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Abstract—The principal objective when monitoring compute
and communications infrastructure is to minimize the Mean Time
To Resolution of service-impacting incidents. Key to achieving
that goal is determining which of the many alerts that are
presented to an operator are likely to be the root cause of an
incident. In turn this is critical in identifying which alerts should
be investigated with the highest priority.

Noise reduction techniques can be employed to reduce the
quantity of alerts a network operator needs to examine but even
in favorable scenarios there may be multiple candidate alerts
that need to be investigated before the root cause of the incident
can be accurately identified, resolved and full service resumed.

The current contribution describes a novel technique, Probable
Root Cause, that applies supervised machine learning in the form
of Neural Networks to determine the alerts most likely to be
responsible for a service-impacting incident.

An evaluation of different models and model parameters is
presented. The effectiveness of the approach is demonstrated
against sample data from a large commercial environment.

I. INTRODUCTION

Network infrastructures together with the applications and
services that run on them produce huge quantities of event
data on an ongoing basis. In the realm of fault localization, the
number of events generated on a reasonably sized commercial
infrastructure can be of the order of hundreds per second
while volumes in the largest enterprises can be many tens of
thousands per second. There are countless event types each of
which deliver differing amounts of information to a network
operator. For example, some events may represent application
heartbeats; others may be the result of active polling on a
device to a fixed schedule to report hardware usage statistics;
others may be asynchronously delivered whenever a threshold
is reached or a particular scenario has been detected, an SNMP
LinkDown trap for example. It is the role of a network operator
to decode the alerts that are presented, to determine whether
a service-impacting incident exists, which alerts are indicators
of it and subsequently which alerts represent the underlying
problem that needs to be remedied.

There are several techniques, loosely termed noise reduc-
tion, that can reduce the volume of alerts that an operator
needs to examine, [1], [2]. At its simplest, noise reduction
can be achieved via manual exclusion or blacklisting, [3], a
process that is impractical at scale. Other techniques exist that
use machine learning or rules-based approaches to group alerts
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that are related to the same incident [4]. These groups of alerts
are created without regard for whether the alerts represent the
symptoms of the outage, or its underlying cause.

Noise reduction is an invaluable tool for an operator, but
it doesn’t solve the problem of which alert to action first,
resulting in a Mean Time To Resolution (MTTR) that is higher
than desired. The techniques used to identify the reason for an
outage are collectively known as Root Cause Analysis (RCA)
as described in [5]. Many RCA techniques were invented when
network and application topology changes were infrequent and
rely upon a behavioral models of the infrastructure. The advent
of technologies such as virtualization, micro-services, network
traffic shaping etc. have created huge changes in the way
that infrastructures and services are deployed and managed.
In modern infrastructures, which combine highly dynamic
network and application topologies and large volumes of event
data, traditional RCA techniques have become impractical and
largely obsolete [6], [7]. In particular, the demands placed
upon RCA by the adoption of virtual datacenter technologies
can introduce the Overlay Network fault diagnosis issue [§]
and render behavioral models untenable. Further, none of these
models leverage the expertise of the operations staff who
have considerable practical understanding of which events are
suspicious in terms of root cause.

In this paper we describe a new approach to predicting root
cause alerts called Probable Root Cause' (PRC). Rather than
analyzing network and application topologies alongside known
failure scenarios to generate a static model [5], PRC applies
supervised machine learning to alert data and associated
operator feedback to estimate the probability that an alert is
causal in any given failure scenario. Thresholds can be applied
to this value to change the remediation activity undertaken.

We begin in section II by describing the details of the
technique we are using to leverage neural networks for root
cause prediction. In particular how we present features to the
model in a way that is amenable to training and determination
of root cause. In section III the methods used to train and
validate the model are presented with particular emphasis on
optimization of the input features and training set to achieve
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the most favorable results against a fixed set of validation data.
Section IV presents favorable results of the validated model
against a set of pre-determined test data and a discussion of the
utility of PRC in the context of a live operational environment.

II. BACKGROUND
A. Definitions & Nomenclature

Throughout this paper the following definitions will be used:

Event An instance of a failure or status message.

Alert A state-based grouping of identical events.
Situation A group of alerts representing a service failure.
Events, alerts and situations are represented within manage-
ment systems as a collection of name-value pairs. A minimal
set of operationally useful fields for alert and situation records

are shown in Tables I and II respectively.

The PRC technique described here trains two models. The
first, Alert PRC, assigns a probability to each alert taken in
isolation and based purely on its individual attributes and
regardless of whether the alert forms part of a situation or
not. This value acts as a predictor that operators can monitor
before an outage has fully developed and act on preemptively
to prevent a more serious outage occurring. The second model,
Situation PRC also assigns a probability to an alert but based
on its context, i.e. the situation in which the alert is observed.
This value acts as a call to action and gives an operator a clear
indicator as to which alerts should be actioned first in any
situation. In a live PRC deployment, feedback from operators
is required to identify the root cause and symptomatic alerts
of a resolved situation and to train the model further.

B. Feature Extraction

The values of alert and situation attributes need to be
converted into meaningful feature vectors for input into the
learning algorithm. Not all of an alert’s or a situation’s
attributes are informative when determining the root cause of
an outage, in fact some attributes are only assigned a value
once the likelihood of root cause has been determined. For
example, the operator to whom a situation is assigned or the
position of an alert is in its operational workflow are only
given values once it is deemed actionable, attributes such as
these are an output of PRC rather than an input to it.

When converting the value of an attribute into a feature
vector the primitive type of the value but also its practical
interpretation need to be considered. The values of some
attributes represent distinct and unconnected categories, for
example, the values for Type may be Hardware, Network, Ap-
plication etc., where each value represents a distinct category.
Other attributes require a different interpretation: Count is a
numerical value with a natural order to it; Source is the host
name of a device containing embedded conventions that a
trained model needs to understand. In addition, while time
is stored as a numerical delta from an epoch, derived features
such as hour of the day or minute of the hour are generally
more useful features. In the context of a situation, so-called
Ensemble Features may be required. Ensemble features are
not explicit attributes of a situation but are derived from the
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set of alerts it contains, for example, alerts that occur earlier
in a situation may be more likely to be the root cause. The
feature types required to encapsulate different attribute types
are shown in Table III.

Conversion of the numerical and categorical feature types
into feature vectors follow standard processes. Ordered num-
bers require no special conversion and categorical features are
converted using so-called One Hot Encoding. However, both
long and short textual feature types require special treatment.

Several operational requirements influenced the approach to
feature extraction within PRC, including: transferability of a
trained model from one operational environment to another
and the ability for the model to learn incrementally as new
training examples are received. The practical consequence
of these requirements is that the size of the feature vectors
need to be fixed at the beginning of the training process and
that the training and classification processes must be able to
accommodate new, previously unseen tokens as new data is
presented to the model.

A common method of converting text based values to a
feature vector is to adopt a token-counting approach. The
text is divided into distinct tokens, such as words, phrases
or shingles and the number of occurrences of each token
is recorded in the feature vector. The length of the feature
vector required to model an attribute therefore depends upon
the number of distinct tokens across the entire corpus of that
attribute. In this approach, when a new token is observed, that
token can neither be incorporated into the model, restricting
the development of the model over time, nor can its value
impact the classification of the alert to which the token
belongs. To avoid these issues we adopt feature hashing, [9],
also known as the hashtrick, for all text features.

The differing treatment of short and long text features
is defined by the tokenization strategy and the size of the
vector that the corpus is collapsed onto. For attributes with
longer values such as Description, the text is split into words
and it is be expected that the vector size will be relatively
large. Experiments conducted during development of PRC
suggested that a feature vector sizes of at least 128 were
required to provide the appropriate balance between accuracy
and computational effort. For short text fields such as Source,
tokenization is based on n-character shingles where n > 2,
experiments during development of the technique suggested
feature vectors of size between 16-48 were required. The
optimal sizes for each feature and the tokenization regime form
part of a model validation exercise, for the current work this
process is described in Section III-D.

C. Feature Vector Construction

The Alert and Situation PRC models take different feature
vectors, but both are constructed from the same fundamental
components. The Alert PRC model takes instances of the
Alert Feature Vector, X alert, the Situation PRC model takes
instances of the Situation Alert Feature Vector, XsitAlert-

1) Alert Feature Vector: We define S as the set of all alert
attributes and 7" as the set of attributes upon which the model
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is to be trained or the value of root cause predicted, such that
T C S. Each attribute in T is converted into its own feature
vector, X¢ in a d; dimensional vector space V;, according to
the type of the attribute value and its practical interpretation
as described in Section II-B. X ajert 1S constructed from the
concatenation of these feature vectors embedded in a new
vector space F' = € V;, which we write as:
teT

Xalert = (XAlert”Xt) VieT (1)
such that the dimensionality of X atert, daiert = D dy

teT
2) Situation Alert Feature Vector: The feature vector for a
situation, Xsjtuation 1S defined as:

> Xalert )

XAlert€Q

XSituation =

where () is the set of alerts in a situation. Xsjtalert 1S the
concatenation of the feature vector for the alert, X Ajert, and
the situation in which it exists, Xsituation Such that:

XsitAlert = XSituation || XAlert 3

D. Neural Network Architecture

The neural network used in this work is a multi-layer
perceptron, [10], [11], with a single hidden layer. The size of
the input layer, Ny,;y¢, is governed by the dimensionality of
XAlert OF XsitAlert- As PRC is fundamentally a binary clas-
sification problem the output layer, Noypu:, contains 2 nodes.
The size of the hidden layer, Ng;q4q4en, i chosen automatically
using the convention Ngggen = 2 (Ninput + Nowtput) /3

Non-categorical features in the input feature matrix are
normalized to zero-mean and unity variance. Standard sig-
moid activation, back-propagation and L2 regularization is
employed as described in [10], [11] alongside the conjugate
gradient optimization routine described in [12].

III. EXPERIMENTS

In this section we describe the process of training, validating
and subsequently testing the Alert and Situation PRC models.

A. Training Data

The evaluation process followed standard practices for train-
ing and validating a classifier. The labelled data was split in
the ratios 60:20:20 between training, validation and test data.
The content of each dataset remained fixed for each trial and in
cases where only part of the training set was used, the models
were tested using the complete validation and test datasets.

In the current work a single piece of labelled data refers
to a situation in which the root cause alert, or alerts, have
been identified. In general a situation will contain at least one
root cause alert and a greater number of symptomatic alerts.
In the data used here there is an average of about nine alerts
per situation and the non-root cause alerts were labelled as
symptoms. In practice, the number of alerts in a situation is
unconstrained and it does not automatically follow that a non-
root cause alert should be labelled as a symptom.

A total of approximately 3000 labelled situations were
extracted from a live deployment of an Incident. MOOG sys-
tem, [13]. Alert labelling was facilitated automatically via
a root cause attribute assigned by a topology based, legacy
system available in the deployment environment. A live PRC
deployment would rely upon operator feedback to label the
root cause alerts and their symptoms.

B. Evaluation Measures

The trained PRC models are initially evaluated using the F}
score. There are known limitations with the F} score in certain
classification scenarios, [14], but the deficiencies were consid-
ered acceptable during model validation given the ease with
which F} can be calculated. A more comprehensive evaluation
of the validated model in Section IV uses additional measures
including the Receiver Operating Characteristic (ROC), [15].

C. Feature Selection

For the purposes of this investigation and owing to a
considerable depth of knowledge of the labelled data, the
feature selection process was a manual one. The Description
and Agent attributes, Table I, were identified as the most dis-
criminatory features and are used throughout the current work.
Agent was treated as Categorical Text, while the Description
was encoded as Long Text, see Table IIT and Section II-B. Alert
and Situation feature vectors were constructed as described in
Section II-C.

D. Description Feature Size

An important attribute of PRC is the ability to project an
arbitrary set of tokens onto a fixed length feature vector. Figure
1 shows the variation of F) score with the length of the
Description feature count for both the Alert and Situation
PRC models. In common with all results presented here the
accuracy of the Alert PRC model is slightly below that of the
Situation PRC model. In both cases the F; score has a value of
approximately 0.80 for a feature count of only 8, climbing to
approximately 0.90 for a feature count of 64. Higher feature
counts show the F} score reaching an asymptotic value of
approximately 0.93. The experiments described subsequently
were all performed using a Description feature count of 128.
The relative accuracy of the model at low feature counts was
a little surprising, it is postulated that this may be due to a
relatively small number of alert templates being responsible
for root cause alerts. Further investigation of this finding is
required but is not covered in this work.

E. Training Set Size

The impact of training set size on the Alert and Situation
PRC Models are shown in Figures 2 and 3 respectively. Both
plots display the F) score against the number of labelled
situations in the training set and display similar characteristics.
For small training sets both models have the characteristics of
a high variance model, specifically, low error when evaluated
against the training data, (F} =~ 1.0), but a relatively high
error when tested against the validation data, (F; ~ 0.8). As
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TABLE I
TYPICAL FIELDS IN AN EVENT OR ALERT RECORD

Name Type Description
Agent Text The name of the agent that created the event e.g. (SCOM, NAGIOS, SNMP TRAP etc.)
Class Text Classification for the event in a hierarchy to identify simple event ontologies, see Type
Count Number A running count of the number of de-duplicated events for this alert
Description  Text A human interpretable summary of the event
Location Text The geographic or physical location of the agent e.g. NYC Data Centre, (51.407139, -0.307321), London
Manager Text A general identifier of the event generator or intermediary process e.g. NAGIOS, SCOM
Owner Number  The system wide ID for the operator that is currently assigned to resolve this alert
Severity Number  An indicator, in the range of 0-5, of a event’s importance, by convention 0 is the lowest severity.
Source Text A unique human readable hostname for the source of the event
State Number  The current state of the alert, primarily used to indicate where the alert is in an operational workflow
Timestamp  Time The timestamp of when the event occurred
Type Text A sub-classification for the event in a hierarchy to identify simple event ontologies, see Class
TABLE 11
TYPICAL FIELDS IN A SITUATION RECORD
Name Type Description
Created Time When the situation was created
Description  Text A human readable summary of the situation
Moderator Number The operator ID that is responsible for resolution of this situation
Priority Number A hint, in the range of 0-5, to indicate the importance of this situation
Processes Text/Number  The processes that are impacted by this situation
Queue Text A user-defined workflow categorisation of the situation
Services Text/Number  The high-level business services that are impacted by this situation
State Number The current state of the alert, primarily used to indicate where the alert is in an operational workflow
TABLE III
FEATURE TYPES
Feature Type Example Attribute  Description
Time Created The timestamp expressed as ’hour of the day’ and "minute of the hour’ for example
Ordered Number Count A numerical field with a link between the magnitude of the value and its meaning
Categorical Number  Severity A numerical field where there is no logical link between the different values
Categorical Text Agent A Text field with with no logical link between words regardless lexical similarity
Short Text Source A treatment that aims to extract patterns from within individual tokens
Long Text Description A word/phrase based treatment that aims to extract patterns from the text as a whole

the size of the training set is increased the F; score and hence
the underlying error between the training and validation sets
converge to approximately 0.91 and 0.93 for the Alert and Sit-
uation PRC models respectively. We consider these £} scores
to demonstrate an acceptable level of accuracy for the current
model, consequently, for all further experiments and tests the
complete set of training data, comprising approximately 1750
training examples was used.

IV. MODEL EVALUATION

Section III described the processes used to train and validate
the Alert PRC and Situation PRC models. In this section we
evaluate the optimized models against a set of test data, the
same models were used for all test cases.

Raw statistics for the performance of the Alert PRC and
Situation PRC models are shown in Tables IV and V respec-
tively for a variety of Root Cause Threshold (RC Threshold)
values. RC Threshold is defined as the probability above which
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an alert is classified as a root cause and below which it is
considered a symptom.

Figure 4 shows the variation of the Fj; score with
RC Threshold. As was also observed in Section III, the
accuracy of the Situation PRC model is consistently higher
than the Alert PRC model. The additional context available
in the Situation PRC model allows a different root cause
probability to be predicted for identical alerts that appear
in different situations. In the same scenario the Alert PRC
model is only be able to predict a single value for the
probability of root cause. Closer examination of Figure 4
shows a remarkably consistent F score for both models for
values of RC Threshold between 0.2 and 0.7. At values of
RC Threshold outside these bounds there is a considerable
drop-off in accuracy. Interesting however, is the higher rate of
drop-off in the Alert PRC model, we propose that the inherent
lack of context in the Alert PRC model is the cause.

All learned models exhibit conflicting accuracy character-
istics so it is important to find an acceptable compromise
when applying a model to a real-world application. Intuition
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TABLE IV
ALERT PRC : ACCURACY STATISTICS
RC Threshold  Precision FPR TPR F1 Score  ROC Area
0.01 0.623 0.183  0.994 0.766 0.812
0.05 0.774 0.088  0.985 0.867 0.899
0.10 0.817 0.067 0.979 0.891 0.913
0.20 0.844 0.055 0971 0.903 0.918
0.30 0.870 0.044  0.964 0.914 0.922
0.40 0.887 0.037 0.951 0.918 0.917
0.50 0.898 0.032  0.928 0.913 0.898
0.60 0.914 0.026 0911 0.912 0.887
0.70 0.929 0.020 0.877 0.902 0.859
0.80 0.942 0.015 0.786 0.857 0.774
0.90 0.967 0.007  0.632 0.765 0.628
0.95 0.991 0.001  0.477 0.644 0.477
0.99 0.997 0.000 0.374 0.544 0.374

suggests that the RC Threshold value should be 0.5, however,
that assumption provides no control over the number of true
positive or false positive results. In an operational environment
capturing more root cause alerts and consequently reducing
the MTTR of critical outages may be acceptable, even at the
expense of more false positives. The data in Tables IV and
V and the corresponding ROC plot in Figure 5 are used to
demonstrate this. The ROC plot shows the trade-off between
the True Positive Rate (TPR) and the False Positive Rate
(FPR), the closer the curve to the top left corner of the
plot the more accurate the model, both models exhibit very
favourable characteristics in this regard. The conclusion of
[16] is that the optimal algorithm for a problem is the one
that gives the lowest area under the ROC curve. By extension
we postulate that the optimal characteristic within a model is
the one which captures the largest area within that model’s
ROC curve. Examination of Tables IV and V show that the
TPR for both models rises as the RC Threshold value falls,
however FPR rises at a slower rate. The maximum value for
the area within the ROC curve for each value of RC Threshold
is shown and has a maximum value of 0.92 at an RC Threshold
of 0.3 for the Alert PRC model and 0.93 at an RC Threshold of
0.2 for the Situation PRC model. These points are highlighted
in Tables IV and V and in the magnified area of Figure 5. For
the data presented here, an RC Threshold potentially as low as
0.1 could be chosen without compromising the efficiency of
the fault resolution process because of too many false positive
results. Ultimately the choice of RC Threshold depends purely
on the operational requirements.

V. CONCLUSION

In this paper we have presented a novel technique for
predicting the root cause alerts of service failures in compute
and communication infrastructures, Probable Root Cause. The
technique does away with the need for the behavioral models
common in legacy RCA systems and consequently is well
suited to rapidly changing, virtualized infrastructures that are
common today. The technique uses alert data alongside oper-
ator feedback to train a neural network and hence leverages
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TABLE V
SITUATION PRC : ACCURACY STATISTICS

RC Threshold  Precision FPR TPR F1 Score  ROC Area
0.01 0.767 0.093  0.987 0.863 0.895
0.05 0.841 0.057 0.978 0.904 0.910
0.10 0.871 0.045 0.973 0.919 0.929
0.20 0.900 0.033 0.964 0.931 0.932
0.30 0.920 0.026  0.955 0.937 0.930
0.40 0.931 0.022  0.946 0.939 0.926
0.50 0.933 0.021  0.935 0.934 0.916
0.60 0.944 0.017 0.921 0.932 0.905
0.70 0.956 0.013  0.899 0.927 0.888
0.80 0.963 0.010 0.866 0.912 0.858
0.90 0.969 0.008  0.795 0.874 0.789
0.95 0.986 0.003 0.713 0.828 0.711
0.99 0.994 0.001  0.544 0.703 0.544
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the expertise of the operations staff charged with maintaining
strict service levels.

The underlying premise of PRC and the methods used to
formulate the models were trained, validated and tested against
labelled data obtained from a large commercial environment.
The validated models show a high level of accuracy as mea-
sured by the F} score and ROC. We would expect equivalent
performance if the models were deployed into an environment
with similar event sources and failure scenarios. Deployment
in a substantially different environment would require a new
training and validation exercise.

The models display some operationally significant charac-
teristics, which allow the root cause threshold to be lowered
significantly below expected levels such that the rate of true
positive results increased without the number of false positive
results increasing to unacceptable levels.

In order to meet operational requirements and reduce
computational overhead, PRC employs techniques to control
the dimensionality of a variable size feature space. It was
demonstrated that highly-dimensional text attributes could
be projected onto low dimensional feature spaces without
sacrificing accuracy when measured by F; score or ROC, we
intend to conduct further research into this intriguing result.
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