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Abstract—Developing models to generate realistic graphs of
communication networks often requires a deep understanding
and extensive analysis of the underlying network structure. Since
deployed communication networks are dynamic, the findings a
generator is based on might lose validity. We alleviate the need
for extensive analysis of graphs by estimating parameters of a
probabilistic model. The model parameters encode the structure
of the graph, which is thus learned in an unsupervised fashion.
Synthetic graphs can be generated from the model and will
have the structure previously inferred. For this, we use the
Stochastic-Block-Model (SBM) and the Degree-Corrected-Block-
Model (DCBM), a variant allowing for heavy tailed degree
distributions. The models originate in the social sciences and
separate a graph into groups of nodes. To show the applicability
of the models to the task of synthetic graph generation in the
domain of communication networks, we use one router level
and one IP-to-IP communication graph. We assert the quality of
the generated models by evaluating a number of graph features
and comparing our results to those obtained with the network
generator Orbis. We find our approach to be on par with, or
even outperforming Orbis. Furthermore, the models are able to
capture large-scale structure in communication networks.

I. INTRODUCTION

Synthetic generation of graphs with characteristics of com-
munication networks is important in order to develop, test and
verify e.g., routing or resource management algorithms. Many
models and generators that produce graphs with properties
similar to communication networks, mainly the Internet topol-
ogy, have been proposed. Examples are preferential attachment
[1]–[3] models or generators replicating the degree distribution
[4], [5] or matching structural patterns [6]–[8]. However,
many network generators replicate only a subset of the orig-
inal graphs’ properties [6], [9]. In addition, communication
networks change over time or develop new characteristics,
which makes a continuous and extensive analysis necessary.
Other graph types, e.g. IP-to-IP communication between hosts,
which is used for anomaly detection, resource management
or traffic classification, are important [10]–[12]. A generator
modeling the current Internet topology might fail to gener-
ate realistic graphs in this case. Accordingly, challenges in
generating synthetic graphs for different use-cases can be
summarized as:

• Empirical graphs of different networking domains show
and may combine different structural properties [6].

• Communication networks are dynamic and their respec-
tive graphs change over time [9].

• Structure of a graph can be influenced by different
mechanisms [2] or node properties [10].

Other research domains such as social sciences and biology
also heavily rely on methodologies for efficient graph analysis.
Here, machine learning has become an important tool to infer
structures in complex graphs. Exemplar applications are the
detection of communities in social networks and of functional
components in protein-protein interaction networks [13], [14].
The used technique is a latent variable model for relational
data called Stochastic-Block-Model (SBM) [15], representing
a parametric probability distribution over graphs. The model
parameters encode the graph structure and can be inferred
in an unsupervised fashion from empirical data. Furthermore,
synthetic graphs with similar structure can be sampled from
the inferred distribution. Given the ability to represent various
structural patterns, we believe the SBM to have huge potential
for simplifying synthetic communication network generation
by replacing extensive network analysis with machine learning
techniques. In fact, an SBM variant identifying hierarchies in
a graph has already been applied to CAIDA-traces in [14].
However, a deep and extensive analysis of the application of
SBMs and their variants to varying types of communication
networks, and especially their generative capabilities, has not
been provided yet.

As a first step towards understanding how block modeling
can generally be used in the context of communication net-
works, we apply the SBM to a router-level and an IP-to-IP
communication graph. Since respective graphs express heavy
tailed degree distributions, we additionally consider a variant
of the SBM, the Degree-Corrected-Block-Model (DCBM),
which is able to model such distributions. We compare our
results with those obtained using the generator Orbis [5]. The
results show that probabilistic models (1) successfully infer
large scale structures and (2) can generate synthetic graphs
preserving those structures.

The remainder of this paper is organized as follows: In
Sec. II we introduce related work. Sec. III introduces the SBM
and DCBM. Sec. IV compares DCBM, SBM and Orbis. We
conclude and provide ideas for future work in Sec. V
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II. RELATED WORK

We use the SBM in this work for the detection of groups
of ”similar” nodes and for the generation of synthetic graphs.
Both tasks have been addressed in the context of communica-
tion networks already. We separate the related work into two
sections accordingly.

A. Detection of Groups of Nodes

Detection of groups is used in the context of communication
networks to classify traffic [10], to provide host profiles for
anomaly detection [12] or content management [16]. Work
in [11] provides a general framework for detection of groups
in IP-to-IP communication networks

None of the authors highlight the use-case of synthetic graph
generation. Also, they do not use a probabilistic framework
for group detection and mostly assume assortative mixing.
In contrast, an SBM makes no explicit assumption about the
mixing pattern.

B. Generation of Synthetic Graphs

In the area of communication networks, popular models for
generating synthetic graphs already exist. For instance, in the
Waxman model [17], the probability of an edge is a function
of the spatial location of nodes. In the preferential attachment
model, the probability of an edge between two nodes depends
on the nodes’ degree. The Watts-Strogatz model generates
networks with the small world property [25].

Many network generators exist that build upon the men-
tioned models. For example, GT-ITM [7] is based on the
Waxman model and generates graphs by separately modeling
hierarchical levels of the Internet graph. The more recent
generator GeoTopo [8] is similar in principle to GT-ITM and
incorporates not only hierarchy, but also considers geographic,
demographic and economic information for topology genera-
tion. BRITE [3] is based on preferential attachment and targets
the connectivity pattern of the Internet graph by generating
a degree distribution following a power-law. INET [19] is
similar to BRITE and also combines structural and degree
information. S-BITE [6] separates the Internet graph into
different levels, models the connectivity between and within
the levels and uses specific degree distributions, as well
as preferential attachment and small world mechanisms. In
contrast, Orbis [5] generates graphs according to a given (joint)
degree distribution. Furthermore, Orbis is able to generate
graphs of different sizes by scaling the distribution and is
applicable to arbitrary graphs.

Our approach differs in that we learn structural properties
of a graph in an unsupervised fashion by estimating the
parameters of a probability distribution over graphs. Extensive
analysis of empirical network data, which was necessary for
the design of existing network generators, is replaced by infer-
ence of the model parameters, for which principled methods
exist. As a result, our approach is applicable to arbitrary
graphs, contrary to most of the existing generators [3], [6]–[8],
[19]. Synthetic graphs can be generated by sampling from the
inferred distribution.
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Fig. 1. Block-matrices for k = 4 groups, representing different forms of
large scale structure.
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Fig. 2. Graphs drawn from the distribution defined by the block matrices in
Fig. 1. Each group contains ten nodes.

III. INTRODUCTION TO THE STOCHASTIC-BLOCK-MODEL

The Stochastic-Block-Model (SBM) is a probabilistic gen-
erative model for relational data, and has its origins in math-
ematical sociology [15]. In social sciences, the SBM is used
to identify communities of tightly interconnected nodes, but
is not limited to this pattern. The SBM defines a parametric
probability distribution P (A | M, z) over graphs, where the
parameters are:

• number of groups k ∈ R,
• group membership of nodes z ∈ {1, . . . , k}N where zi

gives the group of node i and N is the number of nodes,
• a Stochastic-Block-Matrix M ∈ Rk×k where each entry
Mrs gives the probability of a node in group r to connect
to a node in group s.

Thus, a (complex) graph is reduced to a set of groups and
inter- and intra group connectivity, with the central assump-
tion: Nodes connect to other nodes solely based on their
group membership. In addition, nodes in each group share
the same set of parameters (row/column in M ), and are thus
stochastically equivalent.

During graph synthesis, a graph for one specific choice of
M and z is generated from the model. Each possible edge
Aij is connected according to a Bernoulli experiment with
probability Mzizj for success. Edges can thus be seen as
conditionally independent random variables given the node
membership. Edges running between two groups r and s are in
addition identically (thus iid) distributed. Fig. 1 shows block
matrices and Fig. 2 respectively sampled graphs for specific
choices of M and z. The figures illustrate how the parameters
of the SBM encode different structural properties.

During inference, i.e., if we do not know M , z and k,
the task is to find the most likely parameters that could
have generated the observed graph. We adopt the approach
in [13] and use a Maximum-Likelihood Estimate (MLE) for
the parameters z and M . That is, we want to find the parameter
M̂, ẑ that maximize the likelihood P (A |M, z). Parameter k
is a free parameter and must be chosen separately. However,
the larger we choose k, the larger the model’s likelihood

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Full Paper912



becomes, approaching 1 as k approaches N . The difficulty is
to choose k, such that the model captures relevant structural
characteristics, but ignores noise [14].

A. Inference for the Stochastic-Block-Model (SBM)

This section outlines how parameters M and z are estimated
given an observed adjacency matrix A. For more details
see [13], and [14] for a principled method to choose k.

To simplify mathematical treatment, an undirected multi-
graph is usually chosen as graph representation. A directed
version can be easily obtained by allowing M and A to
be a-symmetric. This changes the model parameters and the
generative process given previously:

• adjacency matrix A ∈ NN×N
0 with element Aij for i 6= j

gives the number of edges between nodes i and j and
twice the number of self-edges for i = j.

• Stochastic-Block-Matrix M ∈ NN×N
0 where Mrs is the

expected number of edges between groups r and s.
• Edges no longer follow a Bernoulli but a Poisson distri-

bution: Aij ∼ Poi(Mzi,zj )

By taking an MLE approach, we aim to choose M and z such
that the probability P (A | M, z), i.e., the a-posteriori likeli-
hood, of generating exactly the observed edges is maximized.
The probability is given by:

P (A |M, z) =
N−1∏
i=1

N∏
j=i+1

(Mzizj )
Aij

Aij !
exp(−Mzizj )

×
N∏
i=1

(Mzizi)
1
2Aii

1
2Aii!

exp(−1

2
Mzizi).

(1)

Rearranging terms and taking the logarithm of (1) gives:

logP (A |M, z) ∝
k∑

r=1

k∑
s=1

(mrs logMrs − nrnsMrs) , (2)

where nr is the number of nodes in group r and mrs is the
total number of edges running between groups r and s, or
twice that much if r = s. The MLE of Mrs is then:

M̂rs =
mrs

nrns
. (3)

Taking the result from (3), plugging it into (2) and omitting
constant terms, we obtain the unnormalized log likelihood:

logP (A | z) ∝
k∑

r=1

k∑
s=1

mrs log
mrs

nrns
, (4)

depending solely on the group memberships z of the nodes.
Eq. (4) can be efficiently computed and gives rise to a heuristic
algorithm to obtain ẑ, which is described in [13]. As the
problem is not convex, reestimating parameters with different
random assignments is recommended.

One of the issues with the SBM is that it tends to group
nodes according to their degree. As [20] demonstrates, this
can be an asset when the graph expresses core-periphery
structure, which graphs arising in the context of communi-
cation networks frequently do [6], [7], [18]. On the other

hand, [6] reports the emergence of community structure in the
Internet graph, and assortative mixing was reported for IP-to-
IP communication graphs [10], [11]. Here, the SBM might
fail to correctly infer the actual group structure due to degree
heterogeneity within the groups. In Sec. III-B, we thus review
inference for the DCBM, a variant of the SBM, which detects
groups containing nodes with heterogeneous degrees [13].

B. Inference for the Degree-Corrected-Block-Model (DCBM)

The authors in [13] propose a degree-corrected variant of
the SBM, the Degree-Corrected-Block-Model (DCBM), by
introducing a new parameter θi for each node. This parameter
models the expected degree of the node. We briefly outline
the DCBM and refer the reader to [13] for more details.

Again, we assume undirected multi-graphs. Our goal is now
to choose values for M, z and θ that maximize the likelihood.
As before, k is a free parameter and the problem is not
convex. The probability of an undirected multi-graph, given
by adjacency matrix A is:

P (A |M, z, θ) =
N−1∏
i=1

N∏
j=i+1

(θiθjMzizj )
Aij

Aij !
exp(θiθjMzizj )

×
N∏
i=1

(θ2iMzizi)
1
2Aii

( 12Aii)!
exp(θ2iMzizi).

(5)

Rearranging and taking the logarithm yields:

logP (A |M, z, θ) ∝2
N∑
i=1

ki log θi

+
k∑

r=1

k∑
s=1

(mrs logMrs −Mrs),

(6)

from which we derive the MLE estimates for θ and M by
setting the gradient of Eq. (6) equal to zero:

θ̂i =
ki
κzi

, M̂rs = mrs, (7)

where mrs is the total number of edges running between
communities r and s, and κzi is the sum of degrees in group zi.
Similar to Section III-A we can write the un-normalized log-
likelihood in sole dependence of z by plugging the respective
MLE solutions into Eq (6):

logP (A | z) ∝
k∑

r=1

k∑
s=1

mrs log
mrs

κrκs
. (8)

The same heuristic algorithm used for the SBM and described
in [13] can be used to obtain the group membership of the
nodes. Eq. (4) is replaced as objective function by Eq (8).

The DCBM cannot be applied to directed graphs as readily
as the SBM. Since nodes in directed graphs have in general dif-
ferent in- and out-degrees, the directed version of the DCBM
needs two parameters per node. One parameter to model
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the expected in- and the other to model the expected out-
degree [21]. The unnormalized log-likelihood for the directed
case is then:

logP (A | z) ∝
k∑

r=1

k∑
s=1

mrs log
mrs

κinr κ
out
s

, (9)

where κoutr is the sum of out-degrees, and κinr the sum of in-
degrees of group r. For a more detailed derivation we refer
the reader to [13] and [21].

C. Generating Synthetic Networks

Once a set of parameters is obtained, we can sample graphs
from the respective distribution as follows:

1) Draw the number of edges ers between two groups:
• SBM: ers = Poi(M̂rsnrns).
• DCBM: ers = Poi(M̂rs).
• If r = s and graph undirected, multiply ers with 1

2 .
2) Draw tail and head from group r and s with:

• equal probability for the SBM,
• probability proportional to θi for the DCBM.

This approach generates a synthetic graph with time linear in
the number of edges and the original number of nodes.

The so generated graphs may be unconnected. We therefore
randomly rewire edges by taking an edge from a node of
the biggest connected component with degree larger one, and
place that edge on a node of a smaller component. The new
and old end-point of the edge must be in the same group.
The nodes are drawn according to the assumptions made by
the model. Depending on the generated edges, the algorithm
cannot merge all unconnected components, but works well in
practice, as our results will show (Tab. I).

IV. EVALUATION

We compare the generative capability of SBM, DCBM and
Orbis. Additionally, we introduce the SBM+DCBM approach,
which uses the SBM to infer group structure and the DCBM
to generate synthetic graphs. SBM+DCBM uses the structure
inferred with the SBM on the one hand, and the degree
correction of the DCBM on the other hand. As graphs we
use the HOT graph [23] and an IP-to-IP communication
graph, obtained from traces of the Lawrence Berkeley National
Laboratory (LBNL) [24] to which we will refer as LBNL-
graph. For each graph, we firstly discuss the inferred structure
of SBM and DCBM, secondly discuss differences between
graphs generated by SBM and DCBM and, thirdly, compare
our results to those obtained with Orbis. We choose Orbis as
reference generator as it is also applicable to arbitrary graphs.

To quantify generative capabilities, we generate 100 syn-
thetic graphs with each approach and calculate average value
and standard deviation for different graph metrics on the
largest connected component. We also consider the comple-
mentary cumulative distribution function (CCDF) of the node
degree K for one synthetic graph per model. Generally, a good
generator should yield synthetic graphs with metrics similar to

(a) SBM, k = 4 (b) DCBM, k = 4 (c) Orbis+SBM, k = 4

Fig. 3. Figures 3a and 3b visualize the HOT graph according to the inferred
community structure. Figure 3c shows the structure inferred on a graph
generated with Orbis. The size of the nodes is proportional to their logarithmic
degree.

those of the empirical graph, as different graph features encode
different aspects of the graph [6], [25].

We estimate parameters for SBM and DCBM by inferring
M, z and θ ten times per model on each graph for different
values of k. We take the parameters yielding the largest
likelihood for each value of k and visually inspect the inferred
structure to select a value for k. Synthetic graphs with Orbis
are generated using the joint degree distribution of each graph.
Orbis generates synthetic graphs by randomly rewiring nodes,
such that the given joint degree distribution is preserved.

A. Evaluation of the HOT-Graph

The HOT graph is distributed together with Orbis and
accessible at [23]. Since router level topologies are more
engineered and less random, the introduced models should be
able to infer meaningful structure.

a) Inference: Fig. 3 visualizes the inferred structure by
grouping nodes according to group membership. As Fig. 3a
shows, the HOT graph nicely separates into four groups for the
SBM. The lower left and upper left group contain leaf-nodes,
whereas the lower right group serves as aggregation layer and
the upper right group provides connectivity.

This is not the case for the structure inferred by the DCBM
with k = 4 in Fig. 3b. Actually, the separation found by the
SBM yields a larger likelihood when used in conjunction with
the DCBM. Let zSBM and zDCBM be the inferred group
membership for SBM and DCBM respectively, a DCBM using
zSBM is more likely to have generated the HOT graph than a
DCBM with zDCBM . The reason lies in the objective function
and the algorithm used to find the parameter z. In case of the
DCBM, it gets caught in a local optima.

b) Generation: Fig. 4 shows the CCDF of the degree
distribution for the HOT graph and one synthetic graph per
model. The x-Axis depicts the (node) degree K, and the y-
axis the probability of K ≥ k for some k ∈ N. The SBM has
difficulties to generate the heavy tail of the degree distribution.
As mentioned in Sec. III, nodes are stochastically equivalent
given z. Nodes in the same group are thus equally likely to
receive an edge, and therefore have the same expected degree.
This flattens out the heterogeneous degrees of the lower right
group in Fig. 3a and leads to the step visible in Fig. 4.

The DCBM fits the degree distribution better than the SBM,
despite failing to capture the underlying structure. This is
expected, as the DCBM models the expected degrees of the
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TABLE I
GRAPH METRICS FOR SBM, DCBM AND ORBIS ON THE HOT GRAPH.

Model Edges Closeness Assortativity
Coefficient

Clustering
Coef.

[
e−3

] Path
Length

Nodes Knn Degree Coreness Neighbour
Degree

Original 988.00 0.15 -0.22 0.00 6.81 939.00 4.00 2.10 1.16 19.00
DCBM 996.65±20.97 0.12±0.02 -0.16±0.02 1.86±1.41 9.44±2.13 939.00±0.00 4.37±0.55 2.12±0.04 1.10±0.03 11.82±1.39
SBM 1003.78±21.96 0.12±0.01 -0.45±0.01 0.80±0.82 8.41±1.08 939.00±0.00 3.38±0.25 2.14±0.05 1.17±0.04 14.47±0.50
SBM+
DCBM 1012.24±27.82 0.14±0.01 -0.25±0.02 0.79±0.08 7.42±0.87 939.00±0.00 4.03±0.39 2.16±0.06 1.13±0.04 20.13±1.08

Orbis2k 822.11±20.57 0.16±0.00 -0.24±0.01 1.81±0.28 6.23±0.08 754.25±21.25 4.26±0.02 2.18±0.01 1.12±0.01 21.53±0.70

Average of respective graph feature plus/minus one standard-deviation calculated over 100 samples. Closest value is indicated in bold font.

TABLE II
GRAPH METRICS FOR SBM, DCBM AND ORBIS ON THE LBNL GRAPH.

Model Edges Closeness Assortativity
Coefficient

Clustering
Coefficient

Path
Length

Knn Degree Coreness Neighbour
Degree

Original 12329 0.19 -0.31 0.10 2.87 62.96 9.55 6.71 155
DCBM 12356.70±116.45 0.16±0.00 -0.32±0.00 0.07±0.03 2.10±0.04 47.49±1.15 9.58±0.09 5.42±0.06 111.72±2.47
SBM 12334.71±113.48 0.17±0.00 -0.57±0.01 0.02±0.00 2.34±0.04 39.22±1.20 9.56±0.09 5.21±0.05 65.19±1.33
SBM+DCBM 12293.33±116.0 0.15±0.00 -0.33±0.01 0.04±0.01 1.84±0.03 56.58±1.16 9.53±0.09 5.31±0.05 101.92±3.00
Orbis2k 14724±12.22 0.30±0.00 -0.34±0.00 0.09±0.00 3.38±0.01 58.24±0.32 11.41±0.01 8.56±0.01 226.86±0.75

Average of respective graph feature plus/minus one standard-deviation calculated over 100 samples. Closest value is indicated in bold font. All models
generated graphs with 2581±0.00 nodes, which is the original value. We therefore omitted the column due to space.
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100

P
(K
≥
k
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DCBM

SBM+DCBM

Orbis

Fig. 4. CCDF of the degree distributions of HOT- and synthetic graphs.

nodes and is thus able to better reproduce heavy tailed degree
distributions. But also regarding other graph metrics in Table I,
is the DCBM closer to the original graph. This follows from
the insight of graph properties arising to a certain extend due
to heterogeneous degrees.

As we have seen, the DCBM has problems inferring the
underlying structure, while the SBM fails to model the heavy
tail of the degree distribution. The SBM+DCBM combines
the respective strengths, resulting in an even tighter fit to the
original CCDF. Also, most of the graph features are closer to
the original values (Tab. I). This highlights the importance of
incorporating structural and degree information.

c) Comparison to Orbis: Orbis fits the degree distribu-
tion best (Fig. 4). As Orbis generates graphs with the same
joint degree distribution, the degree distribution itself is also
preserved. Despite the almost perfect match, the synthetic
graphs generated with the combined approach still outperform
Orbis in terms of graph features in Table I. The worse fit
reflects the structural changes visible in Fig. 3c. The depicted
structure is inferred using the SBM with k = 4 on the
largest connected component of a synthetic graph generated

100 101 102 103

Degree, K

10−3

10−2

10−1

100

P
(K
≥
k
)

LBNL

SBM

DCBM

SBM+DCBM

Orbis

Fig. 5. CCDF of the degree distributions of LBNL- and synthetic graphs.

by Orbis. The inferred structure is similar to the original one
in Fig. 3a. However, the lower left and upper left group are
now tightly connected, and the upper left group contains now
inter-community edges. The structural changes are introduced
as Orbis randomly rewires nodes and is constraint only by
the given joint degree distribution. SBM and DCBM also
randomly rewire nodes, however with respect to the inferred
parameters, which encode the structure of the graph. Thus
SBM and SBM+DCBM generate graphs with the structure
shown in Fig. 3a. Depending on the use-case, graphs generated
with the SBM might thus be preferable, despite lacking in the
replication of statistical measures.

B. Evaluation of an IP-to-IP Communication Graph

The LBNL graph is obtained from traces of port-003 at the
10.09.2007 of the LBNL-dataset [24]. Each node in the graph
represents an IP-address and each edge a source/destinaton-IP
pair. The resulting graph is directed and unconnected. We take
the largest connected component.

a) Inference: The LBNL Graph has a more complex
structure than the HOT graph. Still, we find 10 groups ade-
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quate to describe the structure of the graph. The large number
of groups prohibits a visualization as in Fig. 3, as well as a
detailed description of the groups.

The SBM finds a more reasonable split as the DCBM from
a structural point of view. The DCBM accommodates high-
and low degree nodes in one group. The inferred split is not
unreasonable, but for the usage outlined in this paper, the split
by the SBM is to be preferred. Contrary to earlier, the split
found by the SBM does not lead to a larger likelihood when
used with the DCBM. Thus, under the DCBM, the split of the
SBM is less likely to generate the observed graph.

b) Generation: The SBM cannot generate the observed
heavy tail as the CCDF in Fig. 5 shows. The DCBM and the
SBM+DCBM approach have an almost perfect fit. Surpris-
ingly, the SBM replicates graph features in Tab. II better than
DCBM and SBM+DCBM.

c) Comparison with Orbis: SBM and DCBM reproduce
the structure they inferred previously. Interestingly, Orbis also
has slight problems with the heavy tail of the LBNL graph
(Fig. 5) and is outperformed by the DCBM and SBM+DCBM.
This may be due to Orbis being able to generate undirected
graphs only, and thus being not able to handle asymmetric
communication, which the SBM and DCBM with their di-
rected variants can capture. This also explains the relative large
number of edges and average neighbor degree for synthetic
graphs generated by Orbis in Tab. II.

V. CONCLUSION AND FUTURE WORK

In this work we show that probabilistic models, namely
the Stochastic-Block-Model (SBM) and the Degree-Corrected-
Block-Model (DCBM), greatly assist in the analysis of com-
munication networks and their synthetic generation. The mod-
els are able to generate synthetic graphs from varying network
domains. The inferred structure of the SBM results in a
compressed, yet well interpretable model, capturing essential
roles for nodes, as shown for a router-level graph, and pre-
serving those roles in synthetically generated graphs. With
respect to inference of structure, the SBM has proven itself
superior to the DCBM in our set-up. However, the additional
capabilities of the DCBM to model individual node degrees
are important to generate graphs with observed heavy tailed
degree distributions, as shown for an IP-to-IP communication
graph. By joining the inference capabilities of SBM and the
generative capabilities of DCBM, we show that the models
outperform the Orbis network generator.

An open issue is the choice of the number of groups for
the investigated models. If no prior knowledge exists, model
selection using statistical and information theoretic measures
could be employed [14]. Also more complex models exist,
which might learn the number of groups from data, as well as
vary the number of nodes in synthetic graphs [14], [21], [22].
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