
Exploring a Service-Based Normal Behaviour
Profiling System for Botnet Detection

Weikeng (Robin) Chen
Faculty of Computer Science

Dalhousie University
Halifax, NS, Canada, B3H 1W5

Email: robinchen@dal.ca

Xiao Luo
Purdue School of Engineering and Technology

IUPUI
Indianapolis, IN, USA 46202

Email: luo25@iupui.edu

A. Nur Zincir-Heywood
Faculty of Computer Science

Dalhousie University
Halifax, NS, Canada, B3H 1W5

Email: zincir@cs.dal.ca

Abstract—Effective detection of botnet traffic becomes difficult
as the attackers use encrypted payload and dynamically changing
port numbers (protocols) to bypass signature based detection
and deep packet inspection. In this paper, we build a normal
profiling-based botnet detection system using three unsupervised
learning algorithms on service-based flow-based data, including
self-organizing map, local outlier, and k-NN outlier factors.
Evaluations on publicly available botnet data sets show that the
proposed system could reach up to 91% detection rate with a
false alarm rate of 5%.

I. INTRODUCTION

The convenient and rapid Internet access not only facilitates
many Internet services, but also accelerates the spreading
of malicious software and making the detection efforts very
difficult. One type of malicious software that takes the ad-
vantage of the Internet is a botnet, which spreads itself to
other machines (via e-mail, OS vulnerabilities, etc), conducts
resource-exhaustion attacks like such as Distributed Denial
of Service (DDoS) and steals user data. The detection on
network traffic is critical in preventing botnet spreading, but
has some challenges. One of those challenges is the exis-
tence of encrypted normal traffic, including encrypted web
services such as social media (Facebook, Twitter) and VoIP
(Voice over IP). Consequently, botnets can hide their payload
characteristic by encryption. Furthermore, dynamic ports and
change of protocols enable botnets to bypass signature-based
firewalls and intrusion detection systems (IDS). For robust
detection systems, several [1] [2] [3] flow-based botnet detec-
tion approaches have been proposed without packet payload
information.

The analysis on known botnets shows that they have varying
network access patterns, including single-packet information
(e.g. layer-4 protocol) and flow-based statistical information
(e.g. numbers of packets per flow). Moreover, some botnets
have specific purposes that could be customized by the owners
and are unconventional. Thus, anomaly based IDS on the
normal traffic behaviors attract more attention from researchers
[4] [5] to detect both known and unknown botnets.

In this paper, we employ three unsupervised learning algo-
rithms namely self-organizing map (SOM), local outlier factor
(LOF), and k-NN outlier (k-NN Outlier) factor to build a
normal behaviour profiling system for detecting and analyzing

different botnet behaviours. SOM provides visualization of
the clustering distribution in two-dimensional space. LOF and
k-NN Outlier algorithms are two instance based clustering
algorithms that are shown to work well in the literature [6] [7]
anomaly detection which also uses only normal behaviour for
training as our proposed system. In our proposed approach, the
normal traffic data are separated by services to build service-
specific sub-detectors, and the botnet detection is conducted
by these sub-detectors. Our evaluations on publicly available
normal and botnet traffic data sets show that the proposed
system achieves over 91% for detection rate.

The rest of paper is organized as follows. The related
work is summarized in Section II. The system framework and
unsupervised algorithms are introduced in Section III. Section
IV presents the experiments and results. Finally, conclusions
are drawn and the future work is discussed in Section V.

II. RELATED WORK

Many researches have been conducted in botnet detection.
Gu et al. in [1] demonstrated a botnet detection framework
called BotMiner, which used A-Plane to monitor system logs
to detect host-based attacks and the C-Plane to monitor the
network traffic to detect network-based attacks. The system
was tested on IRC, HTTP and P2P botnet traffic and had
75%-100% detection rate and less than 0.03% false positive
rate. Feily et al. [8] surveyed botnet behaviours and detection
techniques, and classified them to four categories: signature-
based, anomaly-based, DNS-based, and mining-based. Zhang
et al. [9] focused on two botnet mechanisms: Fast Flux and
Domain Flux, while they are not flow-based. Mai and Park
compared three unsupervised learning algorithms based on
network flows [2]. The best detection rate of 97.11% was
achieved by K-means learning algorithm. However, the false
alarm rate was not given. Yin et al. [10] investigated neural
network and genetic algorithms for botnet detection using their
own captured flow-based data set. They reported a detection
rate of 95.7% and false alarm rate of 4.3%. Al-Jarrah et al.
proposed a system based on data randomization and cluster-
based partitioning [11]. They achieved the best detection
rate of 99.42% on the ISOT benchmark data set. Haddadi
et al. proposed different aspects of their flow based botnet
detection system using supervised learning algorithms [3].

978-3-901882-89-0 @2017 IFIP 947

Fig. 1. Service-Based Normal Behaviour Profiling System framework

They achieved detection rates up to 100% with low false alarm
rates. Liu et al. proposed an anomaly detection system named
‘Opprentice’ by making use of supervised learning algorithms
and KPI features [12].

In summary, to the best of our knowledge, none of the above
works have tested normal behaviour profiling using unsuper-
vised learning algorithms and service based construction on
network traffic flow data.

III. SYSTEM FRAMEWORK AND LEARNING ALGORITHMS

Figure 1 shows the service-based normal behaviour profiling
system for botnet detection, which has three components:
(i) feature construction; (ii) model building and learning;
(iii) data visualization and anomaly detection. In the feature
construction component, all the traffic flows1 are grouped by
the destination port numbers. For example, normal traffic to
destination port 53 is typically a DNS request. This type of
traffic is different from the network flows with the destination
port number 80, i.e. HTTP requests. Hence, all the flows are
put into 13 groups (detailed in following). In the proposed sys-
tem, each group has its specified sub-detector. Sub-detectors
are constructed based on one of the unsupervised learning
algorithms, which are detailed in the following subsections.

Note that the proposed system uses only normal traffic flows
in the training phase, that is why it is a normal behaviour
profiling system. In this work, we aim to explore how far
we can push an unsupervised learning system towards botnet
detection without using any attack traffic during the training
phase.

In our approach, the boundaries (in the clustering/grouping
of data) are used to differentiate botnet traffic from normal
traffic. Boundaries are based on the distribution of normal
traffic. They represent the threshold of the distance from nor-
mal clustering/grouping in unsupervised learning algorithms.
When testing the model on unforeseen traffic flows, if the

1Traffic flow is defined as a logical equivalent for a call or a connection in
association with a user specified group of elements [13]. The most common
way to identify a traffic flow is to classify the 5-tuple from the packet header.

new flow is within the boundary, it is classified as normal,
otherwise as suspicious (attack).

A. Self-organizing map (SOM)

Self-organizing map is an unsupervised clustering algorithm
proposed by Kohonen [14]. SOM has been widely used for
intrusion detection [15], [16], [17]. One of the advantages of
SOM is the reduction and visualization to two-dimensional
plane of the multidimensional input data.

SOM has three training steps: sampling, similarity match-
ing, updating. These three steps are repeated until the map
converges (or reaches the defined epochs). Each neuron i has
a d-dimensional weight vector Wi = {Wi1,Wi1, ...,Wid}.
Given X as a d-dimensional input sample vector, the algorithm
is described as the following:
• Initialization: Choose random values to initialize all the

weight vectors Wi(0), i = [1,M] ∩ Z where M is the
total number of neurons in the self-organizing map.

• Sampling: Choose a sample data X from the input space
following an order (e.g., randomized before sampling).

• Similarity Matching: For each sample X , find the best
matching unit (BMU), i.e. winner neuron of X , denoted
here by b. The BMU is the neuron to X with minimum
Euclidean distance, at time step n (nth training iteration),
Eq. 1.

b = argmin
i
||X −Wi(n)||, i = [1,M] ∩ Z (1)

• Updating: Adjust weight vectors of all neurons, Eq. 2.

Wi(n+ 1) =Wi(n) + η(n)hb,i(n)(X −Wi(n)) (2)

Where η(n) denotes the learning rate of the nth training
iteration and hb,i(n) is the selected neighbourhood kernel
function centred on the winner neuron for SOM.

• Continuation: Continue until the SOM map converges or
reached the defined maximum training epochs N .

In this work, we used a 10x10 SOM for each sub-detector
and linked distance as the neighbourhood kernel function. The
outlier factor from SOM is a weighted sum denoted by the
distance to the first, second, and third BMUs, Eq 3.

SOF(A) = ||A−WBMU(n)||
+ 0.5× ||A−WBMU−2nd(n)||
+ 0.3× ||A−WBMU−3rd(n)|| (3)

B. Local outlier factor (LOF)

LOF is an unsupervised learning algorithm that detects
outliers in a given data set. LOF is proposed by Breunig et al.
[18] and has been used for intrusion detection in the literature
[6] [7]. LOF works by first calculating the local reachability
density of an instance A to its kth nearest neighbours Nk(A)
using Eq. 4.

lrd(A) = 1/

∑
B∈Nk(A) reachableDistk(A,B)

|Nk(A)|
(4)

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Full Paper948

The reachable distance reachableDistk(A,B) is calculated
using Eq. 5, where kDist(B) is the distance of B to its kth
neighbour and d(A,B) is the distance between A and B.

reachableDistk(A,B) = max{kDist(B), d(A,B)} (5)

The LOF is computed with the local reachability density of
an instance A and that of its neighbours using Eq. 6.

LOF(A) =

∑
B∈Nk(A) lrd(B)

|Nk(A)|
/lrd(A) (6)

The larger LOF means the higher probability of being an
outlier. In this work, k is set to 3 (empirically) in the tests.

C. k-NN outlier

The k-NN outlier is an instance-based unsupervised learning
algorithm with the concept of k-nearest-neighbour (KNN). It
was first introduced by Ramaswamy et al. [19] for mining
outliers from large data sets. The outlier uses the the distance
of an instance to the kth neighbour, calculated according to
Eq. 7, where kDist(A) is the distance of instance A to the kth
neighbour.

KOF(A) = kDist(A) (7)

If an instance has large kNN value, it is likely to be an
outlier. k-NN outlier has been evaluated for intrusion detection
in the literature [7]. To be consistent with LOF, k is set to 3
in the following experiments.

IV. EXPERIMENTAL SETUPS AND RESULTS

We evaluated the proposed system based on the aforemen-
tioned unsupervised learning algorithms using CTU-13 data
sets. These were captured at CTU and made publicly available
[20].

A. CTU-13 data set

CTU-13 has 13 different datasets, each one is specified
for a botnet, and in total 7 botnet malwares are analysed
[21]. The botnet activities include email spam, click fraud,
and DDoS. CTU labelled the traffic as: Background, Botnet,
C&C Channels and Normal. In our work, the most frequent
11 destination port numbers are used to group the TCP/UDP
flows, and the rest of the TCP/UDP and ICMP flows are
grouped into two additional groups, respectively. Table I
summarizes of the traffic flows based on different services
using destination port numbers.

B. Feature preprocessing

We select 8 out of 14 features from the CTU-13 data set
that are listed in Table II. They are regarded as basic features.
Additionally, we introduce eight new derived features.

Based on the numerical distribution of features, such as
duration, we observed that most flows have shorter duration
than 350 seconds. However, there are still some flows with
extremely long duration more than 3000 seconds.

TABLE I
SUMMARY OF THE DATA SETS BASED ON DIFFERENT NETWORK

SERVICES

Port IANA # of normal # of botnet
number registered flows flows

TCP/UDP

53 X 222,516 145,920
80 X 100,495 26,546
443 X 21,331 34,268
27015 2,325 2
123 X 1,406 49
27016 358 0
27017 286 1
27031 266 1
5222 X 184 0
8950 178 0
27018 170 0
Others - 3,316 122,912

ICMP - - 3,292 114,997

TABLE II
FEATURES OF CTU-13 DATA

Features Description
Duration Duration of the connection in seconds
Protocol Type of the protocol (TCP, UDP, ICMP)
DPort The port of the connection destination
dTos Type of Service from destination to source

SrcBytes Total bytes from source to destination
TotBytes Total bytes of the flow
TotPkts Total packets of the flow

Dir Direction of the flow
Derived Features

BytesPerPkt Average bytes per packet
SrcBytesRatioPerFlow Ratio of SrcBytes within TotBytes

Duration1 Minimal value of Duration and threshold
Duration2 Log value of Duration
TotBytes1 Minimal value of TotBytes and threshold
TotBytes2 Log value of TotBytes
SrcBytes1 Minimal value of SrcBytes the threshold
SrcBytes2 Log value of SrcBytes
TotPkts1 Minimal value of TotPkts the threshold
TotPkts2 Log value of TotPkts

In order to emphasize the differences in durations after the
normalization, instead of the original duration (DurationO), we
derived two features (Duration1 and Duration2). The derived
features are calculated using Eq. 8 and 9. Eq. 8 aims to
present the long durations using a threshold (DurationT). On
the other hand, Eq. 9 aims to show the differences of those
short durations.

Duration1 = min(DurationO,DurationT) (8)

Duration2 = log(DurationO) (9)

We used a similar approach to derive new features to
represent: total bytes, total packets, and source bytes.

C. Traffic distribution for different services

After training the SOM map using the normal traffic data,
we used U-Matrixes and Hit Histograms of SOM models to
visualize the data distributions of different services. Generally,
port 80 and 443 are ports associated with web traffic. Port 443
is associated with HTTPS, which is the secure (encrypted)
HTTP protocol over TLS/SSL, and Port 80 is associated with

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Full Paper 949

Fig. 2. Value Distribution of Durations for the traffic on Port 443

Fig. 3. Value Distribution of Durations for the traffic on Port 80

unencrypted HTTP traffic. Fig. 2 and 3 show the U-Matrix
on port 443 and 80. The lighter the colour of the hexagon
becomes, the shorter the distance is.

Based on the U-Matrixes and the hit histograms, we can
see that the distribution of the traffic on port 443 and port
80 are different. The fact that flows for Port 443 (HTTPS) is
more centred It supports the assumption that different types of
normal traffic flows behave differently. The different behaviors
might be caused by the different amount of data and durations
in the traffic flows.

D. Outlier decision boundary calculation

The assumption of this work is that botnet (malicious) traffic
flows vary from different normal traffic flows. Moreover, we
assume that botnet flows are outliers compared to the nor-
mal traffic flows. The three unsupervised learning algorithms
provided an outlier factor. Hence we need to identify an
outlier decision boundary, which can be selected based on the
distribution of the normal traffic.

In particular, the instances in the boundary are regarded as
normal (in our prediction), otherwise as suspicious traffic, i.e.
potential attacks to report to the system administrators. We
use a naı̈ve decision boundary calculation based on outlier
factors in normal training data. With a training set of normal
traffic for a specific service (Normalt), the outlier factor value
(OfV) is calculated for each normal traffic instance (flow).
Then, the decision boundary value is set to the value of the
βOF percentile of the outlier factor values of all normal traffic
flows during training. For example, if βOF is set as 85%, then
15% of normal (training) traffic flows are regarded as false
positives. The algorithm which is used to calculate the outlier
decision boundary (DecBV), is given in Fig. 4.

In our work, the SOM outlier factor of instance i is the

1: procedure OFTHRESHOLD CAL(Normalt, βOF)
2: i← 0
3: Calculate outlier factor value for each traffic based on

three different learning algorithms
4: while i ≤= |Normalt| do
5: OfV[i]← SOF(Normalt[i]) . SOM
6: or
7: OfV[i]← LOF(Normalt[i]) . LOF
8: or
9: OfV[i]← KOF(Normalt[i]) . kNN

10: i← i+ 1

11: DecBV← βOF percentile of sorted OfV[1...|Normalt|]
12: The sorting order is ascending.
13: return DecBV

Fig. 4. Algorithm for the outlier factor threshold calculation

weighted sum of distances to its first, second, and third BMUs,
as Eq. 3. The weights are 1, 0.5, and 0.3, respectively. For
the LOF and k-NN, the outlier factors are from Eq. 6 and 7,
respectively.

Note that our proposed approach is service-based, the value
DecBV varies for each service group of flows.

E. Botnet detection results and discussion

In our evaluations, we used 70% of the normal flows for
training and the remaining 30% of the normal flows and all
botnet flows for testing. We did not use the flows labelled
as “Background” traffic, given that the ground truth for those
flows are unknown. We use the metrics of false positive rate
(FPR) and detection rate (DR) to evaluate the performance of
the proposed system according to Eq. 10 and 11.

FPR =
Number of Normal Detected as Attack

Total Number of Normal Connections
(10)

DR =
Number of Detected Attacks

Total Number of Attack Connections
(11)

In this work, we experimented with the βOF value from
1% to 15%. Table III and IV shows the DR and FPR results
of all three learning algorithms given different values of
βOF based on with and with out derived features. Based on
these results, k-NN outlier performs better than others in
both scenarios. Without derived features, the detection rate
is much lower, although the false positive rates are similar.
With derived features, the proposed system achieved around
91% of detection rate with 5% false alarm rate (given that it
is a normal profiling system).

As our proposed system is service-based normal profiling,
we also investigate the performance on each service-based
group. Fig. 5-10 show the performances of three unsupervised
algorithms on different services where there is botnet traffic
in the testing sets. It shows that all algorithms perform well
on ICMP traffic flows, with approximately 100% detection
rate and about 1% false positive rate. The detection rate of
the botnet flows on port 80 and 53 does not increase with
higher βOF value. We assume that the reason behind is that the

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Full Paper950

0 5 10 15

0

20

40

60

80

100

D
et

ec
tio

n
R

at
e

(%
)

1- OF (%)

 Port 53
 Port 80
 Port 443
 Port 27015
 Port 123
 Port 27017
 Port 27031
 ICMP
 Other Ports

Fig. 5. Detection rates of SOM outlier

0 5 10 15

0

20

40

60

80

100

 Port 80

 Port 53

 Port 443
 Port 27015
 Port 123
 Port 27017
 Port 27031
 ICMP
 Other Ports

D
et

ec
tio

n
R

at
e

(%
)

1- OF (%)

Fig. 6. Detection rates of LOF outlier

0 5 10 15

0

20

40

60

80

100

D
et

ec
tio

n
R

at
e

(%
)

1-
OF

 (%)

 Port 53
 Port 80
 Port 443
 Port 27015
 Port 123
 Port 27017
 Port 27031
 ICMP
 Other Ports

Fig. 7. Detection rates of kNN outlier

0 5 10 15
0

5

10

15

20

25

Fa
ls

e
P

os
iti

ve
 R

at
e

(%
)

1- OF (%)

 Port 53
 Port 80
 Port 443
 Port 27015
 Port 123
 Port 27017
 Port 27031
 ICMP
 Other Ports

Fig. 8. False positive rates of SOM outlier

0 5 10 15
0

5

10

15

20

25

Fa
ls

e
P

os
iti

ve
 R

at
e

(%
)

1- OF (%)

 Port 53
 Port 80
 Port 443
 Port 27015
 Port 123
 Port 27017
 Port 27031
 ICMP
 Other Ports

Fig. 9. False positive rates of LOF outlier

0 5 10 15
0

5

10

15

20

25

Fa
ls

e
P

os
iti

ve
 R

at
e

(%
)

1- OF (%)

 Port 53
 Port 80
 Port 443
 Port 27015
 Port 123
 Port 27017
 Port 27031
 ICMP
 Other Ports

Fig. 10. False positive rates of kNN outlier

TABLE III
OVERALL EVALUATION RESULTS WITHOUT DERIVED FEATURES

βOF(%) SOM LOF k-NN Outlier
DR FPR DR FPR DR FPR

15 78.9 15.2 61.6 16.8 75.5 15.0
14 77.6 14.2 60.8 15.7 75.0 14.0
13 76.5 13.2 60.0 14.6 73.3 13.0
12 75.8 12.2 57.2 13.4 64.5 12.0
11 73.9 11.2 55.6 12.1 64.0 11.0
10 72.6 10.2 54.0 11.0 63.7 10.1
9 46.6 9.1 52.8 9.7 63.1 9.0
8 44.7 8.1 51.0 8.6 62.5 8.1
7 42.9 7.0 24.0 7.3 61.6 7.1
6 41.4 6.0 22.5 6.2 60.4 6.0
5 40.0 5.1 20.8 5.1 59.3 5.0
4 37.8 4.1 18.7 4.1 57.3 4.0
3 36.5 3.1 15.8 3.1 51.7 3.0
2 36.1 2.2 12.3 2.0 47.7 2.0
1 33.3 1.1 6.9 0.3 40.9 1.0

traffic flows destines to these two port numbers (80 and 53) are
sparser than the others. Moreover, k-NN outlier performs the
best in this case, on destination port 80 (HTTP) and 53 (DNS)
compared to the other two algorithms. On ports 27015, 27017,
and 27031, although there are only one or two (see Table I)
botnet traffic flows in the test data set, our proposed system is
still able to detect this one to two flows under very unbalanced
(normal to attack) conditions. In these cases, the detection rate
raised to 100% when the false positive rate was around 7%
to 8%. Based on the overall results on the CTU-13 dataset,
k-NN Outlier performs better than the other two algorithms
in general. However, SOM performs better on the traffic of

TABLE IV
OVERALL EVALUATION RESULTS WITH DERIVED FEATURES

βOF(%) SOM LOF k-NN Outlier
DR FPR DR FPR DR FPR

15 93.8 15.2 84.4 16.7 98.2 15.0
14 93.3 14.1 83.5 15.8 97.9 14.0
13 92.6 13.2 82.6 14.8 97.6 13.0
12 91.6 12.2 81.6 13.7 97.3 12.0
11 90.9 11.2 80.1 12.6 97.1 11.0
10 89.2 10.2 78.8 11.3 96.8 10.0
9 88.4 9.2 77.3 10.2 96.5 9.0
8 86.5 8.1 74.7 8.9 95.4 8.0
7 84.9 7.1 47.5 7.6 94.1 7.1
6 76.7 6.1 46.2 6.5 92.7 6.1
5 73.2 5.1 38.3 5.3 91.3 5.1
4 69.6 4.1 36.1 4.1 82.1 4.1
3 65.3 3.1 17.7 3.1 78.6 3.1
2 63.2 2.1 14.2 2.0 57.5 2.1
1 44.3 1.1 1.0 0.4 50.8 1.0

some specific port number, such as 27017. This implies that
the combination of the algorithms might return better results.
The investigation of other unsupervised algorithms and the
combinations of the algorithms are left for future work.

V. CONCLUSION AND FUTURE WORK

In this research, we explored three unsupervised learning
algorithms: SOM, LOF and k-NN outlier for service-based
botnet detection using normal behaviour profiling. Data sets
from CTU-13 have been used to evaluate the proposed system.
The overall results show that k-NN outlier performs better
than the others. Moreover, SOM provided the advantage of

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Full Paper 951

visualization of data distribution with the SOM U-matrix and
hit-histogram.

The detection rates and false alarm rates on CTU-13 data
sets showed that without any a priori knowledge of the botnet
attacks, k-NN achieves over 91% detection rate with around
5% false alarm rate. These results show that the derived
features we propose seem to improve the performance.

In this work, a naı̈ve decision boundary calculation method
is used. For the future work, we plan to employ more robust
and adaptive functions to calculate the decision boundary
based on the overall distribution of the normal behaviours.
The proposed normal profiling system has shown promising
performances on 13 different datasets (over 90% detection
rate with very low false alarm rates) to detect new suspicious
behaviors. Even better performances can be gained by com-
bining this system with supervised learning algorithms when
there are known anomalies in the traffic. In the future, we also
aim to evaluate the system on other traffic datasets, such as
SimpleWeb SSH datasets [22] [23] and extend the proposed
system to other anomaly detection tasks, as normal profiling is
a robust and practical approach for anomaly detection without
positive samples.

ACKNOWLEDGMENT

This research is supported partly by the Mitacs Globalink
Award and NSERC in Canada and is conducted as part of the
Dalhousie NIMS Lab at: https://projects.cs.dal.ca/projectx/.

REFERENCES

[1] G. Gu, R. Perdisci, J. Zhang, W. Lee et al., “Botminer: Clustering
analysis of network traffic for protocol-and structure-independent botnet
detection.” in USENIX Security Symposium, vol. 5, no. 2, 2008, pp. 139–
154.

[2] L. Mai and M. Park, “A comparison of clustering algorithms for
botnet detection based on network flow,” in 2016 Eighth International
Conference on Ubiquitous and Future Networks (ICUFN), 2016, pp.
667–669.

[3] F. Haddadi and A. N. Zincir-Heywood, “Benchmarking the effect of
flow exporters and protocol filters on botnet traffic classification,” IEEE
Systems Journal, vol. 10, no. 4, pp. 1390–1401, Dec 2016.

[4] A. K. Ghosh, A. Schwartzbard, and M. Schatz, “Learning program
behavior profiles for intrusion detection.” in Workshop on Intrusion
Detection and Network Monitoring, vol. 51462, 1999, pp. 1–13.

[5] S. Zuo, “A dynamic normal profiling for anomaly detection,” in 2009
5th International Conference on Wireless Communications, Networking
and Mobile Computing, Sept 2009, pp. 1–4.

[6] M. Alshawabkeh, B. Jang, and D. Kaeli, “Accelerating the local outlier
factor algorithm on a gpu for intrusion detection systems,” in Proceed-
ings of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, ser. GPGPU-3. New York, NY, USA: ACM, 2010,
pp. 104–110.

[7] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, A
Comparative Study of Anomaly Detection Schemes in Network Intrusion
Detection, 2003, pp. 25–36.

[8] M. Feily, A. Shahrestani, and S. Ramadass, “A survey of botnet and
botnet detection,” in 2009 Third International Conference on Emerging
Security Information, Systems and Technologies, June 2009, pp. 268–
273.

[9] L. Zhang, S. Yu, D. Wu, and P. Watters, “A survey on latest botnet
attack and defense,” in 2011IEEE 10th International Conference on
Trust, Security and Privacy in Computing and Communications, Nov
2011, pp. 53–60.

[10] C. Yin, A. H. Awlla, J. Wang, and Z. Yin, “A novel framework towards
botnet detection,” in 2015 3rd International Conference on Computer
and Computing Science (COMCOMS), Oct 2015, pp. 9–12.

[11] O. Y. Al-Jarrah, O. Alhussein, P. D. Yoo, S. Muhaidat, K. Taha, and
K. Kim, “Data randomization and cluster-based partitioning for botnet
intrusion detection,” IEEE Transactions on Cybernetics, vol. 46, no. 8,
pp. 1796–1806, Aug 2016.

[12] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and
M. Feng, “Opprentice: Towards practical and automatic anomaly de-
tection through machine learning,” in Proceedings of the 2015 ACM
Conference on Internet Measurement Conference, ser. IMC ’15. New
York, NY, USA: ACM, 2015, pp. 211–224.

[13] “RFC 2722 (October 1999),” http://tools.ietf.org/html/rfc2722.
[14] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no.

13, pp. 1 – 6, 1998.
[15] H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, “A hierar-

chical som-based intrusion detection system,” Engineering Applications
of Artificial Intelligence, vol. 20, no. 4, pp. 439 – 451, 2007.

[16] P. Lichodzijewski, A. N. Zincir-Heywood, and M. I. Heywood, “Host-
based intrusion detection using self-organizing maps,” in Neural Net-
works, 2002. IJCNN ’02. Proceedings of the 2002 International Joint
Conference on, vol. 2, 2002, pp. 1714–1719.

[17] S. T. Sarasamma, Q. A. Zhu, and J. Huff, “Hierarchical kohonenen
net for anomaly detection in network security,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 35, no. 2, pp.
302–312, April 2005.

[18] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying
density-based local outliers,” SIGMOD Rec., vol. 29, no. 2, pp. 93–104,
May 2000.

[19] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for
mining outliers from large data sets,” SIGMOD Rec., vol. 29, no. 2,
pp. 427–438, May 2000.

[20] S. Garca, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison
of botnet detection methods,” Computers & Security, vol. 45, pp. 100 –
123, 2014.

[21] S. Garcia, “The CTU-13 dataset. a labeled dataset with botnet, nor-
mal and background traffic,” http://mcfp.weebly.com/the-ctu-13-dataset-
a-labeled-dataset-with-botnet-normal-and-background-traffic.html.

[22] R. Hofstede, L. Hendriks, A. Sperotto, and A. Pras, “Ssh compromise de-
tection using netflow/ipfix,” SIGCOMM Comput. Commun. Rev., vol. 44,
no. 5, pp. 20–26, Oct. 2014.

[23] A. Sperotto, R. Sadre, F. van Vliet, and A. Pras, A Labeled Data Set for
Flow-Based Intrusion Detection. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 39–50.

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Full Paper952

