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Abstract—Using a specially instrumented deep packet in-
spection (DPI) appliance placed inside the core network of a
commercial cellular operator we collect data from almost four
million flows produced by a ’heavy-hitter’ subset of the customer
base. The data contains per packet information for the first 100
packets in each flow, along with the classification done by the DPI
engine. The data is used with unsupervised learning to obtain
clusters of typical video flow behaviors, with the intent to quantify
the number of such clusters and examine their characteristics.
Among the flows identified as belonging to video applications
by the DPI engine, a subset are actually video application
signaling flows or other flows not carrying actual transfers of
video data. Given that DPI-labeled data can be used to train
supervised machine learning models to identify flows carrying
video transfers in encrypted traffic, the potential presence and
structure of such ’noise’ flows in the ground truth is important
to examine. In this study K-means and DBSCAN is used to
cluster the flows marked by the DPI engine as being from a
video application. The clustering techniques identify a set of 4
to 6 clusters with archetypal flow behaviors, and a subset of
these clusters are found to represent flows that are not actually
transferring video data.

I. INTRODUCTION

An increasing fraction of all traffic flowing through cellular
networks is transporting video. As video traffic becomes a
major traffic type, and as the performance of such traffic has
a large importance on user satisfaction, network operators
may choose to do video traffic management. This is done
to strike an appropriate trade off between optimizing the
perceived Quality of Experience for the end user, and the cost
of consumed network resources. Such traffic management is
only possible if flows containing video data transfers can be
separated from other traffic flows. A common approach is to
use Deep Packet Inspection (DPI) to examine various aspects
of the traffic to infer the application type to which the flow
belongs to.

DPI approaches are severely hampered for encrypted traffic,
making alternate approaches necessary. Regardless of encryp-
tion the traffic characteristics of flows in terms of packet
sizes, packet direction and packet timing aspects are available.
Such features can form the base of a Machine Learning (ML)
approach using supervised learning with the goal of classifying
flows into video or non-video flows. However, this requires
training of the ML model that will do such classification.
Training can be done using currently available DPI-classified
flows as ground truth. For flows classified by the DPI as being
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from a video application, there is a noteworthy distinction
between a flow being classified as coming from a video
application, and the flow actually transferring video data. This
distinction is at the focus of this investigation. Here we explore
the separation of all flows classified by the DPI as video-
related into those flows who carry actual video data, and
those who do not. We use unsupervised learning to identify
archetypal video flow types, some of which are clearly not
representing flows transferring video data.

A considerable amount of related work exists, and Finster-
bush et al. [4] provide a survey of payload-based classification
approaches. An early survey of machine-learning based classi-
fication is provided by Nguyen et al [8], while Erman et al. [2]
examines traffic classification using K-means and DBSCAN
which are the two approaches also used here. Regarding
classifying encrypted traffic, Shbair et al. [10] proposed a
multi-level approach to identify application classes in HTTPS
traffic. Fu et al. [5] examines encrypted cellular traffic, with
a particular interest in classifying mobile messaging apps. By
analyzing a recent cellular data set we in this study extend the
knowledge regarding video flow behavior as observable inside
the core of the cellular network, with a focus on features also
available for encrypted traffic.

II. EXPERIMENTAL OVERVIEW
A. Measurement collection

The data set was collected from inside the cellular network
backbone of a commercial cellular operator. An operational
DPI box was modified to collect anonymized information for
each of the first 100 packets in a flow. For each packet, the
data also includes the flow application label as inferred by the
DPI engine at that point in time. The DPI engine has over 1000
applications that it differentiates between, and it can update the
classification of a flow as more packets are observed. A list of
applications considered to be video-related was provided by
the DPI vendor.

The collected data comes from a subset of the most active
cellular subscribers, the so-called "heavy-hitters’. Data collec-
tion was performed during May 2016. The data set consists
of 3909197 unique flows, which in the first 100 packets had
a total of 33867394 packets and 11.8 gigabytes.

Data sanitization was employed to remove flows which were
started during the last 30 seconds of the capture window, or
were initiated before the start of the capture window. Flows
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Figure 1: Packet size histograms

Nr of Mean DL Observed Transport
Application flows Packetsize packets protocol
1 SSLv3 188429 650 5613758 TCP
2 DNS 173649 203 3107711 UDP/TCP
3 HTTP 142748 828 5003460 TCP
4 Google 39016 591 1514997 TCP/UDP
5 Facebook 15604 744 754243 TCP
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Figure 2: Scatter plot between mean downlink packet size and
flow length for 12019 video flows

Table I: Most frequent application classes overall

which had a length of 10 or fewer packets were not considered
for the further analysis as these short flows are dominated by
DNS traffic, BitTorrent KRPC exchanges, and ICMP traffic.

B. Data set characterization

One aspect of the data that can be characterized is the
packet size distribution. Figure la shows the distribution for
the complete data set, and also indicates the number of packets
in each direction. It can be observed that the majority of
the packets in both the uplink and downlink directions are
actually less than a few hundred bytes. Figure 1b shows the
packet size distribution for the flows which the DPI engine has
classified as video-related. In the context of this examination,
the downlink direction is the major interest and as can be seen
the distribution for video flows is markedly different to what is
seen in Figure 1a. For video flows a much larger fraction of the
packets have a large packet size. This would be consistent with
the intuition that video flows need to transfer large amounts
of data causing the majority of packets to be full-size packets.

The data can also be characterized according to the dis-
tinct applications which generated the transferred packets.
Tables I and II show the top five applications, according to
the number of flows observed.

The second video-related application stands out with regards
to its average downlink packet size, which is only 78 bytes.
The Newcamd application is not transferring video, but rather
is an application for card sharing to circumvent encrypted
broadcasts.

It is also possible to characterize the data graphically, and
Figure 2 shows a scatter plot of two features potentially useful
for clustering. A large fraction of the flows are located towards
the upper right corner, which would be appropriate for flows
transferring actual video data. The collection limit of 100
packets creates the distinct break at the top of the figure.
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Nr of Mean DL Observed Transport

Application flows packetsize Packets protocol

1 YouTube 5293 1128 313084 UDP/TCP
2 Newcamd 4001 78 49572 TCP
3 HTTP Media stream 1898 1293 109948 TCP
4 Netflix 733 1316 58575 TCP
5 Flash video over HTTP 57 1417 5567 TCP

Table II: Most frequent video applications

III. VIDEO FLOW CLUSTERING

A large number of clustering algorithms exists, and K-
means is one commonly used approach. K-means requires the
number of clusters to be specified when the algorithm is run.
In this evaluation, the correct number of clusters to use in
the clustering algorithm is not known, since that is one of the
outputs of the analysis.

Besides K-means, the DBSCAN density based method is
also used here. This method does not require the number of
cluster to provided, but instead has two tunable parameters
which in turn impacts the number of clusters the algorithm
detects.

A. Employed features

For the clustering task, a straightforward set of 21 statistics-
based features were computed for each flow. Seven different
metrics were used, and these metrics were computed separately
for the complete set of all observed packets in the flow, packets
in the downlink direction, and packets in the uplink direction.
The utilized metrics were number of packets, mean packet
size, maximum packet size, standard deviation of the packet
sizes, variance of the packet sizes, skew of the packet sizes,
and kurtosis of the packet sizes. The features were scaled to
zero mean and unit variance.

B. Initial clustering examination

Unsupervised techniques for reducing the number of di-
mensions are useful for providing an intuition of the clus-
tering behavior in ways which cannot be seen in scatter
plots such as Figure 2, which only captures variation in two
features. Principal component analysis (PCA) is a technique
that performs linear transformations to maximize the variance
for the resulting primary components. A PCA transformation
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Figure 3: Scatter plots of all video flows along the first two principal components

was performed on the 21-dimensional data set created by the
employed features, and the flows are shown along the two
primary components in Figure 3a. The figure thus shows the
projection of the 21-dimensional feature space onto a two-
dimensional plane giving maximum variation, which in this
case explains 77 percent of the total variance. It can be seen
that the PCA creates more spread for the cramped corner
part of Figure 2, and there are visual indications of clusters.
However, Figure 3a contains no information regarding the
spread in the remaining 19 PCA dimensions.

To find the appropriate number of clusters, an internal clus-
tering validation metric is needed. The properties of several
such metrics are discussed by Liu et al. [7], and in this study
the silhouette coefficient [9] is used. For each sample, the
silhouette coefficient is composed from two scores:

a: The mean distance between a sample and all other points
in the same class.

b: The mean distance between a sample and all other points
in the next nearest cluster.

The silhouette coefficient for a single sample is then given
as: ﬁ(g,b). The mean silhouette score for all data
points can then be used as an overall metric of clustering
performance.

S =

C. K-means clustering

Here we use the K-means++ variant [1] for clustering in the
PCA space using Euclidean distance. The specified number
of clusters to be formed is varied, and the average silhouette
score for each resulting clustering is computed. Utilizing this
approach the best silhouette score (0.597) was obtained for
four clusters. The distribution of silhouette scores for each flow
sample is shown in Figure 4a. As is visible in the figure, cluster
one contains most of the samples, and has a high average
silhouette score.

The resulting clusters are shown in Figure 3b. As can be
seen, K-means clustering employs hard clustering, signifying
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Figure 4: Silhouette coefficient values

that all samples must belong to a cluster. Also shown are the
cluster centers, and a relative indication of the cluster size.

D. DBSCAN clustering

DBSCAN clustering [3] does not require the input of the
number of clusters to be formed, but the algorithm uses input
parameters that affects the numbers of clusters formed. DB-
SCAN works by separating areas of high density from areas
of low density. High density areas are considered clusters.
Clusters are formed by core samples, which needs to have
a min_samples number of samples within a distance of eps.
In this evaluation we examined a range of settings using grid
search in the ranges [10,460, step=50] for min_samples and
[0.05,0.95, step=0.05] for eps, and used Euclidean distance as
distance metric. A consequence of the DBSCAN approach is
that the clusters do not need to be convex shaped as is the case
for K-means, and that not all samples need to be assigned to
a cluster.

The DBSCAN clustering had the highest silhouette co-
efficient (0.474) for eps=0.900 and min_samples=60. These
settings resulted in six clusters, with a silhouette score distri-
bution as shown in Figure 4b. In related work [2] DBSCAN
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Figure 5: DBSCAN clustering results transformed back to
original feature space and shown over two of the 21 features.

also achieved a lower clustering metric score, but its ability to
have unclustered samples was found to create more accurate
cluster assignments as compared to K-means.

The resulting clusters in PCA dimensions are shown in
Figure 3c. It can be seen that a number of samples are not
belonging to any cluster. For some of the these samples the
separation from a cluster is located in other dimensions than
the two shown in the figure. Such point are seen in the figure
as unclustered samples visually overlapping clustered regions.

By inverting the PCA transform and feature scaling it is
possible to map the obtained DBSCAN clusters back to the
original feature space. An illustration of the resulting clusters
for the same two features as in Figure 2 are shown in Figure 5.
Here it can be observed that three of the clusters (2,3,6)
appears to capture flows with characteristics consistent with
transporting actual video data. The three remaining clusters
(1,4,5) captures flows which are generated by video applica-
tions, but are unlikely to be transferring actual video data.

The video application is available from the DPI-labeling,
and Table III presents an overview of what fraction of flows
for each video application that maps to which cluster (1-6)
or do not belong to any cluster (N). From the table it can
be observed that for several video applications the majority
of flows are actually not transporting video information. It
is also clear that the Newcamd and Flash video over HTTP
applications has a fairly consistent behavior, with a large
majority of their flows belonging to a single cluster. The other
three DPI-labeled video applications are mixing actual video
transfer flows with other flow types. Both inherent application
characteristics and DPI rule set construction aspects [6] likely
influence this observed behavior.

IV. CONCLUSIONS

Using packet characteristics captured from live traffic in a
cellular network, we perform a clustering analysis using K-
means and DBSCAN to explore the number of archetypal
video flow characteristics that are present. The examined
clustering mechanisms result in 4 to 6 identified clusters.
Several of the clusters represent flows that are not actual video
data transfers. While K-means achieved a better silhouette
score, DBSCAN allows for flow instances to be considered
as background, and not belonging to any cluster. The initial
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Cluster label: 1 2 3 4 5 6 N

Application (DPI-label) ‘ %o % % % % % %
YouTube 5.4 0.1 26 30 1.9 0.5 36
Newcamd 99 0.0 0.0 0.9 0.0 0.0 0.4
HTTP Media stream 41 31 2.6 2.8 0.0 6.6 16
Netflix 2.7 51 0.3 20 0.0 13 14

Flash video over HTTP 0.0 93 0.0 1.8 0.0 0.0 53

Number of flows
in cluster

5029 1017 1437 1832 100 | 244 | 2360

Table III: Per application flow distribution over clusters

visualization performed over basic features of the data, as well
as a principal component analysis indicated that there was a
noticeable presence of such background flows.

While more detailed studies are necessary to conclusively
characterize the typical flow behavior in each identified cluster,
it is nevertheless possible to conclude that several of the
identified clusters captures flows that are not actually trans-
ferring video data. When DPI labeled data such as captured
in this experiment is to be used to train machine learning
models that aim to detect flows transferring video data, using
unsupervised methods such as described here to identify and
remove application signaling and other flows not actually
carrying video data can be of considerable benefit.
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