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Abstract—In order to cope with the challenges of increasing
user bandwidth demands as well as create new revenues by
offering innovative services and applications, Mobile Network
Operators (MNOs) are willing to increase their networks’ ca-
pabilities by making it more flexible, programmable and agile.
MNOs are also seeking new technologies to benefit from recent
advances in cloud for rapid deployments and elastically scaling
services that cloud providers are mostly benefiting today. On
one hand, Software-Defined Networking (SDN) concept can be
helpful for enabling network infrastructure sharing/slicing and
elasticity for “softwarization” of network elements. On the other
hand, machine learning and game-theoretical concepts can also be
utilized to address network management and orchestration needs
of services and applications and improve network infrastructure’s
operational needs. In that regard, joint utilization of machine
learning, game theoretical approaches and SDN concepts for
network slicing can be beneficial to MNOs as well as infras-
tructure providers. In this paper, we utilize regret-matching
based learning approach for efficient Radio Remote Head (RRH)
assignments among MNOs in software-defined based cloud radio
access network (C-RAN). Using game-theoretical approach, we
demonstrate convergence of RRH allocations to mixed strategy
Nash equilibrium and present significant performance improve-
ments compared to traditional assignment approach.

Keywords—Software-Defined Networking; Game Theory, Ma-
chine Learning; C-RAN; Network Slicing.

I. INTRODUCTION

Network slicing exploiting the principles of Software-
Defined Networking (SDN) and Network Functions Virtual-
ization (NFV) is an important concept which is expected to
evolve as a fundamental feature for the next generation cellular
network systems [1]. Network slicing can provide several ben-
efits including dynamic multi-service support, multi-tenancy
and integration with vertical players [2]. Therefore, Mobile
Network Operators (MNOs) are willing to exploit network
slicing for reducing capital expenditure (CapEx) and operating
expenditure (OpEx), allowing programmable networks in order
to offer enriched business services, and shared resources such
as Radio Access Network (RAN) elements, spectrum or trans-
port/core network equipment. At the same time, both creating
and managing network slicing are challenging technological
tasks where appropriate resource scheduling/assignments, cre-
ation and orchestration of new service instantiations, need to
be solved.

Cloud RAN (C-RAN) is a promising technology that pro-
vides virtualization in the RAN aspect of the cellular networks.
In C-RAN, digital signal processing functionality of Base

Stations (BSs) is performed in cloud, e.g. in the baseband units
(BBUs) pool. C-RAN’s virtualized RAN also includes remote
radio heads (RRHs) for the transmissions of radio signals to
user equipments (UEs) depending on the baseband signals
obtained from the cloud. In order to meet diverse demands
of users and applications in the future, current RAN archi-
tectures need to evolve integrated with virtualization concept
and SDN technologies. There exists different developments
utilizing recent open source and standards for network slicing
as well as cloud utilization in the telco domain [1], [3], [4].
In [1], the authors have provided an overview of network
slicing concept from the 3GPP standardization point of view. A
recent collaborative project between USA Tier-1 operator and
ON Lab called central Office Rearchitected as a data center
(CORD) project aims to transform legacy central offices in
the telecommunication network by utilizing the elasticity and
agility of cloud, SDN and NFV concepts [3].

Machine learning and game theory concept are also an-
other two promising approaches for improving the operation
and management of networks and engineering applications
in the future cellular networks. These approaches will be
more helpful to MNOs for improving the decision making
process. Machine learning algorithms applied in the context
of mobile networks can offer plentiful opportunities [5] to
improve capacity planning [6], [7], enhance mobile user
experience [8], generate new insight and foresight [9], and
increase revenue [10]. A game theoretical aspect for network
sharing that ensures resource sharing among multiple tenants
is provided in [11] for mobile networks.

Network slicing utilizing scheduling algorithms in the
context of SDN has also recently been studied in our recent
paper [4] where the trade-offs between the resource alloca-
tions and quality-of-service (QoS) requirements of compet-
ing multiple MNOs operating in a shared mobile cellular
network are investigated. However, it should be noted that
applying machine learning and game theoretic computing
paradigms towards optimization of network behaviour has not
been adequately investigated from the perspective of SDN-
based networks utilizing multi-tenancy in above papers. In this
paper, we demonstrate the applicability of machine learning
based computing approaches for usefulness of network and
service management in SDN-based network sharing for multi-
operators. One of the design goals of our approach is to assign
multiple RRHs to different MNOs while learning from the
previous assignment strategies in order to maximize received
signal strength (RSS) levels of UEs in the network. This will
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not only benefit to UEs associated with different MNOs, but
also to infrastructure providers as well as MNOs (or Mobile
Virtual Network Operators (MVNOs)). In order to achieve
this goal, we have employed a regret-matching based MNO
selection algorithm for the problem of RRH assignment to
multiple MNOs based on dynamic network behaviour of the
infrastructure using a game-theoretic approach. Performance of
proposed architecture is evaluated through Monte-Carlo simu-
lation results where traditional homogeneous RRH assignment
is considered as a benchmark. The simulation results reveal
significant RSS level improvements with the use of regret-
matching based MNO selection algorithm.

The rest of this paper is organized as follows: In Section II,
we introduce system model of shared networks that is ap-
plicable for RRH assignments. In Section III, we propose a
regret-matching based MNO selection mechanism. Section IV
demonstrates the performance of the proposed mechanism and
we finally conclude the paper in Section V.

II. SYSTEM MODEL AND MULTI-TENANT NETWORK
ARCHITECTURE

Fig. 1 illustrates an SDN-based C-RAN architecture where
RAN slicing can be performed using C-RAN controller. In this
SDN-enabled shared mobile architecture with K RRHs and
M MNOs, let M = {1, 2, . . . ,M} denote the MNO set and
K = {1, 2, . . . ,K} denote the RRH set. UEs associated with
m-th MNO can be chosen from the set Nm = {1, 2, . . . , Nm},
thereby, total number of UEs in the given network architecture
can be defined as N =

∑M
m=1Nm. A binary variable qm,k can

be introduced to indicate whether RRH k ∈ K is assigned to
MNO m ∈ M or not (i.e., if k-th RRH is assigned to m-
th MNO then, qm,k = 1 else qm,k = 0). One of the main
constraints is the fact that each RRH k ∈ K can be assigned
to only one MNO during a certain time interval,∑

m∈M
qm,k = 1. (1)

Let ∆K×M := [∆1 ∆2 . . . ∆M ] = (∆m,∆−m) or
alternatively ∆K×M = [Ψ1 Ψ2 . . . ΨK ]T = (Ψk,Ψ−k)
as the K × M RRH assignment matrix of all MNO. Here,
∆m = [qm,1 qm,2 . . . qm,K ]T is a K × 1 is RRH as-
signment vector of m-th MNO and ∆−m is the assignment
vector of all MNOs other than the m-th MNO. Moreover,
Ψk = [q1,k q2,k . . . qM,k]T denotes k-th RRH’s M × 1
MNO assignment vector and Ψ−k as the assignment vector
of all RRHs other than the k-th RRH where Ψk ∈ Ik and
Ik denotes the set of all possible MNO assignments for k-th
RRH and assume that I = Ik = {Ψ1

k,Ψ
2
k, . . . ,Ψ

M
k } where

each Ψm
k is M × 1 orthogonal identity vector IM×1. For an

RRH assignment profile (Ψk,Ψ−k), denote the set of users
of m-th MNO as u ∈ Nm choosing RRH k ∈ K as Ck,m,
i.e. Ck,m = {u ∈ Nm : qm,k = 1, ∀k ∈ K}, then the total
number of users connected to k-th RRH can be expressed as
Υm,k = |Ck,m|.

Other binary variable, ϑmk,i, can be introduced to indicate
whether RRH k ∈ K is in the range of the user i ∈ Nm or
not. It should be noted that UEs receive signals from multiple
RRHs in a particular region, however, a finite number channel
measurements can be reported due to capabilities of UEs,
which is the second constraint. In respect to this, the maximum
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Fig. 1: SDN-based multi-tenant C-RAN architecture with three
MNOs and associated UEs.

number of measured and estimated channels that are related
to different RRHs are identified by an integer value of α. For
this reason, each user can be connected to at most α different
number of RRHs, i.e., ∑

k∈K

ϑmk,i ≤ α. (2)

We define Θmi = [ϑm1,i, ϑ
m
2,i, . . . , ϑ

m
K,i]

T as a K × 1 vec-
tor associated with i-th user of m-th MNO and Ωmi =
[wm

1,i, w
m
2,i, . . . , w

m
K,i]

T as K × 1 vector of the measured
channel quality indicator (CQI) values from K different RRHs
which is called as channel measurement report from i-th user
of m-th MNO. Note that the values inside Ωmi

vector can
have at most α non-zero values due to (2).

After introducing above parameters, the problem definition
can be described as follows: Given a network state S =
(Ψk,Ψ−k) where (Ψk,Ψ−k) is a combination of each MNO
assignments in the set of MNOs M to each RRH in the set
K, we look for the optimal values of assignments to minimize
a cost function,

f(Ψk,Ψ−k) = −
∑
k∈K

U ′k, (3)

where Uk is the utility of the k-th RRH. In order to accomplish
this, each RRH’s utility needs to be maximized by choosing
appropriate MNO assignments. Using obtained CQI, average
RSS of UEs is set as the maximization parameter. Then, the
utility function of k-th RRH is expressed as

U ′k =
∑

m∈M

Nm∑
i=1

(
qm,k × ωm

k,i

)
, (4)

where the term qm,k×ωm
k,i is the obtained CQI value of the UE

i ∈ Nm that is attached to k-th RRH. Then, the optimization
problem can be described as follows: Our goal is to maximize
the sum of RSSs of all UEs (which also maximizes the values
of CQIs) with the decision variables: (i) Assignment problem:
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the assignment of RRHs to each MNO is represented by the
variables qm,k. (ii) Connected users problem: the successful
assignment of all UEs of each MNO to various RRHs is
specified by the multiplication of variables ΘT

mi
∆m. For the

shared mobile architecture, we use the following formulation
for our optimization problem:

minimize
∆

f(Ψk,Ψ−k) (5)

subject to ΘT
mi

∆m > 0, ∀i ∈ Nm,∀m ∈M, (5a)
0 < Υm,k ≤ Nm, ∀k ∈ K,∀m ∈M, (5b)∑
k∈K

qm,k = 1, ∀m ∈M, (5c)

0 <
∑
k∈K

ϑmk,i ≤ α, ∀m ∈M,∀i ∈ Nm, (5d)

{qm,k, ϑ
m
k,i} ∈ {0, 1}, ∀m ∈M,∀k ∈ K,∀i ∈ Nm. (5e)

In particular, the constraint (5a) tackles the case when there
should not be any unconnected UEs in RRH assignments.
The constraint in (5b) represents the fact that there should be
nonzero number of UE connections to each RRH for all users
of each MNO. The constraint in (5c) enforces each RRH be
assigned to only one MNO, (5d) ensures each user be in the
range of RRHs and (5e) denotes the binary decision variables
of assignment and channel measurement reports.

Game Theoretic Interpretation: We consider the problem
of (5) as a normal form game Π which can be mathemat-
ically defined as triplet Π =< K,W, {U ′k}Kk=1 > where
K = {1, 2, . . . ,K} is the finite set of players of the game,
W = Ψ1 × Ψ2 × . . .ΨK represents the set of all available
actions for all the players and {U ′k}Kk=1 : W → R is the
set of utility functions that the players associate with their
strategies. The actions Ψk ∈ Ik for player k are the set of
MNO selections Ψm

k ∈ Ik, ∀m ∈ M. Players select actions
to maximize their utility functions. One of the questions that
arise is if there exists a convergence point, a set of strategies, in
our case a set of MNO selections Ψm

k ∈ Ik, ∀m ∈ M from
which no player would deviate. In game theory such a set of
strategies is called a Nash Equilibrium (NE). A NE for a game
is a set of strategy profiles Ψ = [Ψ1,Ψ2, . . . ,ΨK ] from which
no player can increase his utility by unilateral deviations. A
strategy profile (Ψk,Ψ−k) is a NE iff

U ′k((Ψk,Ψ−k)) ≥ U ′k((Ψ′k,Ψ−k)), ∀k ∈ K, Ψk,Ψ
′
k ∈ Ik

(6)
where (Ψ′k,Ψ−k) refers to the strategy profile in which the
action of UE k is changed from Ψk to Ψ′k while the actions
of all the other players in the game remain the same.

In order to tackle the above problem, the RRH assignment
matrix ∆ needs to be optimized considering the constraints
of (5a)-(5e). However, solving (5) problem is challenging
due to coupling behaviour between the RRHs assignments
and connected users problem. A naive approach for solving
the problem (5) is to all RRH assignment vector profiles of
each MNO exhaustively and pick the assignment profile with
the maximum utility that gives successful assignments of all
UEs of MNOs to RRHs as well. In order to compute (5),
the centralized agent calculates the total CQI values for MK

possible RRH assignment vector combinations. For example,
for a network topology with 160 RRHs, where infrastructure
provider need to assign 3 MNO, the search space is 3160

assignment profiles. Therefore, finding the centralized MNO
selections for all RRHs is cumbersome in large-scale wireless
network. To alleviate the complexity problem, while maintain-
ing good performance results, in the next section, we propose a
regret-matching based algorithm, including capability of global
and local view of the network, using centralized techniques
aided with C-RAN controller.

III. REGRET-MATCHING-BASED MNO SELECTION
ALGORITHM (REGRET )

In this section, our goal is to obtain a distributed learning
algorithm for the joint connected user and RRH assignment
problem of (5) of SDN-based shared mobile network archi-
tecture that requires only local information for updates. We
derive a distributed mechanism of the problem of (5) named
as regret which can work in C-RAN controller aided mode
where each BBU connected to RRHs can solve the problem
with low computation complexity and with limited effort. We
will use the utility function defined in (4) for constructing a
new utility function of (7) for non-cooperative RRHs with the
C-RAN controller aided decision making:

Uk(Ψk,Ψ−k) =

{
f(Ψk,Ψ−k) if ΘT

mi
∆m > 0, ∀m ∈M ∀i ∈ Nm,

−∞ if ΘT
mi

∆m = 0, ∀m ∈M ∀i ∈ Nm.
(7)

Note that the interaction among K “selfish” RRHs can
be defined as non-cooperative RSS maximization game where
each RRH is attempting to find their own MNO selection
vectors to maximize their corresponding total RSS. In the non-
cooperative joint RRH assignment and connected user game,
the K RRHs care only about their own RSS maximization
exclusively, rather than accounting for the overall network
RSS. Each player’s utility function depends on the choice of
the MNO selections, as well as on the other users’ selections
for MNO selections via the successful assignments of all UEs.

We study a C-RAN-aided learning algorithm called the
regret-matching adaptive algorithm from [12], in which the
players choose their actions based on their regret for not
choosing particular actions in the past. The steady-state solu-
tion of the regret-matching-based learning algorithm exhibits
“no regret” and the probability of choosing a strategy is
proportional to the player’s “regret” for not having chosen
other strategies.

Let Īk denote the vector of all strategies or actions for RRH
k ∈ K, i.e. Īk = {Ψ1

k,Ψ
2
k, . . . ,Ψ

M
k } and Ψk(n) denote the

MNO assignment vector selected by the k-th RRH at iteration
n. Define the average regret vector RĪkk (k) of RRH k for an
action vector Īk at iteration (or time) i as

RĪkk (i) =
1

i− 1

k−1∑
n=1

(Uk(Īk,Ψk(−n))− Uk(Ψk(n))). (8)

In the regret-matching-based MNO selection game algo-
rithm (regret), each RRH k computes RĪkk for every action
Ψk ∈ Ik in all past steps when all other player’s actions
remain unchanged. Each player k updates its regret RĪkk (i)
for every set of actions Īk based on the following recursion
formula:

RĪkk (i+ 1) = i−1
i RĪkk (i) + 1

i (Uk(Īk,Ψ−k(n))− Uk(Ψk(n))). (9)
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At every step i > 1, each RRH k updates its own
average regret vector RĪkk (i) for every strategy in Īk. In regret
matching, after computing the average regret vector, RĪkk (i),
each RRH k chooses an action or strategy Ψk(i), i > 1,
according to probability distribution %Īkk (i) defined as,

%Īkk (i+ 1) = Prob(Ψk = Īk) =
[RĪkk (i)]+∑
Īk∈Ik RĪkk (i)]+

, (10)

where [x]+ equals x when x is positive and zero otherwise.
Notice that in the regret-matching game, each RRH k chooses
a strategy Ψk ∈ Ik at any step with a probability proportional
to the average regret for not choosing that strategy Ψk ∈ Ik in
the past steps. The detailed summary of RMSG using Gauss-
Seidel updating scheme [13] is given in Algorithm 1 where κ
is the predefined number of iterations.

Algorithm 1 REGRET algorithm

1: Initialization: Set RĪkk (1) = 0, ∀k ∈ K and select the
initial MNO assignments with probabilities 1/M

2: for iter i = 1, 2, . . . κ do
3: for k = 1, 2, . . .K do
4: Update RĪkk (i) using (9)
5: Update probability distribution %Īkk (i) using (10)
6: Select MNO selection vector Ψk(i) based on
7: updated %Īkk (i).
8: end for
9: end for

10: Return ∆

Every finite strategy game has a mixed strategy NE [14].
Therefore, using a good learning algorithm, any finite game
can be shown to converge to a mixed strategy NE. Our pro-
posed regret-matching-based selection method is distributed
and requires limited information exchange between the RRHs
if the utility function is properly selected. The time-averaged
behavior of regret-matching game converges almost surely
(with probability one) to the set of coarse-correlated equi-
librium [15]. Therefore, the MNO selections of each RRH
converge to a mixed strategy equilibrium solution. In fact, in
our regret-based MNO selection game, the average regret of
a RRH using regret matching becomes asymptotically zero,
which is confirmed by our simulations. The utility function
of non-cooperative or “selfish” RRHs for the MNO selection
game at iteration n is given by (4). Note that by using this
utility function, each RRH selects a MNO Ψk ∈ Ik that
maximizes its own RSS (or value of CQI). Moreover, the
average regret in the recursion formula (9) is being updated
locally as the best MNO is being selected.

IV. PERFORMANCE EVALUATION

In this section, we present the benefits of proposed RRH
assignment mechanism on shared network region including
180 RRHs associated with 3 MNOs that is depicted in
Fig. 2. This network region is generated on Matlab. The
RRHs have omni-directional antennas and each MNO has
60 RRHs which are homogeneously distributed in the given
region and very close to each other in order to serve the
same coverage region. The distance between adjacent RRHs

of each MNO is set to 5 km and the distance between
adjacent MNOs associated with different MNOs is set to
0.4 km. The performance improvements by our proposed
model are shown through Monte-Carlo simulations with the
use of defined parameters in Table I under the consideration
of 10 MHz system bandwidth and antenna diversity. Based
on High Speed Downlink Shared Channel (HS-DSCH) power,
RRH transmitter antenna gain and cable loss, the output power
of RRH becomes 62 dBm. Additionally, based on UE noise
figure, thermal noise (calculated by (Boltzmann constant ×
Temperature (290K)× Bandwidth)) and signal-to-interference-
plus-noise ratio (SINR) [16], receiver sensitivity becomes
−107 dBm. When the size of channel measurement report is
set to α = 9, each UE terminal forwards its report including the
highest 9 channel measurement associated with RRHs whose
associated RSS is higher than −107 dBm.

An optimization problem with feasible points exceeding 2N

when N > 30 is very difficult to find [17]. The centralized
approach is no longer feasible in this scenario due to the
enormous strategy space of 360 profiles.
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Fig. 2: Homogeneously distributed RRHs associated with
different MNOs.

TABLE I: Downlink channel simulation parameters [16].

HS− DSCH power 46 dBm
RRH transmitter antenna gain 18 dBi
Cable loss 2 dB
UE noise figure 7 dB
Thermal noise −104 dBm
SINR −10 dB
Height of RRH antenna 80 m
Height of UE antenna 1.5 m

We consider urban environment Okumura−Hata path
loss model [16] which can be written as

Path Loss =69.55 + 26.16 log(f)− 13.82 log(hB) (11)
− CH + (44.9− 6.55 log(hB)) log(d) dB,

where d is the UE distance to RRH in km and CH is antenna
height correction factor and for small and medium-sized cities,
it is calculated by

CH = 0.8 + (1.1 log(f)− 0.7)hM − 1.56 log(f), (12)
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Fig. 3: Average RSSs of UEs with respect to homogeneous
distribution and proposed method.

where f is operating frequency of MNOs’ RRHs and it is
set to 900 MHz for red-colored RRH, 1800 MHz for green-
colored RRHs and 2100 MHz for blue-colored RRHs in Fig. 2.
It should be noted that this situation leads to different path
loss values at the same distance which causes unfair RRH
assignments in favor of RRHs with lower operating frequency.
In order to avoid from this inconsistency, bias values under the
consideration of operating frequencies need to be added into
channel measurement reports of UEs associated with MNOs
operating at higher frequencies. In order to have same path loss
values for different operating frequencies at the same locations,
bias values of 7.8479 dB for RRHs operating at 1800 MHz
and 9.5932 dB for RRHs operating at 2100 MHz are used
compared to RRHs operating at 900 MHz. We further assume
that perfect channel state information (CSI) is available in
receiver sides and used CSI instead of quantized CQIs values.

We compare the performance of regret with homoge-
neously assignment of RRHs as in Fig. 2. The used evaluation
metric is RSS level which can be calculated by HS−DSCH
Power + Antenna Gain − Cable Loss − Path Loss as a
consequence of connection with those RRHs under the consid-
eration of two scenarios. In first scenario, the average number
of UEs associated with MNO−1, MNO−2 and MNO−3 is set
to 100. On the other hand, the second scenario is more skewed
and the average numbers of UEs associated with MNO−1,
MNO−2 and MNO−3 are set to 10, 100 and 300, respectively.
In both scenarios, UEs are randomly distributed.

Regret algorithm discussed in Section III maximizes the
total values of CQIs (or RSSs in evaluations) in the network
defined by (3) using the utility function (7). In the first
scenario (see Fig. 3 where F(.) denotes cumulative density
function (CDF) of given variable), the probability of RSS
higher than −60 dBm is 0.12 with homogeneous RRH as-
signment whereas it can be observed that it is increased to
0.17 with the use of regret. When we turn to lower levels, the
probability of RSS less than −80 dBm is 0.06 with proposed
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Fig. 5: Assignment probabilities of different RRHs to MNOs.

RRH assignment, however, this probability takes the value
of 0.015 with homogeneous assignment. On the other hand,
in the second scenario, the probability of RSS higher than
−60 dBm is increased to 0.19. The benefits of our proposed
algorithm is more clear in more skewed and imbalanced
scenario. The results reveal that our proposed algorithm does
not guarantee maximization of minimum RSS in the network,
on the other hand, it provides higher probability values for
higher signal levels. The expected value is also increased from
−69.0737 dBm to −68.1894 dBm for scenario I and for the
second scenario, this number becomes −67.1221 dBm with
game theoretical approach.

Fig. 4 depicts average values of regret vector defined in (8)
with respect to different RRHs and MNOs using regret in the
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Fig. 6: Performance improvement of regret algorithm over
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network over 100 iterations. As a consequence, in Fig. 5, we
take a look at the probability mass function (p.m.f), i.e. the
assignment probabilities %Īkk calculated in (10) of some of
the RRHs to different MNOs for the regret algorithm. Fig. 5
represents the change in the p.m.f after 100 iterations for
RRH-1, RRH-10, RRH-20, and RRH-100. The strategies are
represented by the indices 1 to 3 in the legends, the iterations in
x-axis and the probabilities of selecting these indices are given
on the y -axis. At the initialization step, each RRH chooses
initial MNO assignments or strategies with equal probability.
Then, each RRH updates iteratively following regret algorithm,
until the mixed strategy NE is achieved. For example, for
RRH-10, the convergence occurs with probability of one into
MNO-3, whereas for RRH-100, the convergence occurs with
probability 0.55 into MNO-2 and with probability of ≈ 0.225
to MNO-1 and MNO-3. After 10 iterations, the probability
of choosing MNO-3 for RRH-20 is higher than that for any
other MNOs, although the other probabilities for MNO-1 and
MNO-2 are not totally eliminated. After 30 iterations, all other
probabilities are eliminated. A stationary point is reached when
RRH-20 chooses MNO-3 in the 100-th iteration. Therefore, the
existence of mixed strategy NE and the convergence toward
mixed strategy NE in regret are illustrated by the curves
in Fig. 5. Note that when probabilities of MNO selection
converge in Fig. 5, the corresponding overall RSS values
obtained by regret is shown in Fig. 3. Steady state is reached
when all the users, i.e. RRHs select a MNO index with fixed
probabilities.

We also investigate gain of regret learning algorithm over
homogeneous distribution versus the number of iterations in
Fig. 6 where it is calculated by 100x(RSSRegret (Watt) −
RSSHomogeneous (Watt))/RSSHomogeneous (Watt). Fig. 6
shows that regret increases the performance with an amount
of 30% for scenario I and 60% for scenario II with respect to
homogeneous distribution value at the end of iterations.

V. CONCLUSION

In this paper, we proposed a regret based learning algo-
rithm for RRH assignment in SDN-based multi-tenant network
architecture using game-theoretical approaches. We consider
two different scenarios with respect to distribution and total
number of UEs associated with those MNOs. The performance
of the proposed learning-based game theoretic mechanisms
is evaluated in terms of obtained total RSS levels while
considering traditional homogeneous RRH assignment as a
benchmark. The results reveal the advantages of the proposed
mechanisms over the traditional approach.
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