
Tag-And-Forward: A Source-Routing Enabled Data
Plane for OpenFlow Fat-Tree Networks

Airton Ishimori, Eduardo Cerqueira, Antônio Abelém

Research Group on Computer Networks and Multimedia Communication
Federal University of Pará

Email: {airton, cerqueira, abelem}@ufpa.br

Abstract—Software-Defined Networking (SDN) has turned the
Data Center Network (DCN) environment into a more flexible
one by decoupling control plane from data plane, allowing an
innovative and easily extensible network management solutions.
Nowadays, OpenFlow is the most successful protocol for SDN.
However, SDN based on OpenFlow protocol presents perfor-
mance issues on forwarding table increasing and packet match
cost. Our proposal named Tag-and-Forward (TF) is a data plane
that reduces the number of flow table required in the Fat-
Tree software-defined DCNs to optimize forwarding. The results
noticebly outperformed RTT and packet transmission rate when
compared to usual OpenFlow data plane.

I. INTRODUCTION

Data centers have been hosting a large variety of service-
oriented applications such as data storage, data processing
and online business. These days, a simple web search request
may touch more than 1000 servers [1]. Data storage and
analysis applications interactively process petabytes of data
on thousands of machines [2].

The advent of Software-Defined Networking (SDN) has
turned the dynamic environment of Data Center Networks
(DCNs) into a more flexible ones by decoupling control plane
from data plane. Nowadays, OpenFlow is the most successfull
control protocol for SDN. However, researches have pointed
out that SDN based on OpenFlow protocol shows performance
issues when control plane interacts with the data plane. The ex-
periment results in [3] reports that statistics-pulling interferes
in flow setup. When statistics are never pulled by the logically
centralized controller, clients can make 275 connections/sec.
and when they are pulled once a second, collecting counters
for just under 4500 network state (forwarding entries), those
clients achieve fewer than 150 connections/sec.

Moreover, the research proceeded in [4] shows that the
OpenFlow programable switches can have significant differ-
ences on hardware design, such as on Ternary Content Access
Memory (TCAM). This might affect network throughput over
the large sets of forwarding rules. In addition, the research
also presents that different vendors may have different cache
replacement algorithms. Because of this, rules in the hardware
table can have different TCAM configuration. For example, the
highest-priority rule in the software table (flow table) can be
inserted in a position with lower priority in the hardware table.

TCAM is a key component to achieve higher network
throughput, but it has few memory space and is a “power
hungry” element [5]. As discussed in [6], we can reduce the
number of network states (forwarding rules) to decrease power
consumption. According to [7], [8], the lookup operation
on TCAM is the dominant factor in terms of the power
consumption. Therefore, there should be approaches to make
better use the flow table.

For example, the authors of FTRS (Flow Table Reduction
Scheme) [9] and FFTA (Fast Flow Table Aggregation) [10]
propose algorithms to reduce the flow table size. However,
the compression algorithms tend not to be scalable in the
dynamic environment of data centers, where the flow table
updates commonly occurs at a high frequency. Others, such as
GFlow [11], it makes use of the parallel processing capability
of GPUs (Graphical Processor Units) to accelerate flow table
lookups. However, this requires a lot of programming efforts
and many of the vendors’ switches do not support GPUs.

The aforementioned performance issues relate to the flow
table, which indicates that the flow table is a critical point to
evolve SDN scalability. In addition, in SDN there is also the
flow setup delay problem. However, we can reduce the total
amount of network latency if the network rely less on the flow
table to forward packets. That is, the network state distribution
occurs for a reduced number of switches in the network.

The proposal named Tag-And-Forward, or TF for short, is
our source-routing inspired proposal for software-defined Fat-
Tree DCN topology. TF limits the number of network state
setup to smaller set of switches in contrast to the standard
OpenFlow dataplane. This means that a smaller set of flow
tables need to be updated to manage the entire course of
the network flows. Hence, TF reduces the controller-switch
interaction to setup forwarding paths for the network flows.

Our goals are two-folded: (a) to improve network for-
warding capacity and (b) to reduce network latency. Our
performance evaluation shows an improvement on network
latency by roughly 60% when the flow table is overloaded
at 20% of the total capacity. Moreover, the evaluation also
shows an improvement around 40% on the network delivery
capacity when 8K flows are sent in parallel.

The rest of the paper is organized as follows. Section II
presents the related works followed by Section III that presents

978-3-901882-89-0 @2017 IFIP 923

the TF design. Section IV presents an example of the TF
working. In Section V, we presents our simulation results.
Lastly, we conclude the paper in Section VI.

II. RELATED WORKS

Tag-in-Tag [7] replaces the hundreds of packet header bits
by a shorter one to match against the flow table. Therefore, the
flow table only stores such tag number. Tag-in-Tag is closer
to the VLAN and MPLS working in which all the flow tables
need to store a common label. Our proprosal uses a reduced
number of flow tables.

KeyFlow [12] tag/detag a key calculated by Chinese Re-
mainder Theorem (CRT) in the packets. The key is a code
that identifies the forwarding path where switches decode such
key to determine the output port. The main difference with our
proposal is that KeyFlow uses flow tables on the first and latest
switch of the forwarding path, respectively, to tag and detag
the key. Besides, the key is generated by multiplying prime
numbers successively, so the result number tend to be huge
which the packet header might lack space.

Packets in SourceFlow [13] carries an index counter and
list of OpenFlow actions. Although, the short paper does not
provide a deeper details on the proposal, but it seems that there
is a linear search cost on such list. In SiBF [14] the packets
carry Bloom filters having a sequence of output ports. SiBF
uses 96 bits from MAC fields to store the bloomed code. The
problem is that updating 96 bits whenever the packets ingress
and egress the network, such operation comes with delay cost.

III. TF DESIGN

A. Overview

TF is inspired by the traditional source-routed networks,
where the source routers attach a routing information to the
packet when they are entering the network and remove such
information when they are leaving the network. The routing
information is computed at the source routers. However, in our
proposal, the remote control plane is responsible for computing
routes and building flow tables.

In our proposal, the network controller programs the flow
tables with rules that intruct switches to attach TF-tag (TF
header) to the packets. Basically, TF-tag has a number to
implicitly indicate the output gate (network interface card)
to the next hop. Once a packet is forwarded, the following
switches read TF-tag and run a particular function defined in
the proposal to determine the output gate. For example, if a
path is formed by the sequence of switches es1 → as1 →
cs2→ as7→ es8 to reach a server S, the source switch es1
associates TF-tag with the packet while the others as1, cs2,
as7 and es8 forward the packet by reading the tag. That is,
the source switch uses flow table while the others do not.

B. Gate Configuration Properties

OpenFlow ports are wrapped by gates. A gate can be inter-
preted as label for the actual OpenFlow port. In the Fat-Tree
topology presented in Figure 1, the numbers beside switches
are gates. It is important to keep in mind that OpenFlow ports

are not replaced by gates, i.e., if an OpenFlow port is 2 and
the gate is 16, both represent the same network interface card
of the OpenFlow switch.

The gate configuration phase consists in enumerating net-
work cards of switches according to the following methodol-
ogy: i) the enumeration starts in the edge layer and ends in
the core layer (bottom-up enumeration) and ii) the enumeration
starts in the core layer and ends in the edge layer (top-down
enumeration). Moreover, the enumeration process has some
properties as we state in the paragraphs below.

Property 1 (P1). Given a set of switches s1, s2, ..., sj−1, sj
with j switches and m interfaces per switch {i1(m−k), i1m},
{i2(m−k), i2m} ,..., {i(j−1)(m−k), i(j−1)m}, {ij(m−k), ijm},
the gates are generated by Arithmetic Progression (AP) having
the initial term of the sequence an even number g1 > 0 and
the common difference number d among the terms of the
sequence, then we have the n-th term gn:

gn = g1 + (n− 1)× d

∴

AP (g1, d, n) = {g1, g2, .., gn}
,where 1 ≤ n < j ×m

(1)

Property 2 (P2). Having the association of gates with
interfaces, where g1 = i11, ..., g2 = i(j−1)(m−k), ..., gn = ijm.
For each switch sj having m interfaces, there is a set of gates
Gsj = {g1, g2, ..., gm}, where g1 6= g2 6= ... 6= gm.

Property 3 (P3). Being G1 = {g1, g2, ..., gn} the sequence
of gates of the first layer, G2 the sequence of the second
layer and G3 the sequence of the third layer, we must have
G1 ⊃ G2 ⊃ G3. That is, G3 must be formed by the gates of
G2, where G2 must be formed by the gates of G1. The gates
g1, g2, ..., gn for G2 and G3 must be chosen by the relation:

gn = max Gsj = max {g1, g2, ..., gm} = gm

,where 1 ≤ n < j ×m
(2)

Property 4 (P4). A switch sj having the sequence of gates
Gsj = {g1, g2, ..., gm}, the common difference number d =
gm−g(m−1) must be equal among other switches in the same
level. That is, d = ds1 = ds2 = ... = dsj .

The gate configuration properties apply for the bottom-up
and top-down enumeration phases. In the bottom-up phase,
only the m network interfaces cards of the switches that
connect the current layer to the lower layer are considered, i.e.,
the interfaces that connect edge switches with servers. While
in the top-down phase, only the m interfaces that connect
switches to the upper layer are considered, i.e., the interfaces
that connect core switches with the external network.

C. Forwarding Function

TF data plane process packets in Linux kernel space to
forward packets. The output gate is the returned value of the
function f(g, d), where the parameter g is the number tagged
on the packet and d is the common difference number that
exist among gates. The function is defined as follow.

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Full Paper924

f(g, d) =


g, if g mod d = 0(
b gdc+ 1

)
× d, otherwise

(3)

The computational complexity of f(.) is O(1) on average,
because the parameters g and d are known and they are given
to the function. Therefore, no iteration takes place in the
function to increase the computational complexity.

The function f(.) returns g if, and only if, g is perfectly
divisible by d. Otherwise, the result of the operation

(
b gdc +

1
)
× d is returned. In both cases, the number returned by f(.)

is the output gate through where the received packet should
be forwarded. This function is only used by switches that do
not rely on flow table during the forwarding process. That is,
the switches that are not the source switch of the packet.

D. Gate Flags

G_EXT and G_SRV are two flags of gates defined in the
proposal. Gates of the core switches that have access to the
external network must have the gates configured with the flag
G_EXT. Similarly, the gates of the edge switches that connect
the data center servers must have the flag G_SRV.

These flags are used by the core and edge switches to
forward tagged packets through the gates that have access
with the external network or a server of the data center. If the
flag exist, then the switch discards TF-tag before forwarding
the packet. When the tag is removed, the packet returns to
its original format, that is, the packet with original TCP/IP
protocol headers.

The removal is necessary because the server is not capable
of processing TF-tagged packets. Moreover, we cannot assure
that an entity (i.e., IP router) out of the DCN is capable of
processing such packets.

There is one more gate flag called G_ASS. This is a special
flag that assists aggregation switches to forward some packets
to the core layer. When an aggregation switch receives the
packet, it checks if the fields UP and DOWN are both not zero.
If the receiveing gate has the flag and the assertion is true, then
the forwarding function f(.) defined in Eq. (3) determines the
output gate from the number that UP holds.

The aggregation switches are the only switches that should
send packets upward or downward without any modifications
to the packets. On the other hand, the core and edge switches
modifies the packets (drop TF-tag) when they need to send
packets, respectively, to the external network and data center
server.

E. TF Header

The TF header fits in Layer 2 (L2) after the MAC addresses
of the packet header, where the header is composed by four
fields named EthType (16 bits), QID (3 bits), UP (32 bits)
and DOWN (13 bits). EthType must be 0xff1f to indentify
the tagged packet. This allows switches to use the forwarding
function f(g, d), where the parameter g receives the number
from UP or DOWN. The field UP is used to send the packet

to the upper layer and DOWN is used to send the packet to
the bottom layer.

UP and DOWN are used to perform stateless packet for-
warding. DOWN must have the latest gate in which the packet
should go through to reach its destination, while UP must have
the gate that connect an aggregation switch with a core switch.
QID indicates a queue identification number to be used for
traffic shapping.

F. Implementation

TF is an extension of OVS version 2.4 in which new codes
are programmed in the user-space module ovs-vswitchd
and mostly, in the kernel-space module openvswitch.ko.
These modules from the OVS architecture exchange informa-
tion through the Netlink library. In our current code devel-
opment, we have not programmed the control plane. That
is, no programming interfaces of TF are available in any
OpenFlow controller yet. Nevertheless, we do have extended
the command-line tool called ovs-ofctl to allow users to
setup flow entries and gates.

Gates are configured in the kernel module. More specif-
ically, in the data structure from the original OVS source
code called vport. This data structure is an abstracted
representation of the network interface card and it has an
identification number to indicate the OpenFlow port. In our
implementation, we added three more integer variables in the
data structure to be used to configure the gate, the gate flag
and the common difference number.

However, in order to configure the gates, we should pass
the parameters through the user-space module of the OVS
architecture. Therefore, ovs-vswitchd receives the gate
configuration parameters from ovs-ofctl and it translates
these parameters into the equivalent Netlink message to send
to the modified openvswitch.ko. In this way, the kernel
module becomes aware of the existence of the gates.

IV. TF WORKING

Figure 1 shows an example of the TF working. We start
by configuring the gates according to the properties defined
in Subsection III-B. The bottom-up and top-down enumera-
tion phases are interchangeable since that the properties are
respected. In our example, we first run the bottom-up phase
and then, the top-down phase.

i) Bottom-up enumeration: We enumerate the network
interfaces of es1, es2, ..., es8 that connect the servers. We must
choose the initial term and the common difference number
d for AP. We attribute the number 2 as the initial term for
the sequece and the variable d, so AP generates the sequence
2, 4, 6, ..., 32 by the property P1. Therefore, the gates of
the edge switches are Ges1 = {2, 4}, Ges2 = {6, 8}, ...,
Ges8 = {30, 32}.

The next step is the enumeration of the network interfaces
of as1, as2, ..., as8 that connect the edge switches. By the
property P3, the gates must be formed by the gates that have
been configured for the edge switches. At the same time, the
properties P2 and P4 must hold true. Therefore, the gates of

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Full Paper 925

cs1

as1

es1 es2

Server

as2

cs2 cs3 cs4

as3

es3 es4

as4 as5

es5 es6

as6 as7

es7 es8

as8

Server Server Server Server Server Server Server Server Server Server Server Server Server Server Server

es1:

as1:

cs1:

as7:

es8:

 Match: MAC src/dst, IP src/dst
 Action: tag: <1,30,48>, output

 f(g, d) = f(48, 4) = 48

 f(g, d) = f(30, 8) = 32

 f(g, d) = f(30, 4) = 32

 f(g, d) = f(30, 2) = 30

[UP]

[DOWN]

[DOWN]

[DOWN]

[FLOW TABLE]

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

4 8 12 16 20 24 28 324 8 12 16 20 24 28 32

8 16
8

24
328

16 16
32 32

24 2416
8

24
32

42 44 46 50 52 5448 56

44
48

4452
56

48 52
56 44

48 52 56
44

48 52
56

48
56

48 56 48 56 48 56 56 56 56 5648 48 48 48

PAYLOAD

DOWN UP

48 PAYLOAD30

Tagged packet:

Untagged packet:

1

QID

Fig. 1: TF working by example case. Packets are forwarded by processing the TF header tagged in the packets.

the aggregation switches are Gas1 = Gas2 = {4, 8}, Gas3 =
Gas4 = {12, 16}, Gas5 = Gas6 = {20, 24} and Gas7 =
Gas8 = {28, 32}, where d is 4 by the property P4.

The same procedure applies for the enumeration of the net-
work interfaces that belong to cs1, cs2, cs3, cs4 by following
the properties P2 and P3. Therefore, the gates of the core
switches are Gcs1 = Gcs2 = Gcs3 = Gcs4 = {8, 16, 24, 32}
and d is 8 by the property P4. In this way, the bottom-up
phase is complete. We must continue enumerating the rest of
the interfaces by following the top-down phase.

ii) Top-down enumeration: By following the same logic
used in the bottom-up phase, we enumerate the interfaces of
cs1, cs2, cs3 and cs4 that connect the external network. How-
ever, AP must generate gates that are not be equal to any of
those gate that have already been used in the bottom-up phase
in order to respect the property P2. That is, the initial term of
the sequence must be an even number greater than 32. In our
example (Figure 1), we attribute the number 42 as the initial
term of the sequence and the common difference number d as
2. Therefore, AP generates the sequence 42, 44, ..., 56 by the
property P1, which are the gate numbers of the core switches
Gcs1 = {42, 44}, Gcs2 = {46, 48}, Gcs3 = {50, 52} and
Gcs4 = {54, 56}.

The next step is the enumeration of the network interfaces of
as1, as2, ..., as8 that connect the core switches. By the proper-
ties P2 and P3, the gates must be formed by the gates that have
been configured for the core switches. That is, the gates of
the aggregation switches are Gas1 = Gas3 = Gas5 = Gas7 =
{44, 48} and Gas2 = Gas4 = Gas6 = Gas8 = {52, 56},
where d is 4 by the property P4.

Similarly, the procedure to enumerate the network interfaces
of the edge switches es1, es2, ..., es8 that connect the aggre-
gation layer must follow the properties P2 and P3. Therefore,
the gate numbers for the edge switches are Ges1 = Ges2 =

... = Ges8 = {48, 56}, where d is 8 by the property P4.
Once the network is properly configured, the data center

servers are able to make connections among them. In our
example in Figure 1, the server connected to es1 wants to
communicate with the server connected to es8. So, if the
shortest path is es1 7→ as1 7→ cs2 7→ as7 7→ es8 then the
packets should flow through the gates 48, 48, 32, 32 and 30. To
this end, es1 must associate TF-tag with the packets properly.

In our example, es1 associates with all the incoming packets
that match IP src/dst addresses of the servers and with the
configuration [EthType = 0xff1f, QID = 1, DOWN = 30,
UP = 48]. The field UP holds the output gate of as1 while
DOWN holds the output gate of es8 (latest gate to traverse).
We simplified the packet representation in Figure 1 just for
more clarity.

The number 0xff1f allows as1, cs2, as7 and es8 to inde-
tify TF-tagged packets. Hence, as1 takes the values from UP
and the common difference number d, and passes as argument
to the forwarding function f(.), presented in Subsection III-C,
to determine the output gate. Therefore, f(48, 4) is 48 which
is the output gate returned by the function.

Once the packet reaches cs2, the forwarding procedure is
not different. However, cs2 takes the field DOWN (instead of
UP) and the common difference number d to determine the
output gate. Thus, we have f(30, 8) = 32. Similarly, in as7
and es8 we have, respectively, f(30, 4) = 32 and f(30, 2) =
30, but es8 additionally removes TF-tag because it is the latest
switch in the path. Due to the number of page limitation of
the paper, we will leave the pseudocode that shows in more
details how switches choose header fields to use and when to
remove TF-tag.

To summarize, as1 used flow table while others remained
stateless. If the destination server wants to reply messages to
the sender server, so es8 and es1 “change their role”. For

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Full Paper926

example, consider that the shortest path is formed by the
sequence of switches es8 7→ as7 7→ cs2 7→ as1 7→ es1 (it
could be a different shortest path) which now means that es8
insert TF-tag while es1 removes it. That is, the source switch
is es8 and uses flow table while others remain stateless.

Even though es1 has rules in the flow table, the packets
will not be deviated to the flow table because the Ethertype
will be 0xff1f. Therefore, a switch only uses the flow table
when a packet does not have the TF header.

We have ommited in mentioning QID so far to keep focus
on the forwarding process. TF uses QID for traffic shapping
in the same way that OVS uses. The difference is that there is
no flow table involved to enqueue the packets into the queue
identified by QID. In our proposal, TF enqueues packets to
the corresponding queue of the output gate, determined by the
forwarding function f(.), before sending the packets.

V. PERFORMANCE EVALUATION

A. Simulation Setup

We used Mininet prototyper version 2.3 that runs on Ubuntu
14.04 server with kernel 3.16.0 to build the fat-tree DCN
topology that Figure 1 shows. In the performance evaluation,
we compared the performance of the regular OVS 2.3 with
our proposal TF. The server machine, where the experiments
were carried, is the Blade server having 32 Intel Xeon CPU
E5-2650 2.00GHz with 8 cores each, 64GB RAM and cache
size of 2MB.

We generated ICMP packets to evaluate round-trip time
(RTT) under different packet sizes. We also evaluated the
network throughput by using Pktgen to generate 8K concurrent
UDP flows where each flow is 20-second long. In both
evalutation, the flow table of the switches is saturated at
20% of the total capacity (maximum is 200K [15] in kernel).
Moreover, we measured the time spent to configure the gates.

We used the utility ovs-ofctl to populate the flow tables
of the user space ovs-vswitchd daemon. To make sure, we
performed preliminary tests to check if the rules were properly
being copied to the kernel module openvswitch.ko by
using the tool ovs-dpctl.

OVS and TF results were averaged with the confidence
interval of 90% under 100 runnings. The data samples showed
a small skew from the average, so we think 100 runnings is a
good size to statisticaly validate the evaluation.

B. Round-Trip Time

The plot in Figure 2a shows RTT values under different
packet sizes. We can see that the performance dropped as
the packet size increased. However, TF showed a better
performance. The performance gain is about, respectively,
61% − 63% for the packet sizes smaller than the default
Ethernet MTU size which is 1500 bytes and 56% − 65% for
packet sizes bigger than the MTU size.

RTT increases due to the fact that the network devices take
longer transmission time. However, as TF does not waste time
with packet parse and successive forwarding table lookups, in
which both operations involve many memory operations, TF

can avoid wasting time where OVS does. That is, the output
gate is generated by the function f(.) (Subsection III-C) and
not retrieved from memory (action list) like OpenFlow port is
when the match is found in memory (match rule).

The large packets sent was used as a proof of concept
that our implementation works for packet sizes above MTU.
Although, TF has nothing to do on the packet segmentation,
we wanted to make sure that TF is capable of sending those
packets. As expected, the result shows an increase on RTT
values because the sending host spends more time on the
packet transmission, because of the packet segmentation delay.

We should mention that the network interface driver has to
be aware of the addional header size to avoid dropping the
frame, because of the excess bytes. At first attempt, TF was
not being able to send the tagged packets, the total amount of
bytes in the packet was greater than the MTU size. Hence, the
network interface card was dropping these packets.

C. Packet Transmission Rate

The results in Figure 2b shows that TF improved the
network performance by roughly 40% when compared to
OVS. As we can see both OVS and TF drop transmission
capacity as the packet size increases, but the TF performance
is still noticebly much better. As the transmission rate is
the ratio between the number of packets sent over time, the
performance degradation occurs due to the increase on the
packet transmission delay. However, as OVS spends time on
packet parse operations, this sums a fraction of delay cost to
the overall delay as the packets traverse the network.

In addition, there is also the kernel and userspace communi-
cation delay when the forwarding rules have not been cached
in the kernel module (openvswitch.ko). Such delay al-
ways occurs when the first packet of each flow traverses the
network along the forwarding path. The others does not suffer
with such delay because the forwarding rules have already
been copied from the userspace’s table to the kernel’s table,
unless the rule expires.

D. Gate Setup Time

Figure 2c shows the average time that switches take to
configure the gate numbers. The gate enumeration procedure
follows the example presented in Section IV where the bottom-
up enumeration procedure comes first and then, the top-
down enumeration procedure comes later. That is, switches
are configured sequentially. Therefore, cs1 is the first switch
in the sequence that had all the network interfaces configured
and sequencially we had cs2, cs3, cs4, as1, ..., es8 configured
as the horizontal axis of the plot in Figure 2c shows.

The plot shows two curves where one is indicated by the
squared points and the other one is indicated by the circled
points. They represent, respectively, the total amount of time
spent to configure the fat-tree topology and the time spent
to configure one switch at a time as the gate enumeration
procedure goes.

As we can see, the core switches spend slightly more time
than the others. The core switches spend about 10ms while the

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Full Paper 927

64 128 256 512 1024 1500 2048 4096
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Packet Size (B)

R
T

T
 (

m
s)

OVS
TF

Packet Size >= MTU
[MTU = 1500B]

Overall RTT reduction: 56% ~ 65%

Overall RTT reduction: 61% ~ 63%

(a) Round-trip time

64 256 512 1024
150000

200000

250000

300000

350000

400000

Packet Size (B)

T
ra

ns
m

is
si

on
 R

at
e

(p
kt

/s
)

TF
OVS

(b) Packet transmission rate

cs1 cs2 cs3 cs4 as1 as2 as3 as4 as5 as6 as7 as8 es1 es2 es3 es4 es5 es6 es7 es8
0

20

40

60

80

100

120

140

160

180

200

Fat-Tree Switches

G
at

e
S

et
up

 T
im

e
(m

s)

Cumulative
Single

(c) Gate setup delay

Fig. 2: Average performance of TF. (a) shows the RTT under different packet sizes, (b) shows the achieved packet transmission
rate when the flow table is overloaded at 20% and (c) shows the time needed to configure the gate numbers.

aggregation and edge switches spend about 8ms on average to
have their interfaces configured. The core switches take longer
because they have 6 interface cards and the others have 4
interface cards to be configured. These time spent is roughly
5% of 186ms, which is the total amount of time spent to
configure the network. That is, each switch is contributing with
5% in the gate configuration process which is an acceptable
delay to configure 4 to 6 interface cards that each switch has
in the topology.

Moreover, the configuration time of 186ms to configure 104
network interface cards was better than an expected and it is
a reasonable time spent, because it took less than 2 seconds.
Surely, the total amount of time spent varies as the fat-tree
network grows.

VI. CONCLUSIONS

We presented the proposal named Tag-and-Forward (TF)
which is a source-routing enabled OpenFlow dataplane for the
fat-tree software-defined DCNs. TF reduces the control plane
dependency and the need for having network state distribution
over all available flow tables in the data plane.

Our results showed that TF reduced RTT by roughly 63%
and improved the network packet transmission rate by roughly
40% when compared to the normal OpenFlow data plane
performance, which are a satisfactory improvement for data
center network applications.

ACKNOWLEDGMENT

The authors would like to thank SERPRO (brazilian gov-
ernment company) for the financial support and partnership.

REFERENCES

[1] B. Wang, Z. Qi, R. Ma, H. Guan, and A. V. Vasilakos, “A survey on data
center networking for cloud computing,” Computer Networks, vol. 91,
pp. 528–547, 2015.

[2] K. Chen, C. Hu, X. Zhang, K. Zheng, Y. Chen, and A. V. Vasilakos,
“Survey on routing in data centers: insights and future directions,”
Network, IEEE, vol. 25, no. 4, pp. 6–10, 2011.

[3] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: scaling flow management for high-performance
networks,” in ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4. ACM, 2011, pp. 254–265.

[4] A. Lazaris, D. Tahara, X. Huang, E. Li, A. Voellmy, Y. R. Yang, and
M. Yu, “Tango: Simplifying sdn control with automatic switch property
inference, abstraction, and optimization,” in Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments
and Technologies. ACM, 2014, pp. 199–212.

[5] H. Huang and S. Guo, “Multi-flow oriented packets scheduling in
openflow enabled networks,” in Communications (ICC), 2015 IEEE
International Conference on. IEEE, 2015, pp. 5753–5758.

[6] S. Veeramani, M. Kumar, and S. N. Mahammad, “Minimization of
flow table for tcam based openflow switches by virtual compression
approach,” in Advanced Networks and Telecommuncations Systems
(ANTS), 2013 IEEE International Conference on. IEEE, 2013, pp.
1–4.

[7] S. Banerjee and K. Kannan, “Tag-in-tag: Efficient flow table manage-
ment in sdn switches,” in Network and Service Management (CNSM),
2014 10th International Conference on. IEEE, 2014, pp. 109–117.

[8] K. Kannan and S. Banerjee, “Scissors: Dealing with header redundancies
in data centers through sdn,” in Proceedings of the 8th International
Conference on Network and Service Management. International Fed-
eration for Information Processing, 2012, pp. 295–301.

[9] B. Leng, L. Huang, X. Wang, H. Xu, and Y. Zhang, “A mechanism for
reducing flow tables in software defined network,” in Communications
(ICC), 2015 IEEE International Conference on. IEEE, 2015, pp. 5302–
5307.

[10] S. Luo, H. Yu et al., “Fast incremental flow table aggregation in
sdn,” in Computer Communication and Networks (ICCCN), 2014 23rd
International Conference on. IEEE, 2014, pp. 1–8.

[11] K. Qiu, Z. Chen, Y. Chen, J. Zhao, and X. Wang, “Gflow: Towards
gpu-based high-performance table matching in openflow switches,” in
Information Networking (ICOIN), 2015 International Conference on.
IEEE, 2015, pp. 283–288.

[12] M. Martinello, M. Ribeiro, R. E. Z. de Oliveira, and R. de Angelis Vitoi,
“Keyflow: a prototype for evolving sdn toward core network fabrics,”
Network, IEEE, vol. 28, no. 2, pp. 12–19, 2014.

[13] Y. Chiba, Y. Shinohara, and H. Shimonishi, “Source flow: handling
millions of flows on flow-based nodes,” ACM SIGCOMM Computer
Communication Review, vol. 41, no. 4, pp. 465–466, 2011.

[14] C. A. Macapuna, C. E. Rothenberg, and M. F. Magalhaes, “In-packet
bloom filter based data center networking with distributed openflow
controllers,” in GLOBECOM Workshops (GC Wkshps), 2010 IEEE.
IEEE, 2010, pp. 584–588.

[15] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch,” in 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15), 2015, pp.
117–130.

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Full Paper928

