components need event queuing capability
in order to avoid bad in
uence on event suppliers by bu�ering events.

MapviewTreeview
Alarm
Table

Client

Server

Log
Manager

Alarm
Manager

Gateway

MO
Manager

Map
Manager

NE

Figure 2: A Distributed NMS Architecture

2.2 CORBA Event Service

The CORBA Event Service provides a framework of asynchronous event
noti�cation [8]. Figure 3 illustrates its architecture. The Event Service con-
sists of suppliers, consumers and event channels. Suppliers emit events and
consumers receive events. An event channel is a mediator which receives
events from suppliers and forwards them to consumers.

The Event Service has two noti�cation models, push model and pull
model. In the push model, suppliers put events to consumers, invoking con-
sumers' push operation. In the pull model, consumers get events from sup-
pliers, invoking suppliers' pull operation.

An event channel comprises proxy suppliers and proxy consumers. PPC
and PPS in Figure 3 stands for ProxyPushConsumer and ProxyPushSupplier
respectively (note that Figure 3 describes the push model). PPCs receives
events from push suppliers connected to the event channel, and transmit them
to PPSs, which send them to push consumers connected to the event channel.

The CORBA Noti�cation Service extends the Event Service with capa-
bilities including event �ltering, structured events, quality of service, and so
on [9]. Application developers utilize these capabilities through the interfaces
of the Noti�cation Service.

4

(c) 1999 IFIP

Supplier
EventChannel

PPS PPC

Consumer

SupplierConsumer

PPCPPS

Figure 3: CORBA Event Service

2.3 Issues

Since many NMS components in servers and clients must have the event
handling capabilities as mentioned above, a common platform of event no-
ti�cation can bene�t the productivity of developing the components. The
CORBA Event Service is a promising one, but it does not provide an inter-
face to add event handling capabilities which NMS components need. Thus, a
platform that has customizability to add event handling capabilities necessary
for NMS components is needed. The following are the major requirements of
the platform.

� Customizability
The platform must be easy to customize according to the requirements
of each NMS component. It is important to separate customization points
from the common structure and to specify the interface of the customization
points.

� Flexibility
The recon�guration of a distributed NMS costs much, because servers and
clients are distributed over many computers. Moreover, since event noti�-
cation is one of the most critical functions of NMSs, stopping the system
for recon�guration should be avoided. Hence, the platform needs
exibility
for dynamic recon�guration with low cost.

� Performance
The naive implementation of event noti�cation using CORBA remote
method invocation, which takes milliseconds, is not su�cient to monitor
large-scale networks, especially when an event rush occurs because of fail-
ure propagation among network elements.

Customizability and
exibility are involved with the productivity of devel-
oping distributed NMSs. An object-oriented framework based on Java o�ers a
solution. Customizability is provided by an object-oriented framework, which
is a reusable, semi-complete program that can be specialized to produce cus-
tom software [1]. An object-oriented framework has the basic structure, and
an application developer can customize the framework by adding new objects
to it.

Java brings
exibility. Java programs can be downloaded through net-
works and be linked dynamically without stopping the system. By utilizing
this feature, event handling capabilities can be added and replaced dynami-
cally through networks. This kind of dynamic con�guration is widely used in
network management. An example is Management by delegation [2], where
programs are delegated to a remote site and executed there in order to improve
the performance and
exibility of the system [3, 6, 12, 13, 14]. Dynamically-
con�gurable event services have also been developed focusing on event �ltering
or alarm correlation [11, 15].

5

(c) 1999 IFIP

Java programs, however, su�er from poor performance because they are
executed on a bytecode interpreter. They run several times slower than C++
programs. Although the problems would be solved by technologies including
just-in-time compiler, the performance issue is the major hurdle in developing
the event noti�cation framework based on Java and CORBA. Event batching
is a method of enhancing noti�cation throughput, where events are batched
into a sequence and are disseminated by one operation for the sequence.

3. Event Noti�cation Framework

3.1 Architecture

As mentioned above, an event noti�cation platform needs customizability, and
an object-oriented framework is a solution. An object-oriented framework is
the skeleton of an application that can be customized by an application de-
veloper [4, 5]. In the case of the event noti�cation platform, the skeleton
has the common event handling capabilities including receiving, queuing, and
disseminating events, while the customization points are the particular event
handling capabilities including format conversion, event identi�cation, alarm
correlation, and so on. Hence, the notion of object-oriented framework ful�lls
the customizability requirement. We develop the event noti�cation platform
as an object-oriented framework, and refer to it as an event noti�cation frame-
work.

The event noti�cation framework comprises a set of objects which form the
skeleton with customization points called hooks. A hook is the speci�cation
of a customization point and the framework is customized by attaching an
object to a hook. We refer to the object as hook object. A hook has a
default hook object, which can be replaced by another object that has the
interface speci�ed by the hook. In general, default hook objects have no
capabilities, and the framework with only default hook objects behaves as a
CORBA event channel. A variety of event handling capabilities can be added
to NMS components just by replacing default hook objects with particular
objects which provide the capabilities.

Figure 4 illustrates the architecture of the event noti�cation framework.
It consists of PPCs, PPSs, and two kinds of hooks. A CHook, which stands
for consumer hook, is placed between a PPC and PPSs. An SHook, which
stands for supplier hook, is placed after a PPS. By attaching hook objects to
CHooks and SHooks, the framework can be customized for various purposes.
It is possible for each CHook to have a di�erent object as well as for all
CHooks to share an object. The former case is used when di�erent operations
are needed depending on the suppliers. The latter case is used when the same
operation is executed for all events. Hook objects that are di�erent depending
on consumers are attached to SHooks.

Hook objects include the following examples. Event �lters delete events
that satisfy the given conditions. Alarm managers, log managers and map
managers can have a event �lter. Format converters change the data formats
of events. A gateway has a format converter that translates events described
in particular management protocols into the system's internal format. State
updaters change MO's attribute values according to the contents of events.
An MO manager has a state updater that changes the operational state of an
MO when it receives an event that describes a failure of the NE that the MO
represents. Event converters change event contents. For example, an alarm
manager classi�es the source MOs of noti�ed events into several categories
and changes event contents according to the classi�cation. Alarm correlators

6

(c) 1999 IFIP

eliminate redundant events by extracting cause events. This needs to traverse
the links representing relationships between MOs.

SupplierConsumer

Hook
Object

CHook
PPCPPSSHook SupplierConsumer

PPS PPC

Hook
Object

Hook
Object

Hook
Object

CHookSHook

Figure 4: Event Noti�cation Framework

3.2 Dynamic Con�guration

The downloadability of Java programs enables the dynamic con�guration
of the event noti�cation framework. By downloading hook objects written in
Java and adding them to the speci�ed hooks, the framework can be customized
without stopping the system.

An example of CORBA IDL (Interface De�nition Language) for dynamic
con�guration is as follows.
interface HookManager {
void addHookObject(String name, String location, String hook);
void removeHookObject(String name, String hook);

}

The argument name means the class name of the hook object. The argument
location means the URL that describes the machine, directory, and �le name
where the class code is stored. The argument hook means the hook to which
the object is attached.

Hook
Database

ApplicationHook
Manager

Event
Channel

(1) kick

(2) download

(3) Create an instance
(4) add

event

hook

event

Figure 5: Dynamic Con�guration of Hook Operations

Figure 5 depicts the procedure of adding an object to a hook. (1) The
application invokes an addHookObject operation of the hook manager. (2)
The hook manager downloads the class code speci�ed by name from the hook
database speci�ed by location. (3) The hook manager creates an instance

7

(c) 1999 IFIP

of the class from the downloaded class code. (4) The hook manager adds the
instance to the speci�ed hook.

3.3 Event Batching

The naive implementation of event noti�cation using CORBA remote in-
vocation mechanism is not su�cient for large-scale managed networks. While
one remote invocation takes milliseconds on standard-class computers, more
than 1000 events can occur in an event rush because of failure propagation
among network elements.

The performance of CORBA remote method invocation is a�ected by two
factors, the number of remote invocations and the amount of transferred data.
An experiment shows the former has a great in
uence on the performance (see
Section 5). Therefore, reducing the number of remote invocations will improve
the event noti�cation performance.

The event-batching method proposed by the CORBA Noti�cation Service
is a solution. The method packs events into a sequence and invokes a sending
operation for the sequence instead of for each event. The method speci�es two
major parameters: maximum batch size and pacing interval. Maximum batch
size means the maximum length of sequences in which events are batched. If
the size is large, the CPU time spent by one sequence becomes long, which
causes a long wait during which a supplier is blocked in case of multiple
suppliers. On the other hand, if the size is small, the e�ect of batching events
is obviously small. Thus, there is the optimal value. Pacing interval means
the maximum period of time a supplier or an event channel batch events into
a sequence. If this value is large, the delay of event arrival becomes large. If
this value is small, the number of batching events is also small. Thus, there
is the optimal value.

4. Performance Evaluation

4.1 Performance Analysis

This section presents the performance analysis of the event noti�cation frame-
work. In the event channel in Figure 3, we suppose each PPS has a queue,
to which PPCs put data. Each PPS has a thread, which gets data from its
queue and sends it to consumers. PPCs are controled by CORBA's thread.

We use the following parameters. n1 is the number of PPCs. n2 is the
number of PPSs. t1 is the time for a PPC to receive a sequence, in which
events are batched, from a supplier. t2 is the time for a PPS to send a sequence
to a consumer. t3 is the time for a PPC to send a sequence to a PPS. � is
the total processing time. �1 is the total proceesing time of one PPC in � . �2
is the total proceesing time of one PPS in � . �w is the total time the event
channel does indirect tasks in � including the time to wait for data arrival,
the time spent for thread synchronization and memory management, and so
on. We suppose the event channel runs on one CPU. t1 and t2 do not include
the processing times of the other CPUs on which suppliers and consumers
run. m is the batch size. p1 is the number of sequences that a PPS receives
in � , and p2 is the number of sequences that a PPS sends in � . The following
relationships hold.

8

(c) 1999 IFIP

p1 =
�1

t1 � 1 + t3 � n2
� n1 �m (1)

p2 =
�2

t2
�m (2)

� = �1 � n1 + �2 � n2 + �w (3)

The denominator of (1) is the time for a PPC to receive a sequence from
a consumer and to deliver it to n2 PPSs. �1 divided by the denominator is the
number of sequences which a PPC delivers to each PPS in �1 (equivalently
in �). Thus, (1) means the number of individual events that a PPS receives
from n1 PPCs in � .

t1 comprises the following factors. tc1 is the time for a CORBA remote
invocation (not including marshaling or unmarshaling). td1 is the time for an
individual event to transfer between two machines including marshaling and
unmarshaling. t2 comprises tc2 and td2 in the same fashion. tch is the time
for a PPC Hook operation to be executed for an individual event. tsh is the
time for a PPS Hook operation to be executed for an individual event.

t1 = tc1 +m � td1 +m � tch (4)

t2 = tc2 +m � td2 +m � tsh (5)

When the event channel works without a jam, the equilibrium of input
and output holds for each PPS, that is, p1 = p2. By letting p = p1 = p2, we
obtain throughput p=� by removing �1 and �2 from these equations.

p

�
=

1� �w

�

(tc2+t3
m

+ td2 + tsh) � n2 +
tc1

m
+ td1 + tch

(6)

In general, tci (i = 1; 2) is much larger than tdi in the case that an
individual event size is not very large. Thus, tci is dominant when m is small,
but td1 and td2 become dominant when m is large. This shows the basis of
the event-batching e�ect.

Note that equation (6) is an approximation. The crucial factor is �w,
which can be a�ected by n1 and n2. When n1 and n2 are large, �w can
be large because of overheads such as thread synchronizaiton and memory
management, and so the throughput can be small. �w = 0 is the optimal
situation, where the throughput is the maximum.

4.2 Experimental Environment

We have conducted performance experiments on throughput and memory
consumption. The environment was as follows. Suppliers ran on a single-
CPU Pentium 120MHz computer with 80MB memory running Windows 95
(machine A). An Event Channel ran on a single-CPU PentiumII 266MHz com-
puter with 64MB memory running Windows NT 4.0 (machine B). Consumers
ran on a single-CPU PentiumII 233MHz computer with 95MB memory run-
ning Windows 95 (machine C). These computers were connected by a 10Mbps
Ethernet segment which is isolated from other segments. The Java VM was

9

(c) 1999 IFIP

JDK1.1.5 with Symantic's JIT compiler, and the ORB was Visibroker for
Java 3.0. Each supplier on machine A had a thread, so did each consumer on
machine C.

The event data type used in the experiments was de�ned as a struct with
�ve member items in CORBA IDL. The data type of the items are long,
string, string, struct A, struct B. Struct A has two string type member items,
and struct B has three string type member items. The sizes of all the data
were 100 bytes in application programs, although they become larger on the
memory.

4.3 CORBA Remote Invocation

First, we evaluated the performance of CORBA remote method invocation.
We measured the time to transfer one event data between two machines, and
the time to transfer 20 events batched into a sequence.

Transferring one event from machine A (supplier) to machine B (event
channel) took 6.0 msec, and that from machine B to machine C (consumer)
took 4.8 msec. Transferring 20 events from machine A to machine B took 18.7
msec, and that from machine B to machine C took 11.4 msec. The results
imply transferring 20 events one by one will take 100 milliseconds or more,
which means the number of remote invocations has a great in
uence on the
performance.

4.4 Throughput of Basic Noti�cation

The throughput of basic noti�cation is shown in Figure 6 (a). Events are
transferred one by one, not batched. No hook objects are added to the event
channel.

The throughput of more than 90 events per second is obtained when the
number of consumers is one. The throughput is almost independent of the
number of suppliers while the increase of consumers reduces the throughput.

The dashed line represents the prediction based on equation (6) in the
ideal condition �w = 0. Here, we let tch = 0; tsh = 0 (no hook objects),
m = 1, t3 = 0 (ignored). It is di�cult to evaluate the exact values of t1 and
t2. We estimate these values by dividing the data transfer times mentioned
in Section 4.3 according to the ratio of the two machines' CPU powers. For
example, the time to transfer one event from machine A (120 MHz CPU)
to machine B (266 MHz CPU) was 6.0 msec, and so t1 is estimated to be
6:0� 120=(266+ 120) = 1:87 msec. Likewise, t2 is estimated to be 2.24 msec.

Looking at Figure 6 (a), when the number of consumers is small, the gap
between the prediction and the experimental result is large. The reason would
be that �w becomes large since the CPU of machine B can be idle (note that
the CPU power of machine B is larger than that of machine A).

4.5 Throughput of Event-Batching Noti�cation

The relationship between batch size (the number of events in a sequence) and
throughput is shown in Figure 6 (b). Both the number of suppliers and the
number of consumers are one. No hook objects are added. After rising from
size = 1 to size = 20, the throughput becomes saturated around 1200-1400
events per second.

10

(c) 1999 IFIP

The throughput of event-batching noti�cation is shown in Figure 6 (c).
The batch size is 20. No hook objects are added. The throughput of more
than 1200 events per second is obtained when the number of consumers is
one. The throughput is almost independent of the number of suppliers while
the increase of consumers reduces the throughput. We also evaluated the
throughput in the case that the batch size is 100, and it was nearly the same
with the throughput in the case that the batch size is 20.

The dashed line represents the prediction based on equation (6) in the
ideal condition �w = 0. Here, we let tch = 0; tsh = 0 (no hook objects),
m = 20, t3 = 0 (ignored). It is di�cult to evaluate the exact values of t1 and
t2. As we did in the basic noti�cation, we estimate these values by dividing
the data transfer times mentioned in Section 4.3 according to the ratio of the
two machines' CPU powers. For example, the time to transfer batched events
from machine A (120 MHz CPU) to machine B (266 MHz CPU) was 18.7
msec, and t1 is estimated to be 18:7�120=(266+120) = 5:81 msec. Likewise,
t2 is estimated to be 5.32 msec. The experimental throughput exceeds the
prediction in some points. This may be caused by the rough estimates of t1
and t2.

We also measured the memory consumption. It rises slowly when the
number of suppliers is small, but soars to 5 MB when the number of suppliers
is large. We also measured the memory consumption in case that the batch
size is 100, and found it soars to nearly 16 MB.

4.6 Throughput with Hook Operations

We have evaluated the relationship between the processing time of hook op-
erations and throughput, which is shown in Figure 6 (d). Both the number
of suppliers and that of consumers are one. The batch size is 100. The hook
object is attached to a CHook. The throughput is inversely proportional to
the hook processing time.

The relationship between throughput and the processing time of hook
operations is quite clear, and it would be easy to predict the throughput of
the framework with particular hook objects added to hooks.

In this experiment, we observed the throughput in the case of no CHook
objects was 1502 events per second. Thus, the throughput of this case is the
following.

p

�
=

1
1

1502
+ tch

=
1

0:00067 + tch
(7)

The dashed line represents the prediction based on equation (7), and it is
very near to the experimental result.

4.7 Endurance Test

We have conducted an endurance test, in which the event channel was running
for 72 hours. Both the number of suppliers and that of consumers is one. The
supplier continued to emit events batched in a sequence whose size is 100.
Throughputs and memory consumptions were sampled every one minute, and
the maximum throughput and minimum throughput in every two hours were
recorded, so was the maximum memory consumption. The throughput is

11

(c) 1999 IFIP

stable around 1500 events per second. Also, memory consumption is stable
between 1 MB and 2 MB. The consumer checked if all the events have arrived
using serial numbers attached to events, and there were no missing events.

throughput (events/s)

140

120

100

80

60

40

20

1 supplier
10 suppliers

prediction

1 2 3 4 5 6 7 8 9 10 number of
consumers

(a) Throughput of basic notification

throughput (events/s)

1600

1200

800

400

10 20 30 40 50 60 70 80 90 1001 batch size

(b) Throughput in varing the batch size

throughput (events/s)

1 supplier
10 suppliers1200

800

400

200

600

1000

1 2 3 4 5 6 7 8 9 10 number of
consumers

(c) Throughput of event-batching notification

1200

800

400

200

600

1000

throughput (events/s)

experiment

(d) Throughput with a hook object

processing
time (ms)

0.2 0.4 0.6 1.0 2.0 4.0 6.0 10.0

prediction prediction

Figure 6: Experimental Results

5. Discussions

5.1 Productivity

The proposed event noti�cation framework brings high productivity in devel-
oping NMS components since component developers have only to implement
hook objects according to the requirements of each component. This en-
hances not only productivity but also reliability of the components since the
framework encapsulates the skeleton of event noti�cation mechanism. The
skeleton provides the common capabilities including receiving, queuing, and
disseminating events, which are di�cult to implement because they need high
performance and robustness in multi-thread programming.

Java brings portability, which allows the framework to run on various
operating systems as long as a Java virtual machine is available on them. We
have con�rmed that the framework was able to run on Windows 95, Windows
NT 4.0, and Solaris. This portability reduces the development cost of NMS
components signi�cantly.

12

(c) 1999 IFIP

The framework is based on the so-called white-box approach in the sense
that an NMS developer can customize the framework at source code level.
Compared with the so-called black-box approach, where an NMS developer
utilizes an event channel complied with the CORBA Event Service or Noti�-
cation Service as an individual black-box component, this makes the frame-
work more customizable. The framework provides a general interface to add
new event handling capabilities while the black-box component has only the
interfaces that the CORBA Noti�cation Service gives to specify the �xed
capabilities including event �ltering, QoS, and so on.

5.2 Performance

The performance experiments show that the framework has a high throughput
by using event-batching noti�cation. A throughput of more than 1200 events
per second was achieved on standard-class computers. The event data used
in the experiments, however, was rather simple as mentioned in Section 4.2,
and the throughput of sending more complex data could be lower because of
CORBA's marshaling and unmarshaling cost.

Giving the right values to event-batching parameters mentioned in Sec-
tion 3.3 is crucial. Maximum batch size is especially important because it af-
fects both throughput and memory consumption. In the experiments above,
a larger batch size brought better performance, but a smaller size brought
smaller memory consumption. Therefore, there is the optimal value between
the two extremes. As shown in Figure 6 (b), the transfer rate nearly saturates
where the sequence size is 20 or more. This saturation point can be regarded
as the optimal value.

Pacing interval is also important. If it is too large, event delivery can be
delayed. A precise analysis has yet to be done, but the following consideration
would be useful. Denote the maximum batch size asM and the time to receive
one event as T . The pacing interval I should be larger than T �M , but it
is not needed to be very large. Suppose I = T �M + d. Here, d is the time
for the event channel to batch M events received in I and to send them to
a consumer. If the event channel receives events continuously, it can batch
them up to M and send the batched events to a consumer within I . In this
case, the maximum throughput is obtained. If the event channel receives m
events in I (m < M), the time to batch them and to send them to a consumer
is shorter than d, since m is smaller than M . In this case, the event channel
can send as many events as it receives. However, throughput depends on
various factors including the number of consumers and network tra�c, and
more precise analysis would be necessary.

The memory consumption is around 1 MB when the number of suppliers
and consumers are small, but it soars as the number of suppliers increase. The
excessive increase of memory consumption decreased the throughput. We also
observed that the memory consumption exceeded the total memory which the
queues were expected to use. The cause of this phenomenon has yet to be
examined.

6. Conclusions

The paper has presented the architecture of an event noti�cation framework
based on Java and CORBA. The framework is customizable for various pur-
poses by attaching event handling capabilities to hooks, and is suitable in
developing NMS components which needs various event handling capabilities.

13

(c) 1999 IFIP

Dynamic installation of hook objects using Java programs enhances the
ex-
ibility of the framework. Event-batching noti�cation signi�cantly improves
the performance of the framework, which enables the framework to be used
for large-scale distributed NMSs. A future work is to exploit a guideline to
determine the optimal values of batching parameters and queue size, the load
balance between hook operation and event transfer, and so on, since these val-
ues can vary with machine power, network tra�c, and the topology of event
channel connection.

Acknowledgements

The author would like to thank Shin Nakajima, Hiroyuki Hayashi, Yoshiko
Ito of NEC Corporation and Wang Li of NEC Informatec Systems for helpful
discussions.

References

[1] Fayad, M. E., Schmidt, D. C., Object-oriented Application Framework,
Communications of the ACM, vol.40, No.10, pp.32-38, Oct. 1997.

[2] Goldszmidt, G., Yemini, Y., Distributed Management by Delegation,
Proc. of 15th International Conference on Distributed ComputingSystems,
Jun. 1995.

[3] Goto, T., Tohjo, H., Yoda, I., GDMO and Behaviour Program Transmis-
sion in TMN Agent, Proc. of DSOM'97, pp.156-166, Oct. 1997.

[4] Johnson, R. E., Foote, B. Designing Reusable Classes, Journal of Object-
Oriented Programming, vol.1, No.2, pp.22-35, Jun. 1988.

[5] Johnson, R. E., Frameworks = Components + Patterns, Communications
of the ACM, vol.40, No.10, pp.39-42, Oct. 1997.

[6] Keller, A., Service-based Systems Management: Using CORBA as a Mid-
dleware for Intelligent Agents, Proc. of DSOM'96, 1996.

[7] Kinane, B., Distributed Public Network Management Systems Using
CORBA, Proc. of ICODP'95, Feb. 1995.

[8] Object Management Group, CORBAservices: Common Object Services
Speci�cation, Revised Edition, 95-3-31 ed., Mar. 1995.

[9] Object Management Group, Noti�cation Service Joint Revised Submis-
sion, OMG TC Document telcom/98-01-01, Jan. 1998.

[10] Pavlou, G., From Protocol-based to Distributed Object-based Manage-
ment Architectures, Proc. of DSOM'97, pp.25-40, Oct. 1997.

[11] Mansouri-Samani, M., Sloman, M., A Con�gurable Event Service for
Distributed Systems, Proc. of the third International Conference on Con-
�gurable Distributed Systems, pp.210-217, May. 1996.

[12] Suzuki, M., Kiriha, Y., Nakai, S., Dynamic Script Binding for Delegation
Agent, Proc. of DSOM'96, 1996.

[13] Tomono, M, Yamanaka, A, Tonouchi, T., Nakajima, S., An Implemen-
tation of Customizable Services with Java/ORB Integration, Proc. of
GLOBCOM'97, pp.1719-1723, Nov. 1997.

[14] Yamanaka, A., Nakajima, S., Tomono, M., Tonouchi, T., A HORB-based
Network Management System, Proc. of ICODP/ICDP'97, pp.99-109, May
1997.

[15] Yemini, S. A., Kliger, S., Mozes, E., Yemini, Y., and Ohsie, D., High
Speed and Robust Event Correlation, IEEE Communication Magazine,
pp.82-90, May. 1996.

14

(c) 1999 IFIP

