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Abstract—diverse cloud applications deployed on-demand 

make for workload burstiness. Burstiness is quantified 

statistically through different variance measures. This paper 

focuses on the statistical measures used to quantify cloud 

workload burstiness. Using diverse workloads, it identifies 

different statistical models that uniquely capture workload 

specific burstiness. Subsequently, it employs recent econometric 

models described as Auto-regressive Conditional Score (ACS) 

motivated by their ability to model time-varying parameters that 

capture burstiness more accurately than existing methods. 

Furthermore, it has inspired a novel measure of burstiness, the 

Normalized Score Index (NSI). Compared to existing measures, 

the NSI captures burstiness specific to statistical features per 

workload. When standard variance features are observed, the 

NSI reverts to traditional measures and when nonstandard 

features are present, it models them accordingly. The NSI has 

been applied to a diverse workload set and yields both a static 

metric and a means by which to track burstiness over a 

workload’s lifecycle.  
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I.  INTRODUCTION  

 Workload burstiness arises given that applications with 
unique characteristics compete for finite cloud resources. 
Cloud workload variance has many descriptive terms.  
Burstiness, spikes, fluctuations, slashdot effects and flash-
crowds all quantify variance. While these have been used to 
model various variance characteristics in cloud workloads, 
there is no general consensus regarding definition & no 
quantitative consensus on what differentiates a spike in traffic 
from a flash-crowd as both are often categorized as bursty. In 
this paper, burstiness is the collective term for variability given 
its use in the research literature. Existing measures of 
burstiness largely employ workload models with underlying 
assumptions of normality. That is, cloud workloads are 
generally assumed to be composed of variables drawn from the 
normal distribution.  While this is valid in many cloud use-
cases [1] recent research has uncovered new observations that 
are not explained or captured by the normality assumption. 
These observations are made by a study of the time-series of 
workloads. Loboz [2] made observations of extreme value 
distributions in Microsoft Azure cloud computing 
environments. The study provides statistical evidence of heavy-
tailed distributions which are not explained by assumptions of 
normality. Analysis of cloud storage traffic has been shown to 
exhibit right-tailed distributions [3]. 

 This paper identifies current measures of cloud workload 
burstiness by the analysis of their time-series which is elicited 
from synthetic and real traces. It studies them given the 
normality assumption and identifies salient statistical features 
that determine when the assumption is valid. Furthermore, it 
isolates statistical features that determine when the normality 
assumption becomes inadequate. Then, it develops a new 
measure of variance described as the Normalized Score Index 
(NSI). This was motivated by recent econometric models 
described as conditional score models. Its uniqueness from 
current methods is discussed as well as its contributions and 
extensions thereof. Subsequently, its practical realization as 
solutions employed in cloud computing scenarios is elaborated. 
This paper’s contributions are as follows: 

 A novel measure of burstiness, the NSI. 

 A methodology to determine when existing burstiness 
measures & the NSI should be used. 

 An extensible algorithm by which to estimate the NSI 

parameters for models statistically determined to provide 

the best fit per workload.  

This paper is organized as follows. Section II presents the 

state-of-the-art in existing measures of cloud workload 

burstiness and details their use in current research. Section III 

presents the realization of the Normalized Score Index (NSI). 

Section IV details its evaluation using a diverse set of cloud 

workloads and different use-case scenarios while conclusions 

are given in section V. 

II. STATE-OF-THE-ART IN MEASURING WORKLOAD BURSTINESS 

A. Current Measures of Burstiness 

     Current measures of burstiness focus on the relationships 

between the observations of the time-series of workloads.  

These account for burstiness according to different properties. 

Table 1 provides the measures of burstiness employed in 

current research. All the parameters are specified for a time- 

  

Table 1: Current Measures of Cloud Workload Burstiness 

 

 

 

 

 

 

 

Measure Details 

Auto-Correlation 

Function (ACF) 
𝐴𝐶𝐹(𝑡, 𝑏) =

𝐸[(𝑌𝑡−𝜇𝑡)(𝑌𝑏−𝜇𝑏)]

𝜎𝑡𝜎𝑏
  

Index of Dispersion, I 𝐼 = 𝑆𝐶𝑉(1 + 2 ∑ 𝜌𝑖
∞
𝑖=1 )  

Hurst parameter. H 𝑉𝐴𝑅[𝑌(𝑚)]~𝑘𝑚2𝐻−2      as m  ∞ 

Entropy, HS(Y) 𝐻𝑆(𝑌) = − ∑ 𝑃(𝑌𝑖) log 𝑃(𝑌𝑖)𝑛
𝑖=1   
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series Yt (t = 1,2,3,..). In table 1, E is the expectation of Y, 𝜎t 

and 𝜎b are standard deviation at lags t and b, SCV is the 

squared coefficient of variation (σ/μ); ρ is ACF; k is a 

constant, m the time-series sample size; H is the Hurst 

parameter with range [0.5, 1]; P(Yi) is the probability of Y  

having value at Yi  occur. Their essential features are 

discussed. 

The ACF has been used to model ‘burstiness’ under two 

distinct categories: temporal and spatial burstiness.      

Temporal burstiness relates to the correlations that exist 

between the observations of a time-series over lags. This is the 

standard definition of the ACF. The correlations that occur 

over lags in a time-series are quantified as burstiness given 

that the relationship is temporal over finite periods of time 

(lags) [4]. Spatial burstiness [5] characterizes burstiness 

according to the magnitude or size of the observations of a 

time-series under study. From a statistical perspective, spatial 

burstiness arises due to the presence of heavy tails observed in 

the conditional distribution of a time-series.   

The index of dispersion is expressed in terms of the mean 

value of a random variable to normalize the dispersion 

captured with the variance. It has been used in current research 

as a measure of burstiness. The Hurst parameter is a measure 

of long-range dependence or the long-range memory of a time 

series. The Hurst parameter relates to the rate at which the 

temporal correlations vary over time between the observations 

of a time-series. Table 1 gives the expression in terms of the 

variance. The Hurst parameter range for burstiness is [0.5, 1]. 

Increase in value means increase in burstiness. Entropy as a 

measure of the uncertainty in the content of information 

models workload bursts given that they represent sudden 

departures from regular behavior. The Shannon entropy [6] is 

given in table 1.  

B. Current Reseach Methods In Measures of Burstiness 

There are important drawbacks regarding the measures of 

burstiness discussed. The index of dispersion contains an 

infinite sum given the ACF function as shown in table 1. 

Practical implementations arbitrarily determine an upper limit 

given the environment & a practical implementation [7] 

replaces the infinite sum with request arrivals over a finite 

window while employing another method for burst detection.     

The main drawback of the Hurst parameter as a measure of 

burstiness is the lack of a unified approach in its estimation 

[8]. Different implementations and realized algorithms yield 

different values for the same parameter. The Shannon entropy 

requires a long history of the time-series before calculation of 

its probability density function subsequent to calculation of 

the entropy measure. Furthermore, it is unable to distinguish 

between a slow increase in workload and an sudden increases 

representing intense workloads [8].  

III. THE NORMALIZED SCORE INDEX (NSI) 

     In order to mitigate some of the drawbacks discussed, 4 

traces from production clouds were studied. The aim was the 

discovery of workload dynamics to enable the determination 

of the measure of burstiness that captures its salient statistical 

properties. They are described in brief. 

A. Analysis of Diverse Cloud Workloads 

Four workloads were selected from production cloud 

environments identified as series I through IV. Series I is from 

recent cloud video traffic study in [9]. Series II comes from 

traces obtained from an Infrastructure-as-a-Service (IaaS) 

cloud environment [10] containing aggregate data for CPU, 

memory and network I/O from 1700 VMs over 4 months. 

Series III is the well-studied trace from Google’s compute 

cluster composed of 12,500 nodes. Series IV comes from the 

evaluation of personal cloud storage [11]. For the four 

workloads discussed, the time-series for each was elicited 

upon which standard statistical methods were employed in 

their analysis. The signal + residual model is adopted in the 

analysis of each time-series given its basis for the realization 

of linear classical models of time-series. This methodology is 

illustrated in Figure 1a.  

B. Nonstandard Statistical Features in Cloud Workloads 

With reference to Figure 1a, current measures of burstiness are 

captured by white noise residuals and squared residuals given 

the left and right branches of the decision loop for correlation. 

These are standard statistical features representative of 

traditional linear and nonlinear models such as the well-known 

Generalized Auto-Regressive Conditional Heteroskedastic 

model (GARCH). Figure 1b illustrates the residual ACF for all 

series under study. Series I ACF represents temporal 

burstiness while the (squared) residuals for series III represent 

variance that is captured by GARCH models. The residual 

ACF of series II & IV however represents those statistical 

features that are not explained by temporal correlations or 

GARCH variance. These are described as nonstandard. The 

empirical distribution for series II is illustrated in Figure 1b. 

Both series II and IV (not shown) exhibit a right-tailed 

distribution as shown in the empirical histogram.  These 

corroborate the extreme value distributions similarly observed 

in Microsoft cloud environments [2] These observations 

necessitate a new measure given that existing linear classical 

& nonlinear models do not explain them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1a: Methodology 1b: Workload Residual Analysis 
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C. Conditional Score Models 

Research conducted in the field of econometrics has led to 

new perspectives in modeling non-normal errors as was 

observed for series II and IV which present characteristics 

which are more accurately described by measures described in 

econometrics as the score, the derivative of the time-series 

done with likelihood estimation. Harvey [12] presents new 

approaches in modelling time-varying properties, both in the 

mean and the variance, of a time series described as 

Autoregressive Conditional Score (ACS) models. The score 

refers to the derivative of the maximum likelihood estimate of 

the random variable describing the time-series. To specify the 

model, the time-series under study Yt with error term εt is 

assumed to be white noise with zero mean and finite variance. 

A general distribution is assumed for Yt, that is not the normal 

distribution: Yt ~ p(Yt|ft,θt). Here again, ft is the time-varying 

parameter; θt the corresponding parameter vector. ft is 

variously the mean 𝜇 for linear models and the variance 𝜎2
 for 

nonlinear models. Likewise, the parameter vector θt in model 

realization is θ(𝜇,𝜎2
) depending on statistical observations. 

When analysis determines departures from normality and the 

GARCH model as illustrated in Figure 1a, then a new measure 

is realized according to the observations. Writing ft in the 

autoregressive form, we get: 𝑓𝑡 = 𝜔 +  ∑ 𝛽𝑖𝑓𝑡−𝑖
𝑝
𝑖=1 +

∑ 𝛼𝑗𝑠𝑡−𝑗
𝑞
𝑗=1  where 𝜔,{𝛼i,βj} are coefficients {i,j = 1,,p;1,,q} 

respectively & parameters determined by log-likelihood: 

                                                                                                (1) 

Taking the second derivative of the score function of yt yields 

the scaled score: 

               (2) 

The scaled score function of equation (2) captures burstiness 

specific to the probability distribution of the time-series.  

D. Development of the NSI     

      The measures of interest, which vary over time, are the 

mean and the score. The realization given existing work in 

statistics uses scoring rules which are used to measure the 

predictive power of a forecasting solution, well-known 

methods used in the statistics literature [13]. For a time-series 

Yt, t = 1 to T, a score St+1 is defined for the prediction done at 

St with the scoring rule defined by: 

               (3)  

where p is the probability density function of Y and θ is the 

parameter which in the Gaussian case is the variance σ
2
. The 

standard form of scoring rule for (3) from [13] is: 

                      (4) 

 

This is the Negative Log Score (NLS), averaged over the 

observations T of the time-series. With reference to Index of 

dispersion (I = σ
2
/𝜇), if we replace the variance by the score of 

equation 4, we get the one-step score prediction & moving 

average of the time-series: 

 

                                         (5) 

 
This is the normalized Score Index given that it is normalized 
by the mean value of the time-series over T. 

IV. EVALUATION 

A. Comparison with Existing Methods 

    Given the analysis and realization of the NSI, a 

performance analysis exercise was conducted one in which it 

was compared with existing measures of burstiness. The four 

series selected were evaluated for burstiness with the Hurst 

parameter, Shannon entropy and with the NSI. Table 2 shows 

 

Table 2: Evaluation of Time-Series for Burstiness 

 

 

 

 

 

 

the results. While there is some degree of comparison possible 

for each method, the criticism of the Hurst parameter is the 

narrow range [0.5, 1] & a lack of real granularity in measuring 

burstiness. The Shannon entropy does not suffer from the 

limited range but the returned values conflict with the Hurst 

parameter. The NSI on the other hand provides a wider range 

of values which can also be expressed as a percentage of 

burstiness. For instance, compute cluster workloads (III, IV) 

exhibit a high degree of variation and a comparison of values 

in table 2 compare well with the research in [8] given that 

existing measures do not quantitatively reflect the diversity of 

cloud applications as well as the usage scenarios. This also 

provides a way to rank applications based on their measure of 

variation to plan adequate resource provisioning.  

B. Cloud Computing Use-Cases 

The static value of the NSI is useful for comparison with 

existing measures of burstiness but of limited use in practical 

cloud scenarios. Thus, an algorithm was devised, one that 

employs predictive score-based method in the computation of 

the NSI over measurable time-windows. This is better able to  

 

 

 

 

 

 

 

 

Figure 2a: Algorithm pseudo-code 2b: Test-bed 

 

 

 

 

 

 

 

 

 

 

 

Figure 3(a) IPERF NSI (b) Google NSI (c) Dropbox NSI        

𝐿(𝜃|𝑦1, … , 𝑦𝑡) = 𝑔(𝑦1 , … , 𝑦𝑛; 𝜃) = ∏ 𝑔(𝑦𝑖 ; 𝜃)𝑛
𝑡=1   

 

𝑠𝑡 = 𝑆𝑡 . ∇𝑡=
𝜕2 ln 𝑔(𝑦𝑡|𝑓𝑡;𝜃)

𝜕2𝑓𝑡
  

 

𝑆𝑡+1 = 𝑆(𝑌𝑡+1, 𝑝(𝑌𝑡+1; �̂�𝑡+1)) 
 

𝑁𝐿𝑆̅̅ ̅̅ ̅̅ = −
1

𝑇
∑ log 𝑝(𝑌𝑡+1; �̂�𝑡+1)𝑡+𝑇−1

𝑡=1   

 

𝑁𝑆𝐼 = −
1

𝑇
∑ (

log 𝑝(𝑌𝑡+1;�̂�𝑡+1)

𝜇𝑡
)𝑡+𝑇−1

𝑡=1   

 

Series NSI Hurst Parameter Entropy 

I 0.15 0.67 1.9 

II 0.16 0.99 1.9 

III 0.76 0.99 2.2 

IV 0.39 0.72 1.7 

 

Input:Y = (Yi|1:T)   

While t < T DO; Initialize w = w0; 𝛼 = 
𝛼k; 𝛽=𝛽k  
 LLIK(Y) = L (Y|μ, 𝜎2, μ, 𝛼, 𝛽, w) 

 MLE(Y)   OPTIM (L (Y|μ, 𝜎2, 𝛼, 𝛽, 
w)); (Iterate MLE to converge) 

IF minimum is not achieved THEN 

END; ELSE Return LLIK(Y); estimate 

score of Y = (μT, sT) END IF 

END WHILE 
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adapt in provisioning scenarios. Figure 2a provides the 

pseudo-code of the predictive score-based algorithm. It takes 

as input the time-series for the cloud environment under study 

and computes the score along with the model parameters 

elaborated in section III. Through log-likelihood, the mean 

and score of the time-series is calculated. The computation of 

the score is dependent on the model selected for the time-

series. As illustrated in Figure 1b which presents non-

Gaussian departures from normality, the model selection 

process determined the lognormal distribution to provide the 

best fit for series II and IV. Thus the algorithm of Figure 2a 

illustrates the expression for the score (𝑠𝑡 =  log 𝑌𝑡−1
2 − 𝜎𝑡−1

2 ) and 

scaled score (𝜎𝑡
2 = 𝜔 +  𝐵𝜎𝑡−1

2 + 𝛼ln (𝑦𝑡−1
2 )) for the lognormal 

distribution. The log-likelihood method also returns the mean 

value for the time-series. Subsequently the one-step-ahead 

forecast for the mean and the score are calculated. This 

enables the calculation of the instantaneous NSI for cloud use-

cases.  

     To test the usefulness of the NSI in practical cloud 

scenarios, the test-bed of Figure 2b was realized. An identified 

workload type competes with a second workload identified as 

contention traffic over a 100 Mbps Ethernet link. A baseline 

experiment is conducted where contention over the 100 Mbps 

link is incremented from nominal utilization (40%) until it 

reaches capacity assignment (100%). For each experiment, the 

mean and score are calculated according to the algorithm of 

Figure 2a. Four workload types were experimented with:  

IPERF synthetic traffic, the RUBiS web workload benchmark, 

Google and Dropbox drive download traffic. Due to space 

constraints, only the NSI calculated at 80% utilization is 

reported. The static value of the NSI for each workload is: 

RUBiS (0.28), Google Drive (0.35), IPERF (0.21), & Dropbox 

Drive (0.49). Figures 3a to c illustrate the instantaneous NSI 

for IPERF, Google & Dropbox over the experimentation 

interval.  Comparing the static values with the plots, the 

instantaneous NSI shown in Figure 3, for the IPERF workload, 

compares with the instantaneous plot which is within the range 

of 0.2 to 0.4. For the cloud-based workloads for the Google 

drive and Dropbox drive downloads, the NSI shows high 

burstiness for Dropbox for both the static value (0.49) as well 

as the instantaneous NSI. The NSI has been employed in 

provisioning for a rate-based algorithm used for QoS 

maintenance in virtualized cloud environments [14]. There, 

the methods employed are able to maintain QoS requirements 

for different applications in the shared cloud environment. 

V. CONCLUSION 

 This paper introduces the Normalized Score Index (NSI) 

as a measure that quantifies the burstiness of cloud workloads 

according to observations of two time-varying properties: its 

mean and its scaled score, which extends variance beyond its 

traditional Gaussian definitions. The NSI compared to existing 

measures presents a more accurate range by which it can be 

expressed as a percentage [0, 100] or as a score [0, 1] in the 

definition of variance as applies to cloud workloads.  The 

usefulness of the NSI as a measure of burstiness applies to 

diverse workloads. The NSI employs statistical features 

specific to each workload based on a selection methodology.  
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