
Application Switch using DPN for Improving TCP

Based Data Center Applications

Shinnosuke Nirasawa

Kogakuin University

Shinjuku-ku, Tokyo, Japan

cm16035@ns.kogakuin.ac.jp

Akihiro Nakao

The University of Tokyo

Bunkyo-ku, Tokyo, Japan

nakao@iii.u-tokyo.ac.jp

Shu Yamamoto

The University of Tokyo

Bunkyo-ku, Tokyo, Japan

shu@iii.u-tokyo.ac.jp

Masaki Hara

Kogakuin University

Shinjuku-ku, Tokyo, Japan

cm16037@ns.kogakuin.ac.jp

Masato Oguchi

Ochanomizu University

Bunkyo-ku, Tokyo, Japan

oguchi@is.ocha.ac.jp

Saneyasu Yamaguchi

Kogakuin University

Shinjuku-ku, Tokyo, Japan

sane@cc.kogakuin.ac.jp

Abstract—Current network switches cannot be programmed

and flexibly controlled. Then, developers of a data center

application system, which is composed of software and computers

connected with a network, are not able to optimize behavior of

network switches on which the application is running. On the

other hand, Deeply Programmable Network (DPN) switches can

completely analyze packet payloads and be profoundly

programmed. In our previous work, we introduced an application

switch based on DPN. The switch was able to be deeply programed

and developers could implement a part of functions of a data

center application in the switch. The switch deeply analyzed

packets, which is called Deep Packet Inspection (DPI), and

provided some functions of the application in the switch. However,

the switch did not manage connection and not support

communication with TCP. In this paper, we proposed a method

for constructing an application switch supporting TCP based

communication. The method analyzes IP headers, TCP headers,

and payloads of packets. When the switch detects a request which

the switch supports, the switch replies according to its TCP session.

We then introduce our implementation and evaluate performance

of our application switch. Our evaluation has demonstrated that

our switch has been able to improve performance of the data

center applications.

Keywords—component; formatting; style; styling; insert (key

words)

I. INTRODUCTION

Large scale applications in data centers are composed of
computers connected with a network. Traditional network
switches cannot be flexibly controlled. Then, application
developer cannot optimize network elements’ behavior for
improving application performance. On the other hand, Deeply
Programmable Network (DPN) switches can completely
analyze packet payloads and be profoundly programmed.

In our previous work [1], we introduced an application
switch based on DPN. The switch was able to be deeply
programed and developers could implement a part of functions
of a data center application in the switch. The switch deeply
analyzed packets, which is called Deep Packet Inspection (DPI),
and provided some functions of the application in the switch. We
then constructed sample data center applications with our
application switch and demonstrated that our switch was
effective for improving application performance. However, the
switch did not manage connection and not support
communication with TCP.

In this paper, we discuss a method for constructing an
application switch supporting TCP based communication. For
achieving this, analyzing and managing IP headers and TCP
headers are required in addition to analyzing payloads of packets.

This paper is organized as follows. Section Ⅱ introduces

related works. Section Ⅲ proposed a new application switch

supporting TCP based communication. Section Ⅳ evaluates our

method and demonstrates that our switch is effective for

improving application performance. Section Ⅴ discusses

difference with another existing method. Section Ⅵ concludes

this work.

II. RELATED WORK

In this section, we introduce application switch using DPN
and its related works.

A. DPI and DPN

While traditional network elements cannot be flexibly

controlled by applications on the network, DPN [2] switches

can be profoundly programmed and controlled. DPN is a
network in which data planes can be programmed. FLARE [3]

is typical network architecture for the network.

978-3-901882-89-0 @2017 IFIP 995

In traditional network, every network element has both of

control plane and data plane functions. In this case, controlling

the entire network is not easy. In the case of Software-Defined

Network (SDN), data plane function is separated from network

elements and logically consolidated. With this consolidation,

controlling the whole network is easily achieved and network

can be managed flexibly. An SDN switch, including its flow

table, can be managed through software using SDN protocol

like OpenFlow. However, elements in a deeper part in the

device, such as its CPU and storage device, cannot be controlled

with SDN. Unlike traditional network element, an SDN switch

can analyze the layer 4 headers in packets. However, payloads

of packets cannot be analyzed.

In contrast, even elements in a deeper part in the devices can

be controlled with DPN. Thus, network management utilizing

network element’s devices can be realized. In addition, the

entire packet, including its payload, can be analyzed. This

enables profound analyses and flexible control. In DPN, data

plane can be programed using Click Modular Router [4] and

C++ language.
DPI is a method for filtering packets. The method analyses

the payload of a packet for detecting spam, malicious software
or other attacks. Then, the network element doing DPI
determines whether the packet passes, and collects statistical
information. In a case of a packet in Internet, a packet has
Ethernet header and trailer, IP header, TCP header, and payload.
It optionally has an application protocol header, such as HTTP
header, in the payload. Common IP routers and OpenFlow
switches monitor IP headers and L4 header, TCP and UDP
header, respectively. DPI usually means analyzing payloads.

B. Optimization of Switch's behaviors

In this subsection, we introduce an Application Switch. In
order to improve performance of data center applications, we
have proposed to customize and optimize network switches
deeply [5][6]. Traditional network switches cannot be
programed and controlled. Developers optimize only computers
and application software in them like “without DPN” in Fig. 1.
On the other hand, DPS switches can be programed and
controlled. Developers then can optimize behaviors of both of
computers and switches like “with DPN” in Fig. 2. In usual cases,
a network switch is placed at the center of computers. We then
argue that putting an important function of the application of the
data center in the center of the system, i.e. the switch, is an
effective method for improving the data center application. For
example, placing data cache at the center, which is the most
important place is expected to improve performance effectively.

In the first work [5], we proposed to control packet
forwarding considering application behavior. The switch deeply
inspected packets and analyzed the requests from the clients.
The switch then transmitted them to the optimal computer based
on application behavior. The work demonstrated that analyzing
requests in packets and forwarding the requests to a computer
which had the request data in its cache remarkably improved
data the I/O bounded database application. The method
supported only UDP based application.

In the second work [6], we proposed to process some
functions of data center application in the switch. The switch

deeply inspects each packet including a request for the data
center application and interpreted the request. If the switch
detected that it could reply the request, the switch created its
reply and sent it the client without forwarding the request to the
server. The switch supported only application using connection-
less UDP communication because it could not take over a
connection information, such as serial number and identification
number.

We think our method is effective in the situation wherein the
service provider utilized their data center, or on-premise system,
exclusively and has permission to manage their network system
including computers and network elements. In some large scale
services, profound optimization of the system for improving

Fig. 1. Without DPN

Fig. 2. With DPN

PC PC PC

developer

Switch
optimize

APP APP APP

AP

P

Fig. 3. Overview of the proposed method

P

C

Client Switch Server

File Name Data

File

A, B, C

Client Switch Server

File Name Data

A Z

File

A, B, C

P

C

Client Switch Server

File Name Data

A Z

File

A, B, C

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Short Paper996

performance is required and our method is useful for such
situations.

C. TCP connection

A TCP/IP communication manages the following numbers.

Each connection is identified with the source and destination IP

addresses and source and destination port numbers. IP header

and TCP header have check sums which are calculated using

various values, such as sequence numbers, in the packet. The

sequence number and Ack number are updated at every packet

sending and receiving. By updating these values, a TCP

connection certifies that all the data are transmitted in correct

order. Every sequence number is set as the Ack number of the

previous packet with the opposite direction. The Ack value is

set as the sum of the sequence number of the previous packet

with the opposite direction and the size of the packet.

For handouting a TCP connection, these values should be

succeeded and kept managed.

III. APPLICATION SWITCH FOR TCP BASED APPLICATIONS

In this section, we propose a method for applying the concept
of application switch. In this section, we propose a method for
applying the concept of application switch to TCP based
applications.

Fig. 3 illustrates the overview of the proposed scheme. In a
usual case, a TCP connection is established between the client
and the server with 3-way handshake. Naturally, a request from
the client is transmitted to the server and processed by the server
using the connection. In the case of application switch, a TCP
connection between the client and the server is sometimes
handovered to the switch. The switch then succeeds the
connection and sends a reply instead of the server.

The switch must keep managing the sequence number and
acknowledge number of a handovered connection. For
succeeding, the switch has to monitor connections which pass
through it. In addition, the switch must succeed and manage
these numbers after begin handovered. The switch inspects
every packets and sometimes creates a packet instead of the
server according to the monitored sequence number.

IV. EVALUATION

For measuring performance, we have implemented an
application switch and data center application using the switch.
Fig. 4 illustrates our experimental system. The server computers
have application software on it and the switch also has some
functions implementation on it. The application is a simple web
service. The client sends a request for a document and the system,
which includes both of the computers and the switch, returns the
requested document.

We have compared performance of application with and
without application switch. Without application switch, the
client outputs an HTTP request and the switch only forwards the
request packet to the server. The server then processes the
request and replies the request. With the application switch, a
request packet from the client is forward to the server or
processes in the switch. Cases of being forwarded are very
similar to cases without application switch. In cases of being

processed in the switch, the application implementation
interprets requests in a packet and processes it. In the case of our
experiments, we have implemented http server function in the
switch for small documents. The switch inspects a packet as
follows. The software in the switch obtains byte array of a packet
and analyzes IP and TCP header. If the packet is TCP packet
with port 80, the switch analyzes its payload and interprets http
protocol. If the switch can reply the request, it creates the reply
without involving the processing in the server.

The specifications of the computer are as follows. CPU is
AMD Athlon II X2 220 Processor, the memory size is 3.64[GB],
the network device is Broadcom Tigon3 Ethernet driver which
supports Gigabit Ethernet, and the operating system is Cent OS
6.5. The specification of the switch is as follows. CPU is Intel
Celeron CPU 440 @ 2.00[GHz], the size of memory is 1.01[GB],
the network device is Realtek RTL-8169 Gigabit Ethernet driver
[Gbps] support, Gigabit Ethernet, and switch is implemented
click modular router.2.0.1, <new-limit>

Figure. 5 shows the experimental results. The figure shows
that the application switch provided the similar, exactly a little
better, performance.

From the figure, we can expect that application switches can
provide similar performance to a usual case with a network
switch and a server computer.

Fig. 4. Overview of application switch for TCP based application

Client ServerSwitch

3 way

handshake

SYN
SYN + ACK

ACK

connection establishmentapplication

request

application

reply

usual case

Client ServerSwitch

3 way

handshake

SYN
SYN + ACK

ACK

connection establishmentapplication

request

application

reply

application
switch case

Fig. 5. Experimental result

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Short Paper 997

There, putting the most important function such as caching
the most frequently accessed data in the switch in the switch is
effective for improving application performance.

V. DISCUSSION

We present discussion on comparison between our
application switch and application’s reverse proxy. Putting
reverse proxy may seem similar to our application switch.

A reverse proxy is a kind of server computers and this is
visible in the third layer, i.e. the network layer. Thus, it cannot
be installed and removed easily because application is required
to use or net to use the proxy. On the other hand, application
switch is transparent in the third layers. Its installation and
removing does not require any modification of application.

In addition, reverse proxies cannot avoid being bottleneck of
its application because all the requests and replies must reach the
destination server computers via the proxy. On the contrary,
application switches can be transparent. Therefore, it can avoid
being bottleneck by only forwarding the requests to servers like
usual network switches. In other words, application switch chose
to be visible for improving application performance only when
it can achieve it.

VI. CONCLUSION

In this paper, we introduced application switches which
performs some of functions of data center application inside
switches. We then proposed a method for applying the scheme
to a TCP based application. The method monitors TCP
connections which go through the switch. The switch sometimes
is handovered a TCP connection and replies the request from a
client instead of the server by succeeding a TCP connection. Our
evaluation has demonstrated that an application switch can
execute functions with similar performance, or a little better
performance. This implies that helping application by switch can
improve application performance.

In future work, we plan to apply our method to practical and
more complex data center applications such as distributed
database management systems.

ACKNOWLEDGMENT

This work was supported by CREST, JST.

This work was supported by JSPS KAKENHI Grant
Numbers 24300034, 25280022, 26730040, 15H02696.

[1] Shinnosuke Nirasawa, Masaki Hara, Akihiro Nakao, Masato Oguchi, Shu
Yamamoto, Saneyasu Yamaguchi, “Network Application Performance
Improvement with Deeply Programmable Switch,” International
Workshop On Mobile Ubiquitous Systems, Infrastructures,
Communications, And AppLications (MUSICAL 2016), 2017

[2] Akihiro, N. 2013. FLARE: Open Deeply Programmable Switch. GEC 16,
USA.

[3] Akihiro NAKAO, “Software-Defined Data Plane Enhancing SDN and
NFV”, IEICE TRANS. COMMUN., VOL. E98-B, NO.1 JANUARY
2015

[4] Eddie K., Robert M., Benjie C., John J., and M. Frans Kaashoek. 2000.
The click modular router. ACM Trans. Comput. Syst. 18, 3 (August 2000),
263-297. DOI=http://dx.doi.org/10.1145/354871.354874

[5] S. Nirasawa, M. Hara, S. Yamaguchi, M. Oguchi, A. Nakao and S.
Yamamoto, “Application performance improvement with application
aware DPN switches,” 2016 18th Asia-Pacific Network Operations and
Management Symposium (APNOMS), Kanazawa, 2016, pp. 1-4. doi:
10.1109/APNOMS.2016.7737290

[6] Shinnosuke Nirasawa, Masaki Hara, Akihiro Nakao, Masato Oguchi, Shu
Yamamoto, and Saneyasu Yamaguchi. “Network Application
Performance Improvement with Deeply Programmable Switch,” In
Adjunct Proceedings of the 13th International Conference on Mobile and
Ubiquitous Systems: Computing Networking and Services
(MOBIQUITOUS 2016). ACM, New York, NY, USA, 2016, pp. 263-267.
DOI: https://doi.org/10.1145/3004010.3004030

[7] Apache CASSANDRA http://cassandra.apache.org/

[8] Sailesh, K., Sarang, D., Fang, Y., Patrick, C., and Jonathan, T. 2006.
Algorithms to accelerate multiple regular expressions matching for deep
packet inspection. In Proceedings of the 2006 conference on Applications,
technologies, architectures, and protocols for computer communications
(SIGCOMM '06). ACM, (New York, NY, USA). 339-350. DOI=
http://dx.doi.org/10.1145/1159913.1159952.

[9] Fang, Y., Zhifeng, C., Yanlei, Diao., T. V. Lakshman., and Randy, H, K.
2006. Fast and memory-efficient regular expression matching for deep
packet inspection. In Proceedings of the 2006 ACM/IEEE symposium on
Architecture for networking and communications systems (ANCS '06).
ACM, (New York, NY, USA). 93-102. DOI=
http://dx.doi.org/10.1145/1185347.1185360.

[10] Randy, S., Cristian, E., Somesh, J., and Shijin, K. 2008. Deflating the big
bang: fast and scalable deep packet inspection with extended finite
automata. In Proceedings of the ACM SIGCOMM 2008 conference on
Data communication (SIGCOMM '08). ACM, (New York, NY, USA).
207-218. DOI= http://dx.doi.org/10.1145/1402958.1402983.

[11] Sailesh, K., Jonathan, T., and John, W. 2006. Advanced algorithms for
fast and scalable deep packet inspection. In Proceedings of the 2006
ACM/IEEE symposium on Architecture for networking and
communications systems (ANCS '06). ACM, (New York, NY, USA). 81-
92. DOI= http://dx.doi.org/10.1145/1185347.1185359.

[12] Young, H, C., and William, H, Mangione-Smith. 2004. Deep Packet Filter
with Dedicated Logic and Read Only Memories. In Proceedings of the
12th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM '04). IEEE Computer Society, (Washington,
DC, USA). 125-134.

[13] S, Dharmapurikar., P, Krishnamurthy., T, Sproull., and J, Lockwood.
2003. Deep packet inspection using parallel Bloom filters. In Proceedings
of the High Performance Interconnects, 2003. Proceedings. 11th
Symposium. 44 - 51.

[14] Michela, B., Mark, F., and Patrick, C. 2008. A workload for evaluating
deep packet inspection architectures. In Proceedings of the Workload
Characterization, 2008. IISWC 2008. IEEE International Symposium
(Seattle, WA). 79 - 89.

[15] N, Hua., H, Song., and T, V, Lakshman. 2009. Variable-Stride Multi-
Pattern Matching For Scalable Deep Packet Inspection. In Proceedings of
the INFOCOM 2009, IEEE (Rio de Janeiro). 415 - 423.

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Short Paper998

